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Abstract

The magic square is probably the most popular and well studied topic
in recreational mathematics. We investigate a variation on this classic
puzzle — the antimagic squarc. We review the history of the problem,
and the structure of the design. We then present computational results
on the enumeration and construction. Finally, we describe a construction
for all orders.

1 Introduction

A magic square of order n is a n x n square array filled with the numbers
1,2,...,n? in such a way that the sum of every row, every column and both
diagonals is a constant. Figure 1 shows a third order magic square. Notice that
the sum of any three entries in a straight line is 15.

While when n = 3 there is only one magic square (disregarding reflections
and rotations) for larger n, the number of magic squares grows very rapidly.
Since with volume comes flexibility, recreational mathematicians have asked
what additional properties can be added to the magic squares they create.
One finds in the literature terms like “pan-magic square”, “doubly-super-magic
squares” and so on used to describe various extra requirements the author has

*Research supported by an NSERC USRA
tResearch supported by an NSERC Operating Grant

JCMCC 43 (2002), pp. 175-197



@
—

(V]
(3] I | =]

Figure 1: A magic square of order n = 3
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Figure 2: An antimagic square of order n = 4

imposed on the square. For example, a “pan-magic square” has the property
that the entries on broken diagonals also sum to the magic constant. A dou-
bly prime magic square requires that only primes be used as entries, and that
the array (a?j) is also magic in the usual sense. Another variation is that the
product, not the sum, must be constant over rows, columns and diagonals.

The term antimagic square has also been used to mean some kind of twist
on the magic square problem. If “magic” means all sums are the same, then
perhaps antimagic should mean all sums must be different? In fact, this type
of design is usually called a heterosquare and Madachy [2] shows that they are
easy to construct !.

While even more meanings have been attributed to the term “antimagic”
besides the heterosquare confusion, we define this term as follows:

Definition 1 Let A be an n x n square array filled with n® integers. Let S(A)
denote the set of row, column and diagonal sums of A. If S(A) is a set of 2n+2
consecutive integers, then A is a general antimagic square of order n.

If we use consecutive numbers as entries (usually the natural numbers 1 to
n2), then A is an antimagic square of order n (an AMS(n)).

In the square shown in figure 2 the row, column, and diagonal sums form
the set S = {30, 31, 37,38, 29, 36, 32, 33, 35, 34} = [29, 38]

LAt least in two dimensions. For n odd, spiral increasing entrics out from the center, as in

71615
8|11]4
9123

Constructing the n-dimensional hetero-hypercube may be a more interesting problem.
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2 Notation and Conventions

Since we deal exclusively with integers we let [a,b] = {i € Z| a < i < b}.

An integer array or matrix (a;;) is a function a : [1,n] x [1,n] — Z, where
ai; = afi,7) is the value of a at (4,7) and also the entry in the it cell. If
B C [1,n] x [1,n] then f : B — Z is a square that is partially filled in, with the
domain of f consisting of those cells that have entries. The i* row sum of the
partially filled in square is then

r(H)= Y. fG3)

1<5<n,
(3.J)€Dom(f)
The j** column sum c;(f), the main diagonal sum d;(f) and the back diagonal
sum dy(f) of f are defined similarly.

Given a partially filled in square, f, that we are trying to complete to an
antimagic square it is extremely useful to compare the entries of f with the
average value of an entry in the finished square, @ = 3(n? +1). The i** relative
row sum of f is

nf= Y UEH-a,

1<i<n,
(.)€ Dam(f)

with similar definitions for ¢;(f), d1(f) and d3(f). These relative sums tell us
how much more or how much less f contributes to a particular row, column
or diagonal compared to what an equal number of average entries would con-
tribute. The relative row, column and diagonal sums for the AMS(4) in figure 2
are 0, +1,+2, 3, +4 and —35, so naturally we also call these relative sums dif-
ferences, as they are the differences between the actual sums that occur and the
corresponding sums of average entries.

3 Structure

We first consider magic squares since their structure is related to that of the
antimagic square. The following is well known.

Lemma 1 If M is a magic square of order n, and ¢ is the magic constant for
M, then ¢ = 3n(n? - 1).

The constant ¢ is halfway between 1+2+...+n and (n?—n+1)+(n®-n+
1)+ ...+ (n? — 1) + n2. It also has the largest number of n-part compositions
with distinct parts of all the numbers in [1,n2]. The value c is also important
for antimagic squares, as we will see.

The definition of a magic square stipulates a requirement: all sums must
be equal to each other; but we can prove that this implies something more
restrictive: all sums must equal $n(n? — 1). In the same way, the definition of
an antimagic square implies more restrictions on the design than it explicitly
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states. Specifically, while the definition merely requires the set of sums to be
- consecutive, we can show that there are actually only two possibilities for this
set.

