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Abstract

The queen’s graph @, has the squares of the n x n chessboard
as its vertices; two squares are adjacent if they are in the same row,
column, or diagonal. Let 7(Q@~) be the minimum size of a dominating
set of Q.. Spencer proved that v(Qx) = (n —1)/2 for all 7, and the
author showed v(Q.) = (n — 1)/2 implies n = 3 (mod 4) and any
minimum dominating set of @, is independent.

Define a sequence by n, = 3, nz = 11, and for i > 2, ni =
4n;_, — ni—a — 2. We show that if v(Qn) = (n — 1)/2 then n is a
member of the sequence other than n3 = 39, and (counting from the
center) the rows and columns occupied by any minimum dominating
set of Q. are exactly the even-numbered ones. This improvement
in the lower bound enables us to find the exact value of y(Q») for
several n; Y(Qn) = (n + 1)/2 is shown here for n = 23,39, and
elsewhere for n = 27,71,91,115,131.
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The queen’s graph @, has the squares of the n x n chessboard as its
vertices; two squares are adjacent if they are in the same row, column, or
diagonal. A set D of squares of Qn is a dominating set for Qn if every
square of Q, is either in D or adjacent to a square in D. If no two squares
of a set I are adjacent then I is an independent set. Let 7(Q,) denote
the minimum size of a dominating set for @,; a dominating set of this size
is a minimum dominating set. Let ¢(Q,) denote the minimum size of an
independent dominating set for Qn.
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The task of determining values of v(Q,) and #(Q,) appears as Problem
C18 in the recent collection {11] of unsolved problems. However, finding
these values has interested mathematicians for at least 140 years [1, 8, 13].

The general method of establishing the value of v(Q,) or ¢(Q,) for a
specific n is to construct a dominating set of @, whose size equals a proven
lower bound. As minimum dominating sets for even n seem to be closely
related to those for the odd values n ~ 1 or n + 1, we shall focus on odd n.

The earliest non-trivial lower bound established for the domination

numbers of @, is
Y(@n) 2 (n - 1)/2, (1)

due to Spencer [7, 14]. Well known dominating sets showed that equality
held in (1) for n = 3,11, but no other such n have been found, so it seemed
that (1) could be bettered. As ¥(Qn) < i(Qn) for all n and i(Q,) <
[n/2] + 1 is shown in [10] for n < 120 (and conjectured for all n), even
small improvements in (1) give values of v(Q,) and i(Q,) for more n; see
below.

The author proved (see Theorem 2 below) several facts about dominat-
ing sets of size (n — 1)/2 for @, in particular that they are independent
sets and that n = 3 (mod 4) is necessary. Thus ¥(Q4x+1) > 2k + 1 for all
k, and a combined effort [2, 4, 9, 12, 14] has shown that equality holds for
k < 21; this is extended to ¥ < 32 in [10]: Burger and Mynhardt built on
Theorem 2 in [3], and were able to show with the aid of a computer search
that v(Qak+3) > 2k + 1 for 3 < k < 7. They then established the values
7(Q19) = 10 and v(Q3;) = 16. Several of their conjectures will be discussed
after Theorem 4.

Define a sequence by n; = 3, n, = 11, and for ¢ > 2, n; = 4n;_, —
ni—2 — 2. In this paper, we use the Parallelogram Law (Theorem 1) and
other new techniques to prove (Theorems 3 and 4) that if v(Q,) = (n—1)/2
then n is a member of the sequence other than n3 = 39, and any minimum
dominating set D of Q,, occupies the even-numbered rows and columns,
counting from the center. We show y(Q,) = (n + 1)/2 for n = 23,39; in
(10] this is shown for n = 27, 71,91,115,131.

