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Abstract
A necessary and sufficient condition for the existence of a perfect distance-
d placement in 3—dimensional tori is given for both the regular and the
irregular cases.

1 Introduction

Let kj,...,kn € N, the set of natural numbers, and C; be a cycle of length i.
Then an n-dimensional torus 7 = Ci, X .. X Ck,, is the direct product of n cycles
of the respective lengths k;. If k; = ... = k, = k, then the torus is denoted by
T(n,k). A set L of vertices of T is a perfect distance-d placement in 7 if each
vertex of 7 is at Manhattan distance at most d from exactly one vertex in L.
If 2d +1 > k; for some i € {1,2,...,n} then the perfect distance-d placement is
called irregular.

The question of the existence of perfect distance-d placements in tori 7 has been
extensively studied. Most papers on the topic use the language of perfect Lee
codes. It is not difficult to see that the existence of a perfect Lee d-error cor-
recting code over Z}, the n-fold cartesian product of the Z, is equivalent to
the existence of a perfect distance-d placement in 7(n, k). We have chosen the
language of placements as our research was motivated by an application in com-
puter science. Processing elements in a supercomputer communicate through an
interconnection network. Tori have been used as topologies for these networks
in several existing supercomputers among which Cray T3D and Cray T3E. Fre-
quently there are a limited number of shared resources, such as I/O devices,
that every processing element needs to access. A perfect distance-d placement
of these resources minimizes maximum access time by the processing elements.
This results in a better overall performance of the system.

The first paper in this area goes back 35 years, see [6]. The authors showed that
a perfect Lee d-error correcting code over Z* exists with an appropriate value of
k, for
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(i) n=1 and all d;
(ii) n = 2 and all d;
(iii) d = 1 and all n.

Moreover, they conjectured that:

Conjecture 1 A perfect Lee d-error correcting code over Z} exists only in the
cases (i),(ii), and ().

In [9] it was proved that there is no perfect Lee d-error correcting code over Z
for3<n<5d>n-1,2d+1 <k andforn>6,d> ¥(n—3-¥2),2d+1 < k.
In 1} the author surveys other triples (n,d, k) for which a perfect Lee d-error
correcting code over Z} does not exist. If 2d + 1 > k, then the code is called a
perfect Lee code over small alphabet. In this case the non-existence of the code
has been shown for some triples in [2] and (7).

In connection with the computer science application mentioned above, the prob-
lem has been studied in a more general setting when the sizes of the individual
dimensions of a torus are not equal. In (8] the question of the existence of perfect
distance-d placement is answered for 2-dimensional tori. In this paper we deal
with the 3-dimensional case, that is, we consider perfect distance-d placements
inatorus 7 = Cp X Cp X Ck, 2 < n < m < k. If 2d+1 > n, then the placement
is irregular.

It is easy to see that there is no perfect regular distance-d,d > 2, placement in
a 3-dimensional torus, as otherwise the periodic repetition of such a placement
would provide a perfect distance-d placement in 7(3,t), t being any multiple of
n,m, and k, contradicting a result mentioned above. It has been noted by several
authors that there exists a perfect distance-1 placement in 7 = Cy, X Cr x C if
each of the numbers n, m, k is a multiple of 7. In such a case a perfect placement
is obtained by periodically repeating the perfect distance-1 placement in C7 x
C7 x Cy. In [4] it is conjectured:

Conjecture 2 Let n,m,k > 3. There ezists a perfect distance-1 placement in
T = Cp x Cm % Ci if and only if each of n,m, and k is a multiple of 7.

As to perfect irregular distance-1 placements in 7 = Cy, XCpm, X Cy, a torus where
at least one of n,m, k equals 2, it was shown in [8] that such a placement exists
for {n,m,k} = {2,34,65}, where i, € N. In (3] it is proved that the condition
is also a necessary one.

In Section 3 we prove Conjecture 2. In Section 4 we state a necessary and
sufficient condition for the existence of a perfect irregular distance-d,d > 2,
placement.

We finish this section with a conjecture. We strongly believe, although at this
moment we are not able to prove it, that Theorem 5, which answers in the affir-
mative Conjecture 2, can be generalized for higher dimensions as well. Therefore
we raise:
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Conjecture 3 Let ky, ...k, > 3. There ezists a perfect distance-1 placement in
T = C, X .. X Ck,, if and only if ki is a multiple of k for eachi,1 <1 < n, where
k is a number such that there is a perfect Lee single error correcting code over
Zg.

2 Preliminaries

In this section we introduce the necessary definitions and notation to facilitate
our discussion.

