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Abstract

In the search for doubly resolvable Kirkman triple systems of order v, systems
admitting an automorphism of order (v — 3)/3 fixing three elemeants, and acting on
the remaining elements in three orbits of length (v — 3)/3, have been of particular
interest. We have established by computer that 100 such Kirkman triple systems
exist for v = 21, 90,598 for v = 27, at least 4,494,390 for v = 33, and at
least 1,626,684 for v = 39. This improves substantially on known lower bounds
for numbers of Kirkman triple systems. We also establish that the KTS(27)s so
produced yield 47 nonisomorphic doubly resolved KTS(27)s admitting the same
automorphism.

AMS Subject Classification: 05B07.
Keywords and Phrases: Kirkman triple system, doubly resolvable design, Steiner triple
system, constructive enumeration.

1 Introduction

A Steiner triple system of order v, denoted STS(v), is a pair (V, B), where V is a set
of v elements, and B is a set of 3-element subsets of V' called triples or blocks, so that
every 2-element subset of V' occurs in precisely one triple of B. Steiner triple systems
have been extensively investigated; see [4].

A parallel class in an STS(v) (V, B) is a set of disjoint triples whose union is
the set V; a parallel class therefore contains v/3 triples, and hence an STS(v) having a
parallel class can existonly whenv =3 (mod 6). When the entire block set B can be
partitioned into parallel classes, such a partition R is called a resolution of the STS, and
the STS is resolvable. If (V, B) is an STS(v) and R is a resolution of it, then (V, B, R)
is a Kirkman triple system, and (V, B) is its underlying STS. The distinction between
resolvable STSs and KTSs is that a resolvable STS may underlie many nonisomorphic
KTSs, since in a KTS the specific resolution is given.

If (V, B) and (X, D) are STSs, an isomorphism from (V, B) to (X, D) is a one-to-
one mapping 7 from V' to X for which {z,y, 2} € Bifand only if {x(z), n(y),7(2)} €
D. The systems are isomorphic if there is at least one isomorphism from one to the
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other, and nonisomorphic otherwise. Extending this to Kirkman triple systems, we re-
quire an isomorphism to preserve parallel classes, i.e. to map all triples of a parallel
class of the first system to triples of a parallel class of the second. An automorphism
is an isomorphism from a system to itself. The set of automorphisms forms a group
under composition, the automorphism group of the system. The order of the automor-
phism group is the number of automorphisms which it contains, while the order of an
automorphism is the smallest positive number of times that it can be applied in order
to obtain the identity map.

A parallel class contains v/3 triples, and hence a resolution R consists of r =
(v — 1)/2 parallel classes, R = {Ry,...,R;}. A parallel class T is orthogonal to
the resolution R if T N R; contains zero or one triples for each 1 < i < r. Let
R ={R),...,R.}and T = {T1,...,T+} be resolutions of the same STS. These two
resolutions are orthogonal if the number of triples in R; N T} is either zero or one for all
1 < i,j < r. When a system has two orthogonal resolutions, it is doubly resolvable.

Kirkman [8] first asked about the existence of Kirkman triple systems in 1850, and
solved the case when v = 15 (the Kirkman 15-schoolgir! problem). Ray-Chaudhuri
and Wilson [13] published the first solution to the existence question for KTSs for all
v=3 (mod 6).

There is a unique STS(9) up to isomorphism, and it is resolvable. Indeed, it under-
lies a unique KTS(9). Of the eighty nonisomorphic STS(15)s, four are resolvable; to-
gether they underlie seven nonisomorphic KTS(15)s. The catalogue of seven KTS(15)s
was presented by Woolhouse [14, 15] in 1862-63, although the systems themselves
were known prior to that time. The KTS(9) and seven KTS(15)s do not admit an or-
thogonal resolution, and so no STS(v) is doubly resolvable for v < 21.

The determination of Kirkman triple systems of the next order, v = 21, has re-
mained far from complete, although all KTS(21)s with nontrivial automorphism group
have now been enumerated [2]. There are at least 63,745 nonisomorphic KTS(21)s, a
substantial increase from the 192 previously known [5].

Doubly resolvable STS(v)s do not exist when v € {9,15} but do exist for all
v > 21 withv = 3 (mod 6) with 23 possible exceptions [3). The smallest pos-
sible exception occurs when v = 21, so that the smallest known (nontrivial) doubly
resolvable STS(v) has v = 27.

2 A special automorphism

Fuju-Hara and Vanstone [6] and Mathon and Vanstone [11] observed that the doubly
resolved KTS(27) from the affine geometry admits an automorphism of order 8 fixing
three points, and mapping the rest in three cycles of length 8; hence they suggested
the study of KTS(v)s admitting an automorphism with a similar structure, of order
(v — 3)/3, fixing three elements. Centore and Vanstone [1] established that no doubly
resolvable KTS(21) exists admitting such an automorphism.