We will identify the n x n chessboard with a square of side length n
in the Cartesian plane, having sides parallel to the coordinate axes. The
origin of the coordinate system may be placed at any point convenient
for the task at hand; to study a minimum dominating set D of Q, when
¥(@n) = (n—1)/2, we will take the origin at the center of the sub-board U
specified in Theorem 2 below. We refer to board squares by the coordinates
of their centers; the square (z,y) is in column z and row y. The square (z,y)
is even if x + y is even, odd if z + y is odd. If n is odd, we divide the even
squares of Q,, into two classes: (z,y) is even-even if both z and y are even,
odd-odd if both are odd.
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Columns and rows will be referred to collectively as orthogonals. The
difference diagonal (respectively sum diagonal) through square (z,y) is the
set of all board squares with centers on the line of slope 41 (respectively
—1) through the point (z,y). The value of y — z is the same for each square
(z,y) on a difference diagonal, and we will refer to the diagonal by this value.
Similarly, the value of z + y is the same for each square on a sum diagonal,
and we associate this value to the diagonal. We refer to orthogonals and
diagonals collectively as lines of Qn.

In several kinds of problems involving @, one wishes to choose a set
of queen squares so that a specified set of lines is occupied. The following
elementary result has not previously been applied to these problems; we
will see in the proofs of Theorems 3 and 4 that it greatly restricts the
possibilities for line sets.

Theorem 1 (Parallelogram Law) Let D be a set of k squares of Qn
that occupies columns numbered (c;)¥_,, rows (r;)5,, difference diagonals
(d:)L.,, and sum diagonals (s:)5;- Then

k k k k
2y @ +2) =) di+) s (2)

i=1 i=1 i=1 i=1

Proof. Let D = {(z;,y:) : 1 £ i < k}. Then there are permutations e,
f, g, h such that for each i we have &; = ce(s), ¥i = T5(i)» ¥i — Ti = ly(i)s
and y; + T; = sp(;)- The conclusion follows from the identity 2z? + 2y; =
(y; — 2:)? + (yi + ;)? and summation. O

The following is Theorem 2 of [14], together with some facts established
in its proof.

Theorem 2 Letn be a positive integer such that ¥(Qna) = (n—1)/2. Then
n = 3 (mod 4)). Let D be a dominating set of (n — 1)/2 squares of Qn.
Then D is independent, s0i(Qn) = (n—1)/2, and there is an odd integer j,
3(n+1)/4 < j < n, such that there is a j x j sub-board U of Qn satisfying:

(a) each edge square of U is attacked ezactly once;

(b) each orthogonal of Qn that does not meet U contains ezactly one
square of D, and the orthogonals of Qn that extend the edge orthogonals of
U contain no squares of D.

(c) difference diagonal 0 of U contains ezactly one square of D, and ez-
actly half the remaining squares of D lie above the extension of that diagonal
to Qn, and half below; similarly for sum diagonal 0 of U;

(d) for every square of D, the absolute value of each diagonal number
is strictly less than j — 1, and thus at least one of its orthogonals meets U.
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We adopt the notation of Theorem 2, and will make frequent use of its
conclusions, especially (a). To this end, let E be the set of edge squares
of U, and let E;, E,, Eq4, and E, be the subsets of E consisting of those
squares that are covered along their column, row, difference diagonal, and
sum diagonal, respectively. Then Theorem 2(a) says these four sets form a
partition of E.

A line containing a square of D is occupied; a square where four occupied
lines meet is eligible. Clearly each occupied line contains at least one eligible
square.

Let m be an odd positive integer. Let s;, s2 be squares of the same
edge row (respectively edge column) of U whose column (respectively row)
numbers differ by m. If s; and s, are dominated along diagonals that cross
inside U, we say that they form an m-crosspair. The mean of an m-crosspair
of the top edge of U is the mean value of the column numbers of its two
squares.

A diagonally covered square of E that is not in any m-crosspair is an
m-singleton. If the type of diagonal is important, we refer to difference
m-singletons and sum m-singletons.

Set £ = (7 —1)/2. For integers m > 0 and i, let S(i,m) = {(z,€) : —£ <
z <fand z =1 (mod m)}.

Thus {S(i,m) : 0 < i < m} is a partition of the top edge of U.

Let 7 be an integer, |¢| < £. Then Orth(:) denotes a set of lines: columns
+4 and rows +i of Qn. If 7 # 0 then Orth(:) contains four lines. Similarly,
let Diag(i) denote the set of sum and difference diagonals of Q,, numbered
Zi. (For |i| > j, some of these diagonals may be “off the board”.) Say
Orth(i) is full if all of its lines are occupied, empty if none are occupied;
similarly for Diag(¢). Thus Theorem 2(b) says in part that Orth(£) is empty,
Theorem 2(c) says in part that Diag(0) is full, and Theorem 2(d) says that
if |¢] > j then Diag(z) is empty.