For the reader’s convenience we start with a definition of an n-dimensional torus
T = C, x .. x Cx,,, the direct (cartesian) product of cycles of respective lengths
ky,k2,...,kn. Then T has as its vertex set the set {(a1,.@n); @i € N, 0 <
a; < ki — 1}, the i-the coordinate of any vertex is always taken mod k;. Two
vertices P = (ai,...,an) and R = (b1, ...,b,) are joined by an edge if there is
aje€ {l,..,n} so that a; = b; for i # j, and laj —b;] =1 or kj — 1. The
distance p of two vertices of 7 is their distance along edges of 7. As the distance
of two vertices of a cycle C = vov;...uxvo is p(vy,v;) = min(ll — 5],k — |l — jl)
n
the distance of P and R is given by p(R, P) = ¥ min(|a; — bi| , ki — |ai — bil).
1

=

Let P be a vertex of 7, and let 7 be a non-negative integer. Then the radius-r
sphere of T centered at P, R.(P), is the set of all vertices of T at the distance
< r from P. Formally, R.(P) ={V € T,p(P,V) <r}.If V € G = R.(P) we will
also say that the sphere G covers the vertex V.

Let £ be a perfect distance-d placement. It follows immediately from the defini-
tion of £ that:

(a) for every two vertices V1, V2 € £, p(V1,V2) 2 2d + 1, which is equivalent to
Ry4(V1) N R4(V2) = 0.

(b) each vertex of 7 is covered by exactly one radius-d sphere centered at a
vertex of L.

In what follows we confine ourselves to the 3-dimensional case.

Let T = C, XCraxCxand 0 < s < k—1. Thenby S =C, xCm % {s} we denote a
subtorus of 7 induced by the vertices {(a1,@2,8),0 <a; <n—-1,0<az < m—1}.

Consider a vertex P = (a, b, s) of a 3-dimensional torus 7 = Cn X Cn X Ci and
its subtorus S = Cpn X Cm X {c}. Then the intersection of the sphere G = R.(P)
with & is either a radius-r’ sphere R (P'),™ < r, centered at P’ = (a,b,c) or it
is an empty set. If k > 2r, we get, setting ¢ gradually to s —r,s =7 +1,...,5 =
1,8,8+1,...,s+7—1,s+7 spheres Ro, Ry, ..., Rpe—1, R, Ry-1,..., R1, Rp of radii
0,1,..,r—1,7,7—1,..1,0. We denote the first and the last by L(G), and H(G),
or simply L and H, respectively (low and high spheres). Note that for k = 2r
the L and the H spheres coincide.
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Let £ be a perfect distance-d placement in 7 = Cp, XCr, X Ci. Then the spheres
centered at vertices in £ cover all vertices in 7. Obviously, the covering provides
an induced covering of S = C,, xCp,, X {c}, where each vertex in S is covered by
exactly one sphere in F = {Rg(V)NS, V e L}

The following straightforward lemma is a special case of Lemma 1 in [5].

Lemma 4 Let G, and G2 be two radius-0 spheres in F centered at Vi and Vs,
respectively, so that they are both L spheres or both H spheres. Then p(V1,V2) 2>
2d + 1.

We note that there is a typo in Lemma 1 in [5]. It should be d(X,,Y,) = 1471+
instead of d(Xu,Yn) 23+r 470

3 Perfect distance-1 placements in 3-dimensional
tori

In this section we prove Conjecture 2.

Theorem 5 Let T = C,, x Cyn X C be a 3-dimensional torus, where n,mk > 3.
If there exists a perfect distance-1 placement in T then each of the numbers n,m,
and k is a multiple of 7.

As the converse statement to Theorem 5 is true as well, see Introduction, we
have a necessary and sufficient condition for the existence of a perfect distance-1
placement in a 3-dimensional torus.

Let £ be a perfect distance-1 placement in 7. Consider the covering of S = C,,
XCp x {s}, induced by L. Set F = {Ra(V)NS, V € L}. As L is a distance-1
placement, spheres in F are of radius 0 or of radius 1. To prove Theorem 5
we derive first some properties of F. For the reader’s convenience, proofs of
several lemmas and properties contain pictures depicting a part of the induced
placement in S. In these pictures we depict the placement in a way which is
standard for depicting Lee codes. That is, each vertex is depicted by a unit
square, two unit squares sharing a side depict neighboring vertices. A perfect
distance-d placement is then a tiling by radius-d tiles. Two dimensional tiles of
radii 0,1 and 2as well as the sphere R4 N Cg x Cx x {t}, t = 0,1,2,3, where
Ce x Ci x {t} is a subtorus of Cg x Cx x Cy4,k 2> 9, are depicted in Figure 1.
Further, in some figures the sign “up” or “down” indicates that to the left of the
arrow we depict (a part) of the induced tiling of S = C, XCy, % {s}, while to the
right of the arrow the tiling of S = C, XCyy x {3+ 1} or {s — 1}. The squares
framed by dashed lines are vertices of S we refer to in proofs which might but
does not have to be covered by radius-0 spheres.