Theorem 2 If A is an antimagic square of order n, S is the set of sums of A,
and ¢ = §n(n? + 1) then either:

1. S={c—n—-1,c+n| and (dy +dz) =2c~n—1 (and A is called negative),
or

2. S=[c~n,c+n+1]and (d, +dz) =2c+n+1 (and A is called positive).

Proof: We will sum the elements of S in two different ways. Let s, be the
smallest element of S. Let ry, c;, and d; be the i*! row, column and diagonal
sum respectively. Firstly, S must be the set of 2n + 2 consecutive integers
starting with smin. Therefore 3 ses = %(211. + 2)(28min + 2n + 1). Secondly,
we know the elements of S to be row, column and diagonal sums so > €5 =
Yiea i+ 252, ¢+ (di +d2) = 2nc+ (di +da). Since we're summing the same
thing both ways, we've established that

1
(di +d2) = 3(2‘!1 + 2)(28min + 2n + 1) - 2nc.
But both d) and d; are in the range [Smin, Smin + 27 + 1] 50
25min + 1 £ (d) + d2) € 28pmin + 4n + 1.

Substituting the expression for (dy + d3) into the inequality and simplifying
yields

3 1
(c—n)—f—zssmi,.s(c—n)+§.

Since all quantities are integers, we must have either: sm;n = ¢ — n — 1 which
implies § = [c—n~—1,c+n], or $min = ¢— n which implies § = [c—n,c+n+1].

Moreover, if we substitute each snin back into our expression for (d; + dp)
and simplify, we get exactly what was claimed about the diagonals in each case.
a

So, we find that in the antimagic square, the set S of sums must be roughly
balanced around the magic constant c. The design is classified based on which
way § is “lopsided.” There is a natural operation that interchanges positive and
negative antimagic squares. Given an n x n square M = (m;;) filled with the
integers [1,n?] the complement of M is the square M’ = (n® + 1 — my;). It is
easy to verify that the complement of a negative square is a positive square, and
vice versa. This result is useful in showing that there are no small antimagic
squares. We write AMS(n)* and AMS(n)~ to indicate a positive and a negative
antimagic square (respectively).

Lemma 3 There is no antimagic square of order 1, 2 or 3.

178



Proof: Clearly no 1x 1 square can be antimagic. As noted in {2] a 2x 2 antimagic
square has six distinct sums, whereas only the five distinct sums 3,4,5,6 and 7
can be formed by adding a pair of numbers from {1,2, 3,4}, hence there is no
2 x 2 antimagic square.

We rule out an antimagic square of order 3 by case analysis.

For the sake of contradiction, assume such a square exists. Then there exists
a AMS(3)~ with sums [11, 18], which we label as

alb|c
dl|e
glhli

For definiteness let dy = a+e+i and do = g+ e + c. By Lemma 2 we have
di + dp = 26, so we need only rule out the two cases (d,d2) = (15,11) and
(d1,d2) = (14,12). Consider the case (dy,d2) = (15,11). There is only one
way to partition the remaining sums 12, 13, 14, 16, 17 and 18 into two groups
of three that each add up to 45, so by symmetry we may take {ry,ro,r3} =
{12,16,17} and {c1,¢2,¢3} = {13,14,18}. Thend5=ro+co +d) +d2 - 3e =
re + co + 15+ 11 — 3e, hence 3 + ¢co = 19 + 3e € {22, 25, 28, 31, 34, 37,
40, 43, 46}. On the other hand ro+ c2 € {12, 16, 17}+ {13, 14, 18} = {25,
26, 30, 29, 30, 34, 30, 31, 35} (a componentwise sum of two ordered sets that
yields an ordered multiset). Thus (rs,c2,€) = (12,13,2), (17, 14,4), (16,18,5)
constitute three subcases of the case (d;,d2) = (15,11). Consider the subcase
(ra,co,€) = (12,13,2). Since e =2 we have g+¢=9,d+ f = 10,b+h = 11 and
a+i = 13. Furthermore, {{g,c}, {d, f}, {b. b}, {a,i}} is a partition of [1,9] - {2}
into pairs. Below we tabulate the possibilities for each of the four pairs, and
beneath these possibilities we tabulate the three partitions of [1,9] — {2} into
pairs that arise.

{9.c} {d.f} {bh} {a.i}
(L3} (1,9} (3.8] {49)
{3.6} {37} {47} {58}
{45} {46} {56} {6,7}
{1,8} {8,7} {5.6} {4,9} npartition |
(3,6} {1,9} {4,7} {5,8} partition2
{4,5} {1,9} {3,8} {6,7} partition3

Considering the last partition, there are 8 possible ways to have {g,c} =
{4’5}: {b,h} = {3,8} and {ayi} = {617}1 namely (g,c} = (4, 5) or (9,¢) =
(5,4), (b, k) = (3,8) or (8,3) etc., and none of these 8 possible orientations give
{ri,73} = {a + b+ ¢, g+ h+i} = {16,17}, as must be the case here. We
summarize this failure by saying that partition 3 is not orientable for rows 1
and 3. An easy way to detect the non-orientability for rows 1 and 3 is to inspect
the array :

4

5

3 6|16
8 7117
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Numbers 16, 17 are r; and r3 in some order. We form the sums 4+3+7, 4+3+6,
44846, 44+8+7 to see if we can get 16 or 17. We cannot, therefore the last
partition is not orientable for rows 1 and 3. Similarly, inspecting the arrays

3 4 5|16 1 3 4|14
6 7 8|17 8 7 9|18

shows that partition 2 is not orientable for rows 1 and 3, and partition 1 is
not orientable for columns 1 and 3 (respectively). This rules out the subcase
(r2,c2,€) = (12,13,2) of the case (di,d2) = (15,11). The subcase (r2,cp,€) =
(17, 14,4) yields two partitions, neither of which is orientable for rows 1 and
3, while subcase (72, c2, €) = (16,18, 5) yields one partition, which is orientable
for rows 1 and 3 and also for columns 1 and 3; but these essentially unique
orientations are not compatible with each other.

