Total domination in claw-free cubic graphs
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Abstract
We prove that the total domination number of an n-vertex claw-
free cubic graph is at most n/2.

1 Introduction

The open neighbourhood of a vertex v of a graph G = (V, E) is N(v) =
{u € V : uv € E}. Whenever necessary we write V = V(G) to indicate
the graph concerned. For S C V, the open neighbourhood of S is defined
by N(S) = UyesN(v). A set S CV is a total dominating set, abbreviated
TDS, if every vertex in V is adjacent to a vertex in S. (That is, N(S) = V)
Every graph without isolated vertices has a TDS, since § = V' is such a
set. The total domination number v,(G) of G is the minimum cardinality
among its total dominating sets. A TDS of G of cardinality v,(G) is called
a 7,-set of G. Total domination in graphs was introduced by Cockayne,
Dawes and Hedetniemi [1] and is now well studied in graph theory — see
(5, 6]. .

Several upper bounds for 7, are given in [5, pp. 160-161]. More recently,
Henning (2] proved:

Theorem 1 If G is a connected graph of order n with minimum degree
6 (G) > 2and G ¢ {03, Cs, 06,010}: then o (G) < 4n/7.

Further, Favaron, Henning, Mynhardt and Puech [4] proved:
Theorem 2 If G has order n and § (G) > 3, then v, (G) < Tn/13.
They also posed the following conjeécture.
Conjecture 1. If G has order n and 6§ (G) > 3, then 7, (G) < n/2.

Work on this conjecture motivated this paper which establishes the
bound for claw-free cubic graphs.
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2 The bound

Let S be a TDS of a cubic graph G. The subsets of vertices of S which
have degree one, two and three in G[S] are denoted by Sy, Sz and Ss3
respectively. Note that G[S] has no isolated vertices. Further, let W1, W3
and Wj respectively denote the subsets of V — S which send one, two and
three edges to S. Since S is total dominating, V — S =W UWs U Ws.
Since G is cubic, W3 is independent and no edge of G joins W3 to W UW,.
If w € W; and s is the (unique) neighbour of w in S, then w is called an
external private neighbour (epn) of s. A vertex of S may have no, one, or
two epns.

We require the following minimality condition obtained by Cockayne,
Dawes and Hedetniemi [1].

Proposition 3 In any graph, a TDS S is minimal if and only if for each
s€ES,

(i) s is adjacent to a vertez of Sy, or )
(i) s has an external private neighbour.

In particular, each -y,-set has Property (1) which is also known as open-
open irredundance (cf. [7])-

A graph is claw-free if it has no induced subgraph isomorphic to the
claw graph K, 3. We now show that every claw-free cubic graph has a
«,-set which satisfies certain properties.

Proposition 4 Any claw-free cubic graph G has a 7,-set S such that
(i) S3=0 (i.e., each component of G[S] is a path or a cycle), and
(ii) if s has degree two in a component Py of G[S), where k > 4,
then s has a unique epn.

Proof. Among all v,-sets of G, choose S so that the number of edges in
G|S] is minimum. '

(i} Let s € S3. By Proposition 3, s (having no epn) is adjacent to some
u € 5. The same proposition implies that « has an epn u’. If s is adjacent
to two vertices of S2 U S3, then S’ = (S — {s}) U {«} is a TDS of G and
G[S’] has fewer edges than G[S], a contradiction. Therefore s is adjacent
to at least two vertices of Sy, which contradicts the claw-free property.

(i) Let G[S] have a component Pk, where k > 4, and let s be a vertex
of degree two in this component. If s is not adjacent to an endvertex of
the component, then s has an epn by Proposition 3. Now suppose that s is
adjacent (in Py) to the endvertex t of P, but s has no epn. By Proposition
3,thasanepnt’. Then S’ = (S— {s})U{t'} is total dominating and G[S’]
has one edge less than G[S], a contradiction. Finally, since s € S and G
is cubic, s may have at most one epn. M
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Figure 1: Types of components of G [S]

The purpose of this paper is to establish the following result.
Theorem 5 If G is an n-vertez claw-free cubic graph, then 7, (G) £ n/2.

Proof. Let S be a v,-set satisfying the hypothesis of Proposition 4. Observe
that Proposition 3 implies that each endvertex in a component of G[S]
isomorphic to P (k 2 3) has an epn.

Define the weight of an edge from S to W; (i € {1,2,3}) to be 1/i. For
a subset T C S, 7(T) is defined to be the difference of the sum of weights
of all edges from T' to V — S and the cardinality of T.. The proof will use a
detailed analysis of the components of G[S] to show that n(S) > 0, which
is equivalent to |V — S| > |S| and hence implies that v, < n/2.

If a component of G[S] contains an induced subpath of three vertices,
each of which has an epn, then the closed neighbourhood of the central
vertex is a claw. This observation, together with Propositions 3 and 4,
disqualifies Cy and P (k 2 4) and P3 where the central vertex has an
epn, from being components of G[S]. The situation of a P; component
in which each endvertex has two epns‘and the central vertex has no epn,
is similarly eliminated since the graph is cubic and claw-free. Hence all
possible types of components of G|S) and epns of their vertices are those
depicted in Figure 1. Edges from S to W} are arrowed.

Since G is claw-free, each w € W3 joins adjacent vertices of a component
F(w) of G[S] and one more vertex g(w) of a component G(w). It is possible
that G(w) = F(w), in which case the component is a P; of type (vi).

Consider the digraph D whose vertex set is C, the set of components of
G|S), and for C1, C2 € C, C1(C? is an arc (i.e., directed edge) of D if for
some w € W, C; = F(w) and g(w) € V(C2). We say that the degree of C
in D, abbreviated deg(C), is (p, q) if its indegree and outdegree are p and
q respectively.