Let G = Ry(P) € F, P = (a,b,s). Then the four vertices (a + £,b + 7, s),
€, € {—1,1} are called the corners of G.
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Figure 1: Tiles

Lemma 6 If a corner (a+¢,b+1n,s) of G = Ri((a, b, 5)) is covered by a radius-0
sphere in F then the corners (a—¢€,b+17,s) and (a+¢,b—1,s) of G are covered
by radius-1 spheres in F. ,

Proof:  Suppose that two neighboring corners of G are covered by radius-0
spheres in F. By Lemma 4, one is an L and the other is an H sphere. The rest of
the proof is given in Figure 2. We note that in part (a) at least one vertex with
the label x has to be covered by a radius-0 sphere, in (b) both those vertices have
to be covered by radius-0 spheres. In both cases this contradicts Lemma 4. H
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|
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Figure 2: Proof of Lemma 6
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Lemma 7 If a corner (a+¢,b+1,s) of G = Ri((a,b, s)) is covered by a radius-1
sphere in F then the corners (a—&,b+17,s) and (a+¢€,b—1,s) of G are covered
by radius-0 spheres in F.

Proof: Suppose that two neighboring corners of G are covered by two radius-
1 spheres, see Figure 3.(a) and (b). Note that in (b), by Lemma 6, at least
one of the two vertices with the label x is covered by radius-0 sphere leading
to the same situation as in (a). In Figure 3.(c) and (d) we deal with the case
when the vertex with the label z is covered by a radius-0 and a radius-1 sphere,
respectively. Lemma 6 contradicts the case (c). In part (d), the four vertices
with the label x would have to be covered by radius-0 spheres, contradicting
Lemma 4. |

Figure 3: Proof of Lemma 7

Combining Lemma 6 and Lemma 7 we get:



Corollary 8 Let G = Ri((a,b,s)) € F. Then two opposite corners of G are
covered by radius-0 spheres in F, and the other two opposite corners are covered
by radius-1 spheres in F.

Lemma 9 If G = Ry(A) € F, A = (a,b,s), then (a,b,s) is a corner of ezactly
one radius-1 sphere of F.

Proof:  First suppose that A is a corner of two radius-1 spheres, G and G’,
see Figure 4. No vertex with the label o in Figure 4 (a) can be the center of a
radius-1 sphere which implies that A’ = (a,b,5 — 1) is an H sphere. Note that,
by Lemma 4, no vertex with the label o in Figure 4 (a), (b), and (c) can be
covered by a radius-0 sphere. Further, by Lemma 7, the vertex with the label x
in Figure 4 (d) cannot be covered by radius-1 sphere in F, hence, by Lemma 4,
it is covered by an L sphere. However, then at least one of the two vertices with
the label o in Figure 4 (e) is covered by a radius-0 sphere in F, contradicting
Lemma 4. Thus each vertex in S is a corner of at most one radius-1 sphere in
F.

Suppose now that A is not a corner of any radius-1 sphere in F, see Figure 5.
This means that no vertex with the label x is the center of a radius-1 sphere
in F. Further, by Lemma 4, at least three of the four vertices with the label o
are covered by radius-1 spheres in F. However, then the vertex with the label z
would be a corner of two radius-1 spheres in F. The statement follows. |

Corollary 10 The number of radius-0 spheres in F' equals twice the number of
radius-1 spheres in F. In particular, the total number of vertices in S equals the
total number of radius-1 spheres in F multiplied by 7.

Proof: Let G be a radius-1 sphere in F. By Corollary 8, exactly two corners of
G are covered by radius-0 spheres, G; and G3. Further, by Lemma 9, G;,i = 1,2,
does not cover a corner of another radius-1 sphere of F. As every radius-0 sphere
of F' covers a corner of a radius-1 sphere of F, the first part of the statement
follows. Since a radius-1 sphere and two radius-0 spheres cover in total 7 vertices,
the proof is complete. ' |

Before finishing the proof of Theorem 5 we state one more lemma providing
information on the location of centers of radius-1 spheres in F.

Lemma 11 Let G = Ry((a,b,5)) € F. If &' = Ry((a + 1,b +2,5)) € F, then
Ri((a+1,b+2i,5)) € F for eachi € N.