In the other case, (d;,d2) = (14, 12), there is again an essentially unique
way to partition the remaining sums into row and column sums, so without loss
of generality we take {ry,rp,73} = {11,16,18} and {c1,c2,c3} = {13,15,17}.
This case also splits into three subcases. Each subcase yields just one partition,
which is always found to be non-orientable for rows 1 and 3. We leave the details
to the reader. O

The following lemma is useful in restricting the search for negative antimagic
squares of order four.

Lemma 4 If A = (ai;) is an AMS(4)™ then 27 < agg + ag3 + aga + as3 < 36.

Proof: Let N = agg + as3 + azz + azz and let W be the sum of the entries in the
AMS(4)~, then

re+r3+cp+ecz+dy +dy— W =2N.

By Lemma 2 we have dj + dy — W = 63 — 136 = —73. Since {ri, |l <
i < 3} = [29, 38] — {29, 34}, [29, 38] — {30, 33} or [29, 38} — {31, 32} we find that
126 < ro+r3+co+c3 < 146. It follows that 53 < 2NV < 73, hence 27 < N < 36.
a

Figure 3 shows a square that achieves one of the extremes of Lemma 4 and
a square that can never be completed to a negative antimagic square (although
it might be possible to complete it to a positive square).

We now consider the group of symmetries of 4x4 squares. Let a be a 4x4 ma-
trix with entries a;;. Rotation clockwise by 90°, transposition and complemen-
tation are described by the respective formulae (Ra):; = as—ji, (T'a)i; = aji,
and (Ca)ij = 17 — aij. There is also the 1 — 4 exchange E14 and the 2 — 3
exchange Ea3 given by
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81 2(16] 3
4 [15) 6 )13 15| 6
12114 1 |10 917
7 11 9

Figure 3: An AMS(4)~ with maximum N, and an incompletable square.

aq4 | Q42 | Q43 | Q11 an | a13 | 12 | 214
a. a a a a a a. a
Eu(a) = 24 | G22 | @23 | Q21 Eos(a) = 31 | @33 | 232 34
a3zq | @32 | @33 | 431 az1 | G23 | @22 | G24
aiq | 12 | @13 | Q11 aq1 | Q43 | Q42 | Q44

We let Gy = (R, T, C, Ev1, Ea3) be the group generated by these five opera-
tions. The group G, acts on the set of all antimagic squares of order 4, taking a
given antimagic square and creating many new ones. We leave it to the reader to
compute the size of this group, the sizes of the orbits and how to unambiguously
pick out an orbit representative:

Lemma 5 The group G4 of symmetries of 4 x 4 antimagic squares is of order
32, all orbits are full, and under the action of G4 any AMS(4) can be reduced to
a square A = {a;;) such that

1. A is a negative anlimagic square,
2. dy < dy,

3. azz < asgg,
4. aq1 < aa,
5. a1 < aq4-

4 Computational Results

Computers proved indispensable in the research for this paper. Numerous pro-
grams were written in the C language to investigate this design. However,
the limits of computation were quickly reached, as even enumerating all order
AMS(5)’s was infeasible.

4.1 Enumeration

A backtracking algorithm was written to enumerate all antimagic squares of
small orders, disregarding rotations and reflections. The results are summarized
in this table and are compared to what is known about magic squares.
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n  MS(n) AMS(n)
1 1 0

2 0 0

3 1 0

4 880 1,198,840
5 =320M[2] very large

Table 1: Magic and Antimagic enumeration for small n

Although Madachy presents something very close to an order 3 antimagic
square, (see [2], p.104) the program’s exhaustive checking showed that no such
design exists, in agreement with Lemma 3.

In the order 4 enumeration the symmetries in Lemma 5 and the inequality
of Lemma 4 were exploited to speed up the program. Up to the full group of
symmetries, the number of fully reduced AMS(4)’s is 299,710. As a double-
check a simple (and much slower), unoptimized backtrack obtained 32*299,710
= 9,590,720 unreduced antimagic squares, in agreement with the faster program.

The order five antimagic squares proved too numerous to count. If the same
fraction of order 5 squares are antimagic as order 4 squares are, there would be
on the order of 10'7 order five antimagic squares.

4.2 Probabilistic Methods

Given the large numbers of antimagic squares for n > 3 it is perhaps not so
surprising to learn that the first examples of such squares where constructed by
hand implementation of a probabilistic algorithm (see {2]).