Forv = 6t+3,let V = (Zy x {0,1,2}) U {00g, 00;,002}. (We often write



z; for (z,i) € Z x {0,1,2}.) We suppose that there is an automorphism of order
2t fixing the three elements in {00g, 001,002}, and developing the remaining points
modulo (2¢, —). A KTS(6t + 3) has 3¢ + 1 parallel classes, and we suppose that the
automorphism of order 2¢ induces orbits of length 2t, ¢, and 1 on the parallel classes.
We further suppose that the only triple fixed by the automorphism is the infinite block
{000 » 001, 002 }-

The parallel class fixed by the automorphism can be represented by a single triple,
which is necessarily of the form {zg, 1, 22}; the parallel class contains all translates
of this triple together with the infinite block. Since the automorphism has order 2¢, the
orbit of length ¢ on the parallel classes must be fixed by the tth power of the automor-
phism. Thus each parallel class in the orbit must be fixed by the addition of (¢, —) to
each non-infinite element, and hence whenever {1, j, k} C {0, 1,2} and {z;,y;, z¢} is
in a parallel class of this orbit, we find also {(z + t);, (y + t);,(z + t)& } in the same
parallel class. In order to place pairs of the form {z;,(z + t);} for0 < z < ¢ and
i € {0,1,2} into triples, observe that such pairs lie in an orbit of ¢ pairs and hence
must appear in the triples of parallel classes in the orbit of length . Indeed, we may
suppose without loss of generality that the zth paraliel class of this orbit contains the
triples {00;, z;, (z + t);} for i € {0,1,2}. Hence to determine the orbit of ¢ parallel
classes, we can specify ¢ — 1 triples so that adjoining the ¢ — 1 triples obtained by
addition of (¢, —), and adjoining the three triples containing infinite points, we obtain
a parallel class.

The orbit of 2¢ parallel classes has 0o appearing with pairs of the form {z;,y2};
a similar constraint holds for the two other infinite elements.

In order to make the determination of KTSs admitting such an automorphism fea-
sible, we first enumerate all possible patterns for the second coordinate (from {0, 1, 2})
for the non-infinite elements. By taking into account the number of pairs of each type,
arelatively small set of such patterns exists. For v = 21, for example, there is only one
pattern. For v = 27, there are seven patterns, named as in Table 1.

Case Orbit of 2t PCs Orbit of ¢ PCs
la {001 001 022 022 112 112|011 122 002
Ib 1001 001 022 022 112 112|001 022 112
lc [001 002 Ot1 022 112 122001 112 022
3a {111 001 002 022 122 012|001 122 012
3b [001 001 122 122 012 012111 002 022
7a (012 012 012 012 012 012]000 111 222
7b | 000 111 222 012 012 012|012 012 012

Table 1: Patterns for v = 27

Adjoining triples with infinite elements, and adjoining the fixed parallel class, we
can then proceed by backtracking to determine all assignments to the first coordinate



Group Number in Case Total
Order la 1b lc 3a 3b Ta 7b | Number
82744 1900 24110 49680 8448 1394 1143 | 89419

16 42 42 223 560 111 75 1053

24 2 1 3

32 31 23 54
48 2 1 3 6

72 4 24 1 29

96 4 4
144 1 7 1 9
288 1 3 4
648 6 6
1296 6 6
1944 1 1
2592 1 1
3888 1 1 2
303264 1 1
total | 2790 1950 24110 499504 9040 1580 1224 | 90598

Table 2: Certain KTS(27)s

(elements of Z4;) which lead to a KTS(6¢ + 3). We completed this procedure for
v < 27. When v = 21, the single pattern leads to the 100 nonisomorphic KTS(21)s
having an automorphism of order six. When v = 27, each of the seven patterns leads to
solutions, yielding 90,598 nonisomorphic KTS(27)s. The numbers and automorphism
group orders in each case are detailed in Table 2.

Of most interest is that each of the designs constructed not only has an automor-
phism group whose order is a multiple of eight, but the stronger property that its auto-
morphism group has a cyclic subgroup of order eight. Replacing Zg by Z4 x Z4 or by
Z2 x Zy x Z may lead to more nonisomorphic KTS(27)s. It is also of interest to de-
termine whether a KTS(27) exists that has three orthogonal resolutions. We examined
systems which admit a pair of orthogonal resolutions, both having the structure pre-
served under an automorphism consisting of three 8-cycles and three fixed elements.
An example is shown in Table 3, using ¢ in place of co. We found 47 nonisomorphic
examples of this type, arising from 15 nonisomorphic STS(27)s. For each STS(27),
we list its automorphism group order and the number of doubly resolved STS(27)s of
this type which it underlies: (303264,11), (96,5), (32,7), (32,2), (32,1), (16,5), (16,2),
(16,1) twice, (8,4) twice, and (8,1) four times. All of the doubly resolved STS(27)s
found have an automorphism group of order eight. We determined for each whether
it admits a third resolution of any type which is orthogonal to the two specified res-
olutions, in an attempt to find a triply resolvable STS(27). However, none of the 47



nonisomorphic doubly resolved STS(27)s admits a third orthogonal resolution.

09152
71013)

[3070:0

135141 ]4

3272:212101¢1 501949
4 23377

Table 3: A doubly resolvable KTS(27)

A complete enumeration for larger values of v appears to be infeasible. According
to [10], the number of known Kirkman triple systems is 192 for v = 21, 909 for
v = 27, 28 for v = 33, and 88 for v = 39. Our results using this simple automorphism
seemed to suggest that these numbers could be easily improved. Having completed
the generation when v = 27, we therefore generated a large number of nonisomorphic
KTSs for v = 33 and v = 39, using only one pattern. Even the restriction to a single
pattern was not sufficient, and so we abandoned the search having produced 4,449,390
KTS(33)s and 1,626,684 KTS(39)s. On this basis, we expect that the actual numbers
will be very much larger.
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