Proof: Let G = R;((a,b,s)) € F, G’ = Ry((a+1,b+2,5)) € F. By Lemma 7,
the corner (a+2,b+ 3, s) of G’ is covered by T, a radius-1 sphere in F. Suppose,
by the way of contradiction, that T is centered at (a + 3,b + 3, s), see Figure 6.
Then, by Lemma 6, the vertices with the label o are covered by radius-0 spheres
in F, which in turn implies, by Lemma 9, that the vertex with the label x is not
the center of a radius-1 sphere in F. Hence, the vertex with the label - is covered
by a radius-0 sphere. However, this contradicts Lemma 4. Therefore, the vertex
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(e)

Figure 4: Proof of Lemma 9

Figure 5: Proof of Lemma 9

(a+2,b+3,s) is covered by a sphere centered at (a + 2,b +4, s). Repeating the
above argument finishes the proof of the lemma.

Now we are ready to prove the theorem.
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Figure 6: Proof of Lemma 11

Proof of Theorem 5: Let G = Ry((a,b,s)) € F. Two corners of G are
covered by radius-1 spheres in F. Without loss of generality, we may assume that
Ri((a+1,b+2,s)) € F as well. Then, by Lemma 11, R,((a +i,b+ 2i,s)) € F
for each natural number i. As S is finite, Z = {Ry((a +{,b + 2i,s)), i € N},
the orbit of R;((a, b, s)), is finite as well. The indices a + 7 and b + 2i are taken
mod n and mod m, respectively. Therefore, |Z] = Taeitamy Where t € {1,2}.
(Let n = 2%z, m = 2Py, where z,y are not divisible by 2. Then ¢t = 1 for & > 8,
otherwise ¢ = 2). If Z does not contain all radius-1 spheres in F, then the set of
all radius-1 spheres in F can be partitioned into orbits, each of the same size as

nm

Z. Thus, the total number of radius-1 spheres in F is ¢|Z| = Crgeitamy

The total number of vertices in S equals nm. At the same time, by Corollary 10,
the total number of vertices of S equals 7 times the total number of radius-1
spheres in F, hence nm = 7ctg1t‘-(':_,n—15' Hence, ged(n,m) = 7¢, which in turn
implies that both n and m are divisible by 7. By the same argument applied
to S = Cp, x {s} x Ci we get that k is a multiple of 7 as well. The statement
follows. ]

Remark. The proof of Theorem 5 is "algebraic” is nature. As pointed out by a
referee, there is a ”geommetric” proof of the theorem as well. This proof would
be based on the observation that any 1-dimensional torus S obtained from 7 by
fixing two coordinates consists of repetitions of the patterrn AAABHLC, where
different letters represent vertices of S covered by distinct spheres. We present
here the details of the "algebraic” proof as it seems to us that the ideas of the
proof might be generalized to prove Conjecture 3.

4 Perfect distance-d placements for d > 2

We recall, cf. [6] and [9], that there is no perfect regular distance-d place-
ment,d > 2, for a 3-dimensional torus. In this section we state a necessary and
sufficient condition for the existence of a perfect distance-d placement, d > 2, in
an irregular case. For d = 1, the condition is stated in the introduction.

Theorem 12 Let 1 < n < m < k. Then there exists a perfect irreqular distance-

d placement, d > 2, in T = Cp, X Cm X Ci if and only if either (i)l <n<m
are even,n+m <2d+1,endk =2t(2d+1 -3 -2}, t>1,0r (ii)1<n <
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m < K <2d+1, and either [%J 2]+ %) <d orn+m>2d+2, n,m are
even, and k=2(2d+1 -5 - 7).

Before proving the theorem we state a series of lemmas and propositions. As
mentioned above, if all three numbers n,m,k are at least 2d + 1 then there is
no perfect distance-d,d > 2, placement in 7. Now we consider the case when
exactly one of the numbers n,m, k is smaller than 2d + 1.

Figure 7: Proof of Proposition 13

Remark 13 For k = 2d each radius-0 sphere is both an L and an H sphere.
Thus, for k = 2d, we can apply Lemma 4 to any two radius-0 spheres in F.

Proposition 14 Let1 <n <2d+1 < m < k. Then there is no perfect distance-
d,d > 2, placement in T = Cp, X Cp, X Ci.