A hill climbing algorithm of a slightly different flavour was implemented to
create antimagic squares of large order. Starting with a large magic square,
we swap entries within a row or column to produce sums offset from the magic
constant ¢. For example if we swap two elements in the same row of a magic
square, which differ by an amount d, we end up with ¢ + d as one new column
sum and c¢— d as another new column sum without disturbing the row sum. By
finding mutually independent pairs of entries differing by d for each 0 < d < n
and for each row and column, we can fix the row and column sums. Of course
this is not always possible, but for large (n > 15) magic squares the computer
could usually accomplish the task.

Next the program adjusts the diagonals. If the swaps in the previous step
are chosen to avoid diagonal elements, then each diagonal still sums to the
magic constant. If rows a and b are chosen at random and exchanged, and
subsequently columns n — a and n — b are exchanged, then one diagonal can be
adjusted without disturbing the other.

In this way, the computer produced antimagic squares with [c — n,c — 1]U
[c+1,c + n| as row, and column sums, and with c and cn £ 1 as diagonal
sums. The interested reader may visit [4] to obtain this and the other programs
mentioned here.
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5 Even Construction: Bordering Antimagic Squares

Let
B,={L,n+2}x[l,n+2JU[l,n+2] x {1,n+2},

so that B, consists of the coordinates of all the border cells of a (n+2) x (n+2)
square. The cells in B, are naturally partitioned into pairs of opposite cells.
The cells (1,1), (n +2,n+2) and (1,n + 2), (n + 2,1) are opposite cells, and
so are (1,7), (n+2,j) and (3,1),{¢,n+2) for 2 < 4,5 <n+1. A bordering of a
square of order n is any bijection

fiBa—=[1,2n+2)U[n% +2n+3,(n+2)).

We will refer to the numbers in the interval (1, 2n + 2] as smell and the numbers
in [n% + 2n + 3, (n + 2)?] as large.

The idea of course is that given a square of order n filled with the numbers
[1,n%] we may add the constant 2n + 2 to all the entries and then obtain the
remaining entries from the bordering to get a square of order n + 2 filled with
the numbers [1, (n + 2)?].

We work with relative sums in this section, so the reader must pay close
attention to where the domains of partially filled in squares come from, since
two squares of different sizes have different average entries (the a’s of section 2).

Definition 2 A border design of order n is a bordering
[ By — (1,22 42U [n% + 2n + 3, (n +2)%)
such that the following conditions hold:

(A) Rows 1 and n + 2 and columns 1 and n + 2 each contain (n + 2)/2 large
numbers and (n+ 2)/2 small numbers.

(B) The sums of the design are:

T1(f)

_(n+2)’ "fz(f) = 2, ?71—_1—_2(.’.)
a(f)

_(n+ 1)3 En-i-?(f) = n+1, d2(f) _27

|
s

Il
It

and d\(f) =7:(f) =%;(f) =0 foralli#1,2,n+2 and j # 1,n + 2.

The next Lemma shows that a border design is just the right thing to make
larger antimagic squares from smaller ones.

Lemma 6 If there ezists an AMS(n)~ with difference 0 on a diagonal and

there exists a bordering design of order n. then there exists an AMS(n + 2)~
with difference 0 on a diagonal.
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Proof: Let A be an AMS(n)~ with difference 0 on one of the diagonals. By
Lemma 2 we know that the other diagonal has difference —(n + 1). Without
loss of generality we may assume that dy(A) = 0, and d2(A) = —(n + 1) and
7r(A) = n. By permuting the rows of the border design we obtain a new
bordering function f’ such that

n,

7(f) —-(n+2), (f') = 2, Fn+2(f’)
< -2,

(f) = -(n+1),  Zaa(f) = n+], da(f)

i

and d; (f') =7:(f’ =%i(f)=0foralli#1,k,n+2and j#1,n+2.
Define a (n + 2) x (n + 2) matrix A’ by

AL = { Ay +(@n+2) i Gj)€Rn+1]x2n+1)
N f'G.j) i (ij) € Ba
Since 7;(A’) = 7;(A) + 7;(f'), with similar relationships for the column and

diagonal sums, it is simple to check that A’ is an AMS(n + 2)~ with difference
0 on the main diagonal. O

We now show how to construct some border designs.
Lemma 7 There exists a border design of order n for each even n > 4.

Proof: The proof is by induction on n. For n = 4 and n = 6 we exhibit the
designs below: .

80[55] 4 [52[11[51]12] 7
27 9 [30] 1 [34] 4 58 9
33 6 6 59
8 29 2 63
2 35 62 3
5 32 T 64
31[28] 7 [36] 3 |10 8 57

56| 1061 13]54] 14 53| 5

We will show that the existence of a border design of order n implies the exis-
tence of a border design of order n + 4
Let f be a border design of order n. Let h be the function

h:,2n+2luR? +2n+3,(n+2)% -
(1,2n + 10] U [n? + 10n + 27, (n + 6)?]

h(k) = k+4 ifke(l,2n+2)
T k+8n+8 ifken?+2n+3,(n+2)3
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Note that h maps small numbers to small numbers, and large numbers to large
numbers. Also note that the first four and the last four numbers in the intervals
[1,2n + 10 and [n2 + 10n + 27, (n + 6)?] are not in the image of & .