Let L denote the set of lines that meet U. The eight-element group of
symmetries of a square will be denoted D4. The natural action of D4 on U
gives an action of D4 on L.

Theorem 3 Let n be a positive integer such that v(Qn) = (n — 1)/2, and
let D be a dominating set of size (n—1)/2. Then U = Q,, and every square
of D has both coordinates even.

Proof. The unique minimum dominating set {(0,0)} of Q3 satisfies the
desired conclusion, and y(Q~) = 4 was shown in Corollary 3 of [14], so
Theorem 2 allows us to assume n > 11, and then that j > 9.

First we must prove that Orth(£~m) is full for each odd m, 1 < m < ¢.
The proof is by induction on m; we may assume for each odd i, 1 < i < m,
that Orth(€ — 4) is full. (This is vacuous for m = 1, but the argument for
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m = 1 is essentially similar to that for the inductive step, so we treat it
here.) For purposes of contradiction, we may suppose that some line of
Orth(£ — m) is unoccupied; by rotating the board we may take that line to
be row £ — m. We break the argument into a sequence of lemmas.

Lemma A Orth(0) is full.

Proof. Suppose that row 0 contains no square of D. Then Theorem 2(b)
implies the square (£,0) is not covered orthogonally, so one of its diagonals is
occupied. This implies that one of the squares (0, +£) is attacked diagonally.
Since these are squares of E, Theorem 2(a) implies that column 0 is empty.

We next show for each i, 1 < i < £, that row i is occupied if and only if
row % — £ is occupied. Suppose that row i is occupied. By Theorem 2(a),
the squares (+£,1) are not diagonally attacked, so both diagonals through
the square (0,7 — £) are empty. Since column 0 is empty, this square must
be covered along row i — £. Conversely, if row i — £ is occupied then squares
(+2£,i — £) are not diagonally attacked, so (0,1) is not diagonally attacked,
and since column 0 is empty we see row ¢ is occupied.

Since rows £, 0, —£ are empty and any occupied rows with numbers
among #+1,...,%(¢ — 1) come in pairs of the form {7,i — £}, the number
of occupied rows meeting U is even. By Theorem 2(b), every row not
meeting U is occupied, and the number of these is n — j, which is even.
Thus the number of occupied rows is even, and since D is independent,
each occupied row contains just one square of D, so |D| is even. But
Theorem 2 says n = 3 (mod 4), and then |D| = (n — 1)/2 implies |D| is
odd. This contradiction shows that row 0 is occupied, and similarly column
0 is occupied; Lemma A is proved.

Lemma B There is a non-negative integer t such that the rightmost t
squares of S(£,m) are difference m-singletons, the leftmost t squares of
S(—¢,m) are sum m-singletons, and all other diagonally covered squares of
row £ of U are in m-crosspairs.

Proof. The following fact will be used several times.

Claim B1. The difference and sum diagonals numbered —(m—2), —(m—
4),...,-1,1,...,m —4,m — 2 are empty.

By hypothesis, the edge squares (£¢, £(£—2k+1)) and (+(¢{—2k+ 1), +¢)
of U are orthogonally covered for 1 < k < (m — 1)/2, so by Theorem 2(a),
their diagonals are empty: Claim B1 is proved.

There are m — 1 diagonal numbers named in Claim B1, none is divisible
by m, and (since m is odd) no two are congruent modulo m. It follows that
for each u, 1 < u < m — 1, exactly one of these numbers is congruent to u
modulo m.
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Suppose there is a difference m-singleton (z, £); then there is z; such
that (z1,¢) is a difference m-singleton while (z; — m,£) is not. We will
prove the following.

Claim B2. The sum diagonal of square (z1,£ — m) is not occupied.