Proof:  Suppose for the sake of contradiction, that £ is a perfect distance-d
placement in 7, O = (0,0,0) € L. First we prove that then n = 2d. In this
regard it suffices to show that F = {R4(V)N S,V € L}, where § = {0} x C,,, x
Ck, contains a radius-0 sphere. To see this note that for the radius r of any
sphere in F it is d — |2| < r < d. In order to show that F contains a radius-0
sphere, it suffices to show that there are in F' two (three) spheres positioned as
in Figure 7 (a) or in Figure 7 (b). In such a case at least one vertex with the
label o is covered by a radius-0 sphere.

Set G = R4(0),and A = {(0,%,5);i+j=d+1,1<i<d-1,1<j<d-1}CS.
The vertices of A are at distance d + 1 from O, thus they are not covered by the
sphere G' = GNS. Let T € F be a sphere covering vertices, not necessarily
all, of A. If T does not cover all vertices of A, then G’ and T are positioned as
in Figure 7 (a). Otherwise, all vertices of A4 are covered either by (i) a radius-d
sphere T' = R4((0,y,2)) = TNS € F. Clearly, T = Ry4((0,y,2)). Then either
(v,2) = (d,d+1), or (y,z) = (d+1,d). Consider now &’ = {1} x Cp, X C. Let
G"=GnNS, and T" =T NS, see Figure 7 (c). Then both vertices with the
label o would have to be covered by L spheres, which contradicts Lemma 4; or
by (ii) a radius-(d — 1) sphere in F centered at (0,d, d). In this case consider the
set of vertices A’ = {(0,—%,7);i+j=d+1,1<i<d-1,1<j<d-1}. Let
R € F be a sphere covering vertices, not necessarily all, of A’. As above, if R
does not cover all vertices of A’ or R is as in (i) we are done. So we are left with
the case when R is a radius-(d — 1) sphere centered at (0, —d, d). However, then
G’ R, and T" are positioned as in Figure 7 (b).

We have proved that n = 2d. Set § = C, x Cp, X {2}. Let G’ = G N S, see
Figure 8. The vertices with the label x are either covered by one or three spheres
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in F={R4(V)NS,V € L}. In the former case, at least two vertices with the
label o in Figure 9 are covered by two L spheres in F, which contradicts Lemma 4
as the distance of these vertices is less than 2d + 1. To see that any radius-0
sphere covering a vertex with the label x or o is an L sphere it suffices to note
that Rq(O) covers vertices which are in Cn X Cp x {1} or in C, x Cp, x {0}
“below” x and o vertices. In the latter case, at least one vertex, say C, with
the label x in Figure 8 is covered by an L sphere in F and at least one vertex
with the label o is covered by an L sphere as well. Lemma 4 finishes the proof. W

n=4 n>$5

Figure 8: Proof of Proposition 13

r

n>5

Figure 9: Proof of Proposition 13

Now we deal with the case when exactly two of the numbers of n, m, k are smaller
than 2d + 1.

Lemma 15 Letl<n<2d+1,1<m<2d+1,n< k,m<k. If there exists a
perfect distance-d placement L,|C| > 2, in T = C,, x Cp, X Cy, then both n and
m are even numbers.

Proof: Suppose that n is an odd number. Let L,|L| > 2, be a perfect
distance-d placement in T, O = (0,0,0) € L. First we show that if |£| > 2, then
(*)d— 253 <k—(d- 25%),i € {-1,+1}. To prove (*) it suffices to show that
2d+1 < k+n. Assume first that | 2|+ | 3| < d. Then p(O, V) < d for all vertices
of & = Cp x Cry x {0}. Therefore, if A = (z,y,2) € L,A# O, then z > d +1
and k—z > d+1, that is, k > 2d+1, and (*) follows. Otherwise, | 3]+ | 2] > d,
which implies n + m > 2d + 1. As k > n, (*) follows in this case as well. Set
F ={Ry(V)NS,V € L}, S = Cn x {1} X C. Then G = R4(O) NS covers the
vertices V; = (253,1,d — 232), V = (33,1,d - 231), V3 = (238,1,d - =),
and V; = (2#1,1,d — 2¢L) as (*) implies p(O, V;) = d for i = 1,..., 4. Further, G
does not cover the vertices Wy = (23,1,d — 231) and W, = (2#,1,d — 231
as (*) implies p(O,W;) = d + 1 for i = 1,2. See Figure 10, where W; are the
vertices with the label o. Clearly, W/s are covered by two different spheres in F.
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At least one of W/s, has to be covered by a radius-0 sphere in F. However, the
existence of a radius-0 sphere in F is possible only when m = 2d. By symmetry,
VY = ("_2:%’ 1, _(d_ 2';_1))1 2, = (&2&! 1, "(d_ 712;1))’ 3' = (n_z—_L’ 1, "(d_ %1)),
and V] = (25,1, —(d— 2$1)) are covered by G, while Z; = (22,1, ~(d—1231))
and Zp = (21,1, —(d — 231)) are not. At least one of Z; and Z, the vertices
with the label x in Figure 10, is covered by radius-0 sphere. However, for i, €
{1,2}, p(W;, Z;) < 2d —n+2 < 2d + 1 since n > 3. With respect to Remark 13
this contradicts Lemma 4. |

Figure 10: Proof of Lemma 14

Lemma 16 Letn > m > 1 be even numbers, n <2d+1,m < 2d+1,k > 2d+1.
If there exists a perfect distance-d placement in T = Cp, X Cjq X Ck, then n+m <
2d + 1.