Define the border function

g: Bnis — [1,20+10]U [n® + 10n + 27, (n + 6)?]

by the formulas

9(1,j) = h(f(i,7), 1<j<n+], (1)
gn+6,5) = h(f(n+2,), 1<j<n+], (2)
g(l,n+2) = 1 3)
g(1,n+3) = (n+6)>-2, 4)
g(l,n+4) = 2, (5)
g(l,n+35) = (n+6)%*-3. (6)
gn+6,j) = (n+62+1-g(1,j), n+2<j<n+3 (7)

9(i,1) = h(f(G.1)), 1si<n+], (8)

(z,n+6) = h(f(i,n+2)), 1<i<n+1, 9)
gn+2,1) = 2n+17, (10)
(n+3,l) = n?+10n+28 (11)
gn+4,1) = 2n+8§, (12)
gn+51) = n®>+10n+27 (13)
gli,n+6) = (n+6)2+1-g(,1), n+2<i<n+5  (14)
gn+6,n+6) = Ef(n+2,n+2)) (15)

We claim that g is a border design of order n + 4. Since h preserves the "large-
ness” or the "smallness” of a number the equations (1), (2), (9) and (15) con-
tribute an equal number of large and small numbers to the rows. Equations (3)
to (7) contribute two large and two small numbers to each row, hence there are
an equal number of large and small numbers in the first and last rows. Similarly
we can check that the columns also contain the same number of large and small
"numbers.

Note that the definition of a border design implies that in a pair of opposite
border cells one cell contains a large number and the other cell contains a small
number. This gives the relation 7;(g) = T:(f) for 2 < i < n+1, 50 T2(g) = 2
and 7;(g) = 0 for 3 < i < n+ 1. In the first row we compute the relative sum
9(1,n+2)+9(1,n+3)+g(1,n+4) + g(1,n + 5) = —4, while the sum of entries
in position (1,n + 6) and positions (1,1) to (1,n+1) is F1(f) = —(n + 2) (since
these other entries come from the first row of f and f distributes them equally
among large and small numbers). Therefore 71(g) = —(n +2) - 4 = —(n + 6),
as desired. Having worked out the first row sum for g, the last row sum and the
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column and diagonal sums are just as easy to work out. We leave this for the
reader. .

The proof is now complete, since we may start with the border designs above
and apply recursion to get border designs of all even orders n > 4. O

Theorem 8 For each even n > 4 there exists an AMS(n)~ with 0 as one of its
diagonal sums.

Proof: 1t suffices to exhibit one AMS(4)~ with 0 as a diagonal sum. Then by
Lemma 6 and Lemma 7 we may repeatedly border this square to obtain an
AMS(n) for all even n > 4. Such a square is exhibited in figure 2. O

6 Odd Constructions

6.1 High and low order squares

Most types of magic squares conventionally use the numbers [1,n?] as entries,
but equivalently we will use [0, n? — 1]. This allows us to think of a square as
filled with all two digit numbers to the base n. We will construct two square
designs, one to provide the most significant digit and the other to provide the
least significant digit of each entry. Call the high and low order squares H and
L respectively.

A latin square is left semi-diagonal if ay;,a92,...,0,, are all distinct, it
is right semi-diagonal if ajn,a2.n-1,.-.,an) are all distinct. It is known that
if we use semi-diagonal latin squares with the extra property that the non-
latin diagonal sums to %n(n — 1) for each of the high and low order squares,
then juxtaposing them in this way yields a magic square [1]. Can we make an
antimagic square in a similar way, perhaps by manipulating the low order digits
only?

Lemma 9 If H is a semi-back-diagonal Latin square of order n with the prop-
erty that the main diagonal sum is Z‘,n(n — 1) and if L is a general antimagic
square orthogonal to H and if we form M by

M=nH+L,
then M is an AMS(n).

Proof: Since H and L are orthogonal M has entries 0 to n? — 1. The i*! row
sum of M is

ri(M) = nri(H) + ri(L) = nc + ri(L).

Similarly the column and diagonal sums of M are nc plus the corresponding
sum for L, so S(M) = {nc+ 0 | o €.S(L)}. Since S(L) consists of consecutive
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36

4]5|6|7]8|0[1]2]3]36
3[4|5]6|7]8[0]|1]2] 36
21314]5]6|7[8]0[1]36
1{2[3]4|5]|6]|7]|8[0]36
0]1]12]3|4[5[6[7]8]36
8[0[1]2]3[4[5]|6]7]36
718|0]1|2[3[4[5]6]36
6{7(8]0]|1]2]3[4[5]36
516(7|8|0|1]2[3]|4]36
36 36 36 36 36 36 36 36 36 36

Figure 4: Hg and its sums.
integers, so does S(M). This shows M is an antimagic square . O

Let us place subscripts on H, L to indicate their size. We may obtain a
suitable H, by permuting rows and columns of the addition table of Z, (n
odd), as in Figure 4. We see in the figure that all diagonals parallel to the
main diagonal (sloping left to right) are constant with ¢ = (n — 1)/2 on the
main diagonal. Thus there are many ways to construct an H,,, n odd, satisfying
the requirements of Lemma 9 by filling in the left-right diagonals with different
integers from [0, n — 1] and putting c on the main diagonal.