If 2y —m > —£ then (z; — m,?) is a square of row ¢ of U and (by
definition of m-crosspair) is not covered along sum diagonal z, — m + ¢, so
also square (z;,¢ — m) is not covered along this diagonal. If 2; —m < —¢
then z; < —¢ + m, so since column z; is empty, we have z, = —¢ +a
for some even integer a, 0 < @ < m. From Theorem 2(c), (-¢,%) ¢ Es, so
Theorem 2(a) implies @ # 0. Then (z;,{ —m) = (-¢ +a,{ —m) is on
sum diagonal a — m, which by Claim B1 is empty, since -m <a-m <0
and a — m is odd. This establishes Claim B2.

By our assumptions, (z;,£ — m) is not orthogonally covered, so Claim
B2 implies its difference diagonal —z; + £ — m is occupied.

If z; + m < £ this diagonal meets row £ of U at the square (z, +m, £),
and then since (z;,£) is not covered along its sum diagonal, we may repeat
the argument to show that difference diagonal —z; + ¢ — 2m is occupied.
Continuing in this way, we obtain a run of occupied difference diagonals
numbered —z; +£ —im for 0 < i < ¢, where ¢ is the least integer such that
—14+¢ —-tm <0.

If 2y #¢ (mod m) then for each i, —z; + ¢ — im # 0 (mod m) and we
have a contradiction, as by Claim B1, one of this run of diagonals must be
empty. Thus z; = £ (mod m), and from our choice of z;, it follows that
the only squares of row £ of U that are difference m-singletons are the ¢
squares of S(€,m) = S(z1,m) at or to the right of (z;, £).

Reflecting in column 0 gives a proof that among the sets S(i,m), only
S(—¢,m) can contain sum m-singletons, and that any such squares come
at the left end; say there are ¢’ of these. By Theorem 2(c) and (d), row ¢
of U contains (n + 1)/4 squares of E; and (n + 1)/4 squares of E;. Since
each m-crosspair contains one of each, we see t = ¢/, which completes the
proof of Lemma B.

Lemma C Orth({ — m) is empty.

Proof. We are assuming row £ —m is empty. The eight squares (£, (£ —
m)), (£(€ — m,=+£) are each uniquely covered. Using this, a short exam-
ination of cases shows that if some but not all lines of Orth(¢ — m) are
unoccupied, we may rotate the board so that column and row —¢ +m and
sum diagonals —m and 2¢ —m are occupied. By Theorem 2(c), the square
(¢,£) € Eq4, and since sum diagonal 2£—m is occupied, ({—m, £) € E,. Thus
(¢,) is in an m-crosspair of the top edge of U, so by Lemma B, the top edge
of U has no difference m-singletons, and therefore no sum m-singletons.
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But (—£ + m,£) € E, implies that (—¢,¢) is a sum m-singleton. This con-
tradiction establishes Lemma C.

Lemma D The sub-board U has the same center square as Qn, and the
set L' of occupied lines has D4 as its group of symmeiries.

Proof. By Lemma C we can apply the argument for Lemma B to each of
the four edges of U, establishing the following.

Claim D1. The number of difference m-singletons on each edge of U
equals the number of sum m-singletons on that edge. If this number is not
zero, the m-singletons of the edge are spaced every m squares, starting at
each end of the edge.

Let t,, ty, ; be the numbers of difference m-singletons on the right, bot-
tom, and left edges of U, respectively. We begin by showing ¢t = t,.

If t # t,, it suffices by the symmetry of U across difference diagonal
0 to consider the case t > t,. Let p be the largest integer such that sum
diagonal im is occupied for 0 < 2 < p. By Theorem 2(c), p > 0. Then
either t = p and square s; = (—€+ (p+1)m,¢) € Ey (so {(—£€+tm,£),s1}
is an m-crosspair), or t = p+ 1 and s; € E.. Making a similar analysis of
the right edge of U, and using the fact that a sum diagonal meets the right
edge of U if and only if it meets the top edge of U, we see that ¢ > ¢, can
only occur if t = p+ 1, s; € E,, and the square s = (¢,—¢ + tm) € Eq,
giving t, =t — 1. This argument and the rotational symmetry of U imply
the following.

Claim D2. The values of t and t; can differ by at most one.