Proof: Assume that O = (0,0,0) € £, and n+m > 2d + 1. As n,m are even,
itisn+m>2d+2. Let S =C,, x {d— 2 +1} x Cy. As T > d— % +1, the sphere
G = R4(0)NS is of radius d— (d— 3 +1) = 3 —1 > O since n+m > 2d+2,n > m,
implies n > 4. Further, G does not cover the vertex W = (3,d — % +1,0) and
vertices with the label x,o0, and - in Figure 11. However, G covers all vertices
(z,d— % +1,0) for = # §. Clearly, the sphere T of F = {Ra(V)NS,V € L} cov-
ering V‘; cannot cover both vertices with the label x and vertices with the label
o. Suppose T covers x vertices. Then T can possibly cover the vertex with the
label - , this would imply k = 2d + 1. In any case, two of the three vertices with
the label o or - are covered by radius-0 spheres in F. The existence of a radius-0
sphere in F implies m = 2d. This contradicts Lemma 4, cf. Remark 13. |

Lemma 17 Let n,m be even numbers so that n+m < 2r +1, let k > 2r 4 1.
Then each radius-r sphere in T = Cp X Cy, X Cy covers nm(2r+1- 3 — -',:,l)
vertices of T.

Proof: Let G = R.((0,0,0)) € T. First we count the number o of vertices
covered by G in S = Cp, x {0} x Cx. According to n < 2r + 1, G covers in
S 9r + 1 — 2i vertices with the first coordinate equal to i for 0 < i < §, and
2r +1—2(n —1) vertices with the first coordinate equal toi for $+1 <i< 3-1.
Setz=2r+1. Then,a=z+2(x-2)+2(z—4)+...+2(x-2(5 - 1))+ - 25
=nz—-n—4(1+2+..+(3-1))=n(z~-3) =n(2r+1-13%).

Further, let S; = Cp, x {i} x Ci. The sphere GNS; isof radiusr—ifor 1 <i < 3,
and of radius r —(m —3) for 3 +1<i<m-1. Asn4+m<2r+1,GNS;is

170



Figure 11: Proof of Lemma 15

of radius > 2 forall1 <i<m-—1. Therefore, G covers in S; exactly a — i2n
vertices for 1 <i< %, and a— (m —i)2n vertices for 7 +1 < i <m—1. Hence,
G covers in total a+2(a 2n)+2(a—4n)+ .. +2(a 2n(% — 1))+a % =
ma —nm — 4n(1+2+ -+ (% -1)) =ma—-nm% —mn(2r+1 - )-nm? =
mn(2r+1— % — 2). The proof is complete.

Now we are ready to prove the theorem in the case when exactly two numbers
in {n,m,k} are smaller than 2d + 1.

Proposition 18 Let 1 < n < m < 2d +1 < k. Then there exists a perfect
distance-d placement in T = C,, x C, X Ck if and only if n,m are even, n+m <
2d+1,andk=2s(2d+1-3-3),s 21

Proof: Let there be a perfect distance-d placement £ in 7 = C, x Cp, X Ck,
1<n<m<2d+1 < k. By Lemma 15 and Lemma 16, n,m are even (k >
2d +1 1mp11es |£] > 2), and n + m < 2d + 1. Each radius-d sphere covers
nm(2d +1-%— m) vertlces of ’T As the total number of vertices in T is nmk,
k is a multiple of 2d +1— % — 2. To finish the necessaly part of the proof we

need to show that k is an even multipleof 2d +1— % — 2.