Half of the construction is complete at this point and we proceed to the more
difficult task of building an L,.

6.2 Staircases of consecutive integers on the torus

We think of the low order square as a mapping Z, x Z, — [0,n — 1), that is, as a
mapping of the torus to the integers [0,n — 1], so in the upcoming discussion all
indices are to be taken modulo n. As we move across a row the first coordinate
of (¢, 7) increases from 0 to n — 1, and as we move down a column the second
coordinate increases similarly. Let |a|, denote the smallest non-negative integer
such that |a|, = a (mod n)

Definition 3 A staircase on an order n matriz is a bijection from a set of cells
{G,5) | n—i+j— 1=K} to the entries [0,n — 1].

Fore,f € [0,n—1],0 < |d| £ c and p = +1 we define one particular pair of
staircases S5, , as:

I Sde,(c d+tc+d+t) = |le+tl, for0<t<n
IL Sd'e'j(c— —e—tictd—e—t+p) = |f+tl, for0<t<n

where ¢ = {(n — 1), the centre row and column coordinate.
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Visually, a pair of staircases S e,; 15 two diagonals of consecutive numbers
zero to n, (I) ascending and (II) descendmg as we move down and right parallel
to the main diagonal. Band (I) is distance d from the main diagonal, aligned
so that element e intersects the back diagonal and so that zero is in the same
row as element f in (II), either 1 unit to the right (p positive) or 1 unit to the
left (p negative). Note that a positive d places e below the main diagonal, and
a negative d places e above the main diagonal.

We are interested in what contributions a particular staircase will make to
the row, column and diagonal sums.

Lemma 10 S";‘e. ; contributes to the row, column, and diagonal sums of a
square in the following way:

r(SP. ) = f ificele+d-ec+d—e+ f]
WWdefs ™ n+ f otherwise
(S8 ) = |f +pla ifje[?_d—e’c—d'e+|f+p|n]
I deef n+|f+pln otherwise
n+l
d2(Sh. ;) = e+|f+|-e+p(——)lnln

di(Sg.;) = 0

Proof: Consider the following diagram:

f+2

n—-1| f+1 n+f
0 f f
1 f-1 f
fl:l : ;
f 0 f
f+1] n-1 n+f

f+2

n+f+1 f+1 f+1 ... oo+ f4+1 n+f+1

The uppermost 0 is in cell (¢ — d — e,c + d ~ €) and comes from part I of
Definition 3. Regardless of what f is the rows sum to f as we move downward
from row ¢+ d — e to row c+d— e+ f (row indices taken modulo n). The other
rows then sum to n + f. Since the row sums do not change if p changes sign we
obtain the formula for row sums.

If f #n—1 then theentry f+1 in cell (c—d—e—1,c+d—e) (immediately
above the uppermost 0) is not reduced modulo n, hence columns ¢ — d — e to
c—d—e+ f+1sumto f+ 1. On the other hand, if f =n—1 then f+1
reduces to 0 modulo n and column ¢ — d — e sums to 0 while all other columns
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sum to n. This is in agreement with the column sum formula for p = +1. In a
similar manner one checks that the column sum formula is correct for p = —1.

Clearly the staircases we defined do not intersect the main diagonal, since
d # 0, hence they contribute 0 to the main diagonal. On the back diagonal
we will have e from part I of the definition plus whatever intersects the back
diagonal in II. Now a;; is on the back diagonal iff i + j = n — 1, so we solve for
the parameter ¢ in part II of the definition yielding ¢t = —e - 2~!p (mod n).
But 2-! = 2 since n is odd, so the entry from II on the back diagonal is
1f +tle = 1f + e + p(2E)|nln-

a

Lemma 11 Any matriz L, entirely defined by staircases is orthogonal to H,,.

Proof: A given diagonal of H, that slopes from left to right has a constant entry.
The same diagonal in L, has the numbers 0 to n — 1 for entries, each exactly
once, because L, is a union of staircases. Therefore in the juxtaposition of H,
and L, this diagonal gives n different pairs (z, y), since all the y’s are different.
Different left-right diagonals will have no pairs in common. since they will have
different x’s due to the way H, is constructed. Altogether there are n? different
pairs in the juxtaposition, as desired. O

6.3 The construction of L, for n =4k + 1

So, if we can construct a general antimagic square using staircases, the orthog-
onality to H will follow. We will construct a low order square using a centre
band, a transparent band, and a projection band. The number ¢ = "T‘l plays a
special role in what follows since it is the average value of the numbers [0, n — 1]
and also marks the central row and column.