Each of the types of components C of G[S], except types (v) and (viii),
may send edges to W UWj3 in one of several ways which determines deg(C)
and n(V(C)) (which we abbreviate to 7(C)). The following result will be
used repeatedly to reduce the number of cases. '
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Figure 2: Type (i) components

Lemma 5.1 Let C,, C; be distinct components of G[S)], where C; = F(w)
and g(w) € V(Cz) for w € W3. Then g(w) has no epn.

Proof. If g(w) has an epn, then Ng(w)] is a claw. O
We now present the catalogue of components of G[S] under four headings.

Components which do not join W3

Each such component C has deg(C) = (0,0) (i.e., C is an isolated vertex
of D). The weights of edges from these components are either 1 or -21; and
hence it is easy to verify that 7#(C) > 0. This situation includes components
of types (v), (viii) and (iv) (which do not join W3 by Lemma 5.1) and type
(ix) (which do not join W3 by the claw-free property).

Type (i)

Suppose that C is a type (i) component with V(C) = {v;,v»}. If C =
F(w) for w € W3, then there exists w’ € W, adjacent to both v; and v,
(otherwise (S — {v1, v2}) U {w} is total dominating, a contradiction). Thus
N(V(C)) N W3 = {w} and deg(C) = (0,1). If C joins W3 but C # F(w)
for any w € W3, then the claw-free property implies that neither v; nor
vy is adjacent to two vertices of W3. The three possibilities for type (i)
components are depicted in Figure 2. In this figure as well as Figures 3 and
4 below, the labels 1, 2 and 3 on vertices of V' —S signify that the vertex
is an element of W;, W, and W3 respectively.

Type (ii)

Let C be a type (ii) component which joins w € W3, where V(C) = {v;, v}
and v has the epn. If C = F(w), then there are two choices for the third
edge incident with v;. If C # F(w), then (by Lemma 5.1) v; = g(w) and
the claw-free property implies the existence of w' € W, adjacent to both
vy and vo. The possibilities are depicted in Figure 3.
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Figure 3: Type (ii) components

Types (iii), (vi) and (vii)

Tf C is a component of type (iii), (vi) or (vii) which joins W3, then by the
claw-free property, some w € W3 joins adjacent vertices of C. This fact
and Lemma 5.1 eliminate all but the possibilities in Figure 4.

2, % %) o
1 1 3 21 3 1 11 3 1 1 3 1

Type (iii) Type (vi) ' Type (vii) Type (vi)
deg(C)=(0,1) deg(C) =(0,1) deg(C) = (0,1) deg(C)=(1,1)
nO)=7% HO= k% O =% O =0

Figure 4: Components of Types (iii), (vi) and (vii)

A component of G[S] which is connected to V — S as shown in a diagram
labelled Q; in Figure 2, 3 or 4 will be called a Q;-component, and an arc of
D from a Q;-component to a Q;-component will be termed a QiQj-arc.

Lemma 5.2 If (i,5) € {(1,2),(4,2),(1,3),(4,3),(5,2)}, then D has no
Q:iQj-arc.

Proof. Suppose the contrary and that vy, ve are the vertices of the Q;-
component of G[S], where v; has no epn. There exists a vertex w € Ws
adjacent to v; and vp. Suppose that v3, vg are the vertices of the Q;-
component where g(w) = v3. Then (S— {v1,v4})U{w} is total dominating,
a contradiction. O
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Let X be the set of components of the digraph D. For X € X, let
the vertices of X be the subset {C1, ..., C¢} of components of G [S] and let
U(X) = Ut_,V(C;). Each component of G[S5] is a vertex of precisely one
component of D and hence {U(X) : X € X} is a partition of S. The proof
of the theorem will be completed by showing that n(U(X)) > 0 for each
X € X, which will imply that (S) = Zxexn(U(X)) = 0, as required.

Observe that 17 (C) > 0 for each Q;-component C, where i > 4. Hence
n(U(X)) > 0 unless X has a vertex corresponding to a Q;-component for
i=1,2or 3 (i.e., some type (i) component). Thus it is sufficient to consider
X having this property and degrees in {(1,0),(0,1),(2,0),(1, 1)}.

Suppose that X has a vertex C corresponding to a Q2-component. Since
deg(C) = (2,0), C is adjacent from two vertices Cj, j = 1,2, which have
outdegree one. By Lemma 5.2, if C; is a Q;-component, then i ¢ {1,4,5}.
Furhter, i # 10 since a Qio-component is an isolated loop of D. Hence
i € {7,8,9} and so C; has indegree zero. Then V(X) = {C, Ci,C2} and
for all choices of C; and Ca, n(U(X)) = n(C) + n(C1) +1(C2) = 0.

Next, let X have a vertex C corresponding to a Q3-component. Since
deg(C) = (1,0), C is adjacent from C; which has outdegree one. By Lemma
5.2, if Cy is a Qs-component, then i ¢ {1,4} and so i € {5, 7,8,9}. Each
choice of C; has indegree zero, hence V(X) = {C,Ci1} and 9(U(X)) =
1(C) +n(C1) 20.

Finally, suppose that X has a vertex C corresponding to a );-component
and no vertex corresponding to a Q- or Q3-component. All other ver-
tices of X have degrees in {(1,1),(0,1),(1,0)}. In this case X is a di-
rected path with vertex sequence C,C, ..., Cs, C’, where s > 0, each Cj,
j =1,..,s, is a Qq-component, and ¢’ is a Qs-component. For all such
paths n(U(X)) =0. H
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