Assume that O = (0,0,0) € L. Let G = R4(0). The vertex W = (%, £,t),t =
d— % -~ 2 +1, is not covered by G (p(O,W) = d+ 1 follows from k — ¢t > t)
but the four vertices (3 =1, % + 1,¢) are. Therefore W has to be covered by
a sphere centered at a vertex Z = (%,%,t+d), that is, Z € L. Note that,

for051<n,0<y<m,05z<t+d—1 the vertex V = (z,y,2z) ¢ L as
p(0,V) £ +2+42d—5— 7 = 2d. Applying the same argument to Z we get that
the vertex U = (0,0, 2(t + d)) € L. Repeating the argument a sufficient number
of times we get that all vertices in £ are either of the type (0,0, 2i(t + d)) or of
the type (3, 3, (2i — 1)(t + d)). Clearly, there have to be in £ the same number
of vertices of both types, thus & is an even multiple of t +d=2d +1- % - 7.

Let k = 2s(2d + 1 — % — 2). To prove the sufficiency of the condition, set

L= {(0 0, 2z(2d+1—;—‘— "‘)) (2, 2,(2'L—1)(2d+1— 2-2),i=1,.,s}
that is, £ comprises 2s vertices. %t. is easy to check that the distance of any
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two vertices V,V' in L is at least 2d + 1, hence Ry(V) N Rg(V’) = . Each
sphere Ry(V) covers nm(2d+ 1~ § — ) vertices implying that each vertex of 7
is at a distance at most d from exactly one vertex in £. The proof is complete. B

Now we prove the theorem for the case when all three numbers n, m, k are smaller
than 2d + 1

Proposition 19 Let 1 < n < m < k < 2d + 1. Then there erists a perfect
distance-d covering of T = Cp xCm X Cy, if and only if either | 2|+ ”‘J+ <d,
orn+m2>2d+2,n,m are even, and k =2(2d + 1 ————2)

Proof: Let £ be a perfect distance-d placement in 7 = C,, x C,, x Ci, and
let O € L. Suppose first that |[£| = 1. It is |£| = 1 if and only if p(0O,V) < d
for all V € T if and only if maxves p(O,V) < d. Since maxyec p(0,V) =
2] + |3] + | %], we are done with this case. Before treating the case |£]| > 2
we state a sxmple technical result.

Claim 20 Let S = C,, x Cp, x{t}0< < k-1, and let O' = (0,0,t),A =
2, 2.t). Then p(O',V) + p(V,A) = % + 2 for each V € S. In particular, if
G=R (0)€S,andT=R(A)ES, 7" =3+F —r—1,then GNT =0, and
GUT =8.

Proof:  First suppose 1 <z < 2,1 <y < 2. Then p(O’ V) +p(V,A) =
(x+y)+(__m+7—y)=2+"‘F\.lrther,suppose +1<z<n-1,
1<y< 3 Then p(0',V) + p(V, 4) = (n—x+y)+1«'—2 By =

2 . The proof of the other twocases 1 <z < 3, 2+1<y<m-1,and
'2-"+1 z<n-1, —+l<y<m—llsana.logous

Let V € S. Then p(0',V) > r if and only if p(4,V) = § + Z— p(0",V) <
2+5—r—1,thatis, GNT =0,and GUT = 8. [ |

So now suppose that [£| > 2. Set S = Cp x Cpy X {0}. By Lemma 15, n,m are even
numbers. If we had n+m < 2d then G = R4(0O)NS = S since p(0, V) <3+5<
d for all W € S§. This in turn implies that for all V = (z,y,2) € £,V ;é o, !t is
z 2 2d+1 which contradicts the assumption k& < 2d+1. Therefore, n+m > 2d+2.
By Claim 20, the vertices of S not covered by G form a sphere T = R,.(A), where
A=(%,%,0),andr =32+ 3 —d—1since p(0,A) = 3 + . Note that r < d
asn+m < 4d.

We show now that all vertices in T are covered by the same sphere, that is,
T = R4(Z)N S, where Z € L. This is trivially satisfied if S is a radius-0 sphere.
Otherwise, set B = (§ —r, 2,0), and C = (3 +7,%,0). Then B # C since
% > r. Suppose by the way of contradiction that B and C are covered by spheres
T = R(XB) = Ra(Z)NS, Zp € L, and Tc = R ~»(Xc) = Ra(Zc) N S,
Zc € L, respectively, T # TB Then XB = (b, ?,0), and Xc = (¢, 2,0),
otherwxse TB (Tc) would cover at least one of two vertices (3 —r, 2 +1,0) (one
of (3 +7,% £1,0)) which are covered by G, contradicting that C is a perfect
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placement. However, then p(Zp,Z¢c) £ § + [%J < 2d contradicting again that
L is a perfect cover. Thus, B and C are covered by the same sphere, which
in turn implies that all vertices of T are covered by the same sphere. Hence
T = R.(%,%2.0) = Ry(Z2) NS, Z = (},%,2). Moreover, T = Ry(Z) N S and
G = Rd(é) N S cover all the vertices of S. Using the same argument as when
proving that n +m > 2d + 2,we get that O and Z are the only vertices in £,
that is [£| = 2. In other words, the spheres R4(0) and R4(Z) cover all vertices
of T. As O € 8, G = R4(0)N S is of radius d implying that both spheres
R4(0)N 81,81 = Cp x Cry x {1}, and Ry(0) N S_1,85_1 = Cp X O x {-1}
are of radius d — 1, which in turn implies that the two spheres Rg(Z) N Sy, and
Ra(Z) N 8-, are of the same radius r + 1 = 3 + 2 — d as well. This is possible
ifandonly if = k—z=d—(3+2 —d—1)=2d+1—% — % (we recall that
z is the third coordinate of Z). Hence k = 2(2d +1 — % — %) and we are done
with the necessary part of the proof.