The centre band is defined by

Cle—tc—t) =t for0<t<n

C gives the consecutive numbers we wish to project onto the row and column
sums. Clearly, C is a staircase which contributes the sums:

ri(c) = |C"’ ilny

C]‘(C) = |C—j|ny
di(C) = mne,
da(C) = O.

Next, we define the transparent band. This band is almost magic in the
sense that it contributes the same amount to row, column and diagonal sums,
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except that it makes no contribution to the main diagonal. Collect some special
staircases together and form

= (s;,c.n—l U S:d,c+2d—l.n—l)
d=1
Compute the row sums using lemma 10:

n-3

nz3
rn(T) = ri(U (SIc,n—x U S:d,c+2d—1,n—1))
d=1

n-5%

nss
= Z (ri(S;,c,,._l) + ri(s:d,c+2d—l.n—l))
d=1

n—%

-0

= > (r-n+@-1)

d=1
= (n-35)c

Now compute the column contributions:

n—-3%

=
c;( U (S:.c,n—l u S:d,c+2d—-l,n-—l))
d=1

c;i(T)

n~3

n=s
= D (ei(Sham-) + €5(STacraactnt))

d=1

n—3
_ § 0 if j=-d | | n-2if j#-d
- — | » if j#-d Mm—-2 if j=-—d

n-3

I

= Y (-2

d=1
= (n-15)c

Finally, the back diagonal:

n-=3

2(T) = da(|J (Sfemm1 VS ucraamtnen))

—
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ags
=y (dz(SIC,,._l) + d2(S:d.c+2d—l.n—l))

= Y (c+In=—1+tlaln

tc+2d—1+|n—1+|-n—2d+ 1|,,|,,)

d=1
= (n-9%)c

T contributes (n — 5)c to the row, column and back diagonal sums. T allows
the differences created by the centre band to pass through unchanged, as it acts
as a group of average elements in each case.

As it stands, we have [—-("—;1), ("—;1)] in the set of sums twice - once from
the rows, and once from the column sums. The projection band, P, maps
‘2[—("—;3, E'—;—H] made by the centre band onto [—n, 1]U(1, n] evenly distributed
among row and column sums:

— g+ -
pP= S—%c.gc.c—l U S—{:c,%c—l,n—2
By applying Lemma 10, we can calculate P’s contribution to row, column

and diagonal sums:

da(P)

+
(5255

3c c
= 3+|(c—1)+n—§+ll,.

l) + dao(S

c,c— §.4c— l,n—2)

c - 3c
+-2-—1+|(20—1)+n-—2—|,.

3¢ ¢ c c
= (?+§)+(§—1+§—1)

= 3¢-2
The details of the remaining calculations are omitted.

5¢—1 ifi=0
ri(P)=4¢ 3c-2 ifie[l,e-1]
5¢—1 ifié€fe,2(]

3c—-2 ifi=0
v ) se—1 ifje(lc—2
c(P) = Tc ifjele-1,q

3c-2 ifje(c+1,2

191



26
39
29
28
27
35
43
42
41
40

=1 Ot O 00] B ] ] O

b o sl mf 1o} ol | o] ©
= rof | =| & en| | =] o
en| 00| oof e w3 e =| o o

! oo| en| e x| ol cof wa| <3} 00

oo

ol ~| o] of <[ & vof 1] o] 0o

N | 3| | w=| enf ] | o G0

~| O O O] N wf & | Uy O
o=

Gl ~| of v i x| ©f - 00f &
£

[+
ool —
(9

4 33 3

™o

Figure 5: Lg and its sums.

These bands fill the entire square, and Figure 5 shows an example of what
we've constructed when n = 9 (the boldened entries are the centre band and the
projection band). We are now ready to prove that our square has the antimagic
property.

Theorem 12 If L, = CUTUP. n =4k + 1, n > 5, then L, is a general
antimagic square.

Proof: We have already calculated r;, c;, and dj for each of the bands, all that
remains is to combine them into one formula.

ri(Ln) = ri(C)+ri(T)+ri(P)
c—1 ifi=0
= ne+ —-c—-2-i }fz.e[l,c—l]
-1 ifi=c
3c—i ifiefc+1,2
¢i(Ln) = ¢;(C)+¢;(T)+c;(P)

—c-2 ifj=0

c—1-37 ifje[l,c-2
3¢c—j ifjelc-1,q
c—1-j if j&ec+ 1,2

ne -+

di(Ln)
da(Lyn)

nc+0
ne— (2¢+2)
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Let a+S = {a+s|s € S}. The row sums are then nc+[{c—1,-1}U[-2¢c-1, —c—
3]U[c, 2¢—1], the column sums are ne+[{—c—2, 2¢, 2¢+1}U[1, c—2]U[—c—-1,-2],
and the diagonal sums are nc + {0,—2c — 2}. It is now easy to check that
S(Ln,) = nc+ [-2¢ - 2,2¢+ 2] = nc+ [-n — 1,n], hence L, is a general
antimagic square. O

The remaining odd orders are covered in the next section.