To show the sufficiency, let T = Cy, X Crn X Ck, n+m > 2d + 2, n,m are even,
and k=2(2d+1- % —2). Set £L={0,Z}, where Z = (},%,2d+1-3 - 2).
Then p(0, Z) = 2d+ 1. To finish the proof we need to show that Ry(0) U Rd(QZ
covers all vertices of 7. To give a better insight we provide two proofs of the
fact. First, let S = Cp, x Cpp % {t},t <2d+1 -3 — 2. Then G = Ry(O) NS
is a radius-(d — t) sphere centered at O’ = (0,0,t) while T = Ry(Z)NSis a
radius-r, r =d— (2d+1— % — 2 —t) = 3 + 3 +t — d — 1, sphere, centered at
Z2'=(3%,t).For2d+1-3 -2 <t<k-1,Tisa radius-(d — t) sphere and
Gisradius-(3+ 5 +t—d— 12) sphere. In both cases Claim 20 finishes the proof.

The second proof is based on a different idea. First we calculate the volume (=
the number of vertices covered by) of the radius-d sphere T in T = Cp X Cpn X C,
where n +m > 2d + 2, n,m are even, and k = 2(2d + 1 — 3 — 2). It is well
known that the volume of the radius-d sphere R in R = C, x C,, x Cy with
2d +1 < n < m < k, that is, the radius-d sphere in a regular torus, is V(d) =
(2d +1)(2d(d + 1) + 1). Suppose that R is centered at O = (0,0, 0). Clearly, for
t = —d,...,0,..,d, the sphere R, = SN{t}xCp, xCy is of radius-r,r = 0,...,d, ..., 0.
Consider a radius-d sphere 7" in Cp X Cp X Ck, where 2d+1 < m < k, and
n < 2d+1, n is even. T’ might be seen as obtained from R by removing vertices
of the set R(n) = {V = (z,y,2) € B, -d <x < -3}, 0or 3 +1 <z < d}, that is,
T’ = R — R(n). Now we evaluate R(n). For -d <t < —%,and 3 +1 <t < d,
R, = T' N {t} x Cp x Ck is a sphere of radius-r, r = 0,...,2d — 2k, ...0, Thus,
|R(n)| = V(2d — 2n). To calculate the volume of the sphere T it is sufficient
to realize that T results from R by chopping off R(n), R(m), and R(k), where
R(m)={V =(z,y,2) € R, —d <y < —-%,or 2+1<z < d},|R(m)| =V(2d—
2m), and R(k) ={V = (z,9,2) € R, ~d <z < -£,or £ +1 <z < d},|R(k)| =
V(2d — 2k). The condition n + m > 2d + 2 guarantees that R(n) N R(m) = 0.
To see this, let W = (z,y,2) € R(n) N R(m). Then |z|+ |y| 2 3+ F =2d+1
implies p(O, W) > d + 1, hence W ¢ R, a contradiction. As n+m > 2d + 2
implies n + k > 2d + 2, and m + k > 2d + 2, R(n), R(m), and R(k) are mutually
disjoint. So we get V(T) = V(2d — 2n) — V(2d — 2m) — V(2d — 2k). Substituting
k= 2d+1-%— 2, after tedious calculation, we get V(T) = nm(2d+1- 3 - 2).
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The torus 7 = Cy, X Cm X Ci comprises nmk = nm2(2d + 1 — 3 — ) vertices.
Since, for Z = (3,%,2d+1 -3 — %), p(0, Z) = 2d + 1, the spheres R4(0) and
R4(Z) are disjoint. They cover in total 2V (T) = nm2(2d + 1 — 3 — ) vertices,
hence £ = {0, Z} is a perfect distance-d placement in 7.

Proof of Theorem 12: Combining Propositions 14, 18, and 19 gives the desired
result. m
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