6.4 The construction of L, for n =4k +3

This type is a modification of the previous odd case. The center band is now
three elements thick, but designed in such a way as to put the same sums on
the rows and columns and diagonals as C did. We define band C’ as follows:

C'le+tec+t)
C'lle—t,ce—t-1)
Clle—t—-1,c—t)

for0<t < n.

It
R

One readily verifies

N 3c—i if i € [0,c]
N 3c—i if i € [0, ]
a(C) {5c+1—i if i € [c+1,2¢]
di(C') = nc
d2(C") = 2

Let T’ be defined as:

Nne7

-
- +
T'= U (Sd.c+1,0 US-rLc-Zd.n-?)

d=1

Applying Lemma 10, we find that T” contributes (n — 7)c to the row and
column sums. Also it’s back diagonal contribution is da(T”) = (n — 7)c and its
main diagonal contribution is 0.

Finally we come to the construction of P’, where there is a departure from
the structure of P in the 4k + 1 case. Define the fragment G by

Glt,e—14+t) = [pn—1+t|a
G(t,c+t) = |n—-1+tjp for0<t<n.
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The G fragment occupies the same positions as a staircase of the form

Sf,}(c_,_l),,'. (or of the form S;(c—l).t,:)' We find that
2c+1+2 ifie(0,c—1]
ri(G) = ¢ 2 ifi=c
20—-1-2c ifi€fc+1,2¢
4c ifi=0
«(G) { 2% -2 ifiell,2d
d2(G) = 2-1
Now define B to be [SE.‘(C“) i(x:—l),n—l]t' where the transpose [J* is reflection

through the backdiagonal (as opposed to the usual transpose through the main
diagonal). We may calculate row and column sums for B by observing that
ri(B) = cn—l—i(S; ) and ¢i(B) = rn_1-i(S
We find that

(e+1),3(c-1),n— :}-(C+l),s}(c-l).n-l)'

ri(B) = 2cifie0,2

_ n-2 ifiel0,2c-1]
«(B) = {2n—2 if i = 2

d(G) = 0
dz(G) = ¢c—1

Now we set P = BU G, and upon combining the formulas for B and G
above we have

6c+1 ifi=0
4c+2i ifie0,c-1]
4c-1 ifi=c
2i-2 ifi€fc+1,2

r(P) =
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a(P) = {2i+2c-2 if i € [1,2¢]

h(P) = 0
da(P) = 3c-2

Finally we set L, = C' UT’ U P’ and the formulae we have for calculating
the contributions of C’, P’ and T give the following sums for the completed
square Lyn:

ri(Lp) = 7(C")+ri(T) + r:(P)
2c+1 ifi=0
N i ifielc-1]
= net) oo ifi=c
—2c+i~1 ifi€c+1,2]
Ci(Ln) = Cj(C’) +cj (T') + Cj(P')
2c ifi=0
= nc+{ -2c+i-2 ifje(l,q
i-1 if j € le+1,2]
di(L,) = nc+0+0=nc
d2{(Ly) = (n—T)e+2c+3c—2=nc—2c-2

From these it is easy to see that the 2n + 2 sums of L, are precisely nc +
[-2¢ - 2,2¢ + 1], as desired. The construction even works in the case n = 7,
where the transparent band T is empty and hence still contributes (n — 7)c to
rows and columns. We have proved

Theorem 13 IfL, = C'UT'UP', n=4k+3,n > 7, then L, is a general
antimagic square.

An example for n = 11 is shown in figure 6.

6.5 Summary
Theorem 14 An AMS(n) exists for all odd n > 5
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Figure 6: L;; and its sums.

Proof: Theorems 12 and 13 show that for all odd n > 5 we can form the general
antimagic square L, which is also orthogonal to H, by lemma 11. Theorem 9
shows how to juxtapose H, and L, to form an AMS(n). O

While the proof only gives one AMS(n) for each odd n, we can observe ways
to produce variants.

Recall that in H,, the only property we need is that broken diagonals parallel
to the main must each consist of the same element, except for the main diagonal
which must be all E‘n(n — 1). This means that we could relabel the remaining
{n — 1) elements without disturbing the antimagic property of the final square.
There are (n — 1)! ways to do this.

Also, in L,, notice that we could reflect P and C along the back diagonal
and still have a general antimagic low-order square. There are two choices for
this reflection.

Finally, each "magic” band of four staircases can be reflected along the back
diagonal or not, which yields 2“7 choices which preserve the antimagic property
of the square. In addition to reflection, these groups of four of four can be slid
parallel to the main diagonal. This action does not disturb the row and column
sums, but can have an impact on the diagonal of either zero, plus n, or minus

n—9
n. There appears to be IT, 3 (412 + 3) ways to yield zero diagonal effect (in the

same way as described in the construction), not to mention all the ways one
could compose zeros with combinations of plus and minus n.
Therefore, we conclude that this construction yields at least:

(n—1)1.2°% . ]:[ (4i+3)
=0
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AMS(n)’s. Of course, this is a tiny fraction of all order n antimagic squares.
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