Moving along the difference diagonal of sz, we see that s3 = (£ —
tm,—f) € Ey, and then that the bottom edge of U has at most ¢ — 1
sum m-singletons (since if square (¢ — (¢ — 1)m, -{) € E, it forms an
m-crosspair with s3). Thus £, <t —1.

Moving along the column of 51, we reach s4 = (—£€+ tm, —£), and since
s1 € E,, also s4 € E,. Now consider s5 = (—€+ (t — 1)m,—¥¢). If 55 € Ey,
then since s4 € E., we see sz is a difference m-singleton, and then by
Claim D1 that the bottom edge of U has t difference m-singletons, which
contradicts ¢, < ¢ — 1, so ss & Eq. Since (—¢,—¢) € Ey by Theorem 2(c),
this implies ¢ > 1. The column of s5 meets the top edge of U at a square
in the occupied sum diagonal (t — 1)m, so also s & E;, and thus ss € E,.
The sum diagonal of s5 meets the left edge of U at s¢ = (£, —€+(t—1)m),
50 sg € E,. If the square (—¢, —£+ (t — 2)m) € Ey, it forms an M-Crosspair
with sg, so there are at most ¢t — 2 difference m-singletons of the left edge
of U. But then #; <t — 2, which violates Claim D2,s0t =t,.

Then the rotational symmetry of U implies i, =t and t, = #. So all
edges of U have the same t-value, which together with Claim D1 implies
the following useful fact.
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Claim D3. If s, s' are diagonally covered edge squares of U that share a
line and are not on the same edge of U, then either both are m-singletons
or both are in m-crosspairs.

If there are no m-crosspairs, all edge squares of U that are not m-
singletons are orthogonally covered and we are done. If there are m-
crosspairs, by rotating the board we may assume the top edge of U con-
tains at least as many m-crosspairs as any other edge of U, say k of
them. Label these m-crosspairs Pj,...,P, so that their means satisfy
gl = ... > |pk]- The square (py — %,€) of P is on sum diagonal
p1 — 3 + £, which by Claim D3 contains a square of another m-crosspair,
namely (£, 4y — %), implying {({, 1 — 5'), (¢, 11 + )} is an m-crosspair.
Moving along the difference diagonal from (£, 41 + ) we see that Claim D3
implies {(—p1 — 3, —£),(—p1 + 3, —£)} is an m-crosspair. Then moving
vertically, the squares (—p; — 5,€) and (—p1 + %, €) are in either one or
two m-crosspairs. If they are in two, one of these m-crosspairs has mean of
greater absolute value than |y, |, a contradiction. So those squares form one
m-crosspair, and it follows that all eight images of P, under the action of
D, are m-crosspairs; in particular, yo = —p;. Continuing inductively, we
see that every m-crosspair of the top edge has the property that all eight
of its images under the action of D4 are m-crosspairs, and then that the
same is true for every m-crosspair. Since by Theorem 2(d) every occupied
diagonal meets U, the set of occupied diagonals is closed under the action
of D4. This fact has two consequences.

First, the set of edge squares of U that are not diagonally covered is
closed under the action of D4, which implies that the set of those occupied
orthogonals that meet U is also closed under the action of Dy. If U = @,
Lemma D is proved. Otherwise, the symmetry implies

Z z =0, and Z y=0.

(z,9)€D,|z|<l (z.w)eD,lyi<t

Second, since by Theorem 2(d) every occupied diagonal meets U, the
symmetry implies E(z’y)ep(y —z)=0and 3, \ep(y +2) = 0. This
gives 3, yep® = 0 and Z(:,y)GD y = 0. By the previous paragraph, we
have

Z z =0, and Z y=0. (3)

(2,9)€D,|z|>¢ (z,9)€D,|y1>¢

Theorem 2(b) says that every orthogonal that misses U contains exactly
one square of D, so there must be integers u, v such that the row numbers in
the second sum of (3) are £+1,6+2,...,0+uvand —€—1,—£-2,...,—f—wv.
Then (3) implies 4 = v. A similar argument applies to columns, so Lemma
D is proved.
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Lemma E Orth(f — 2m) is full, and thus t is either 0 or 2.

Proof. By Lemma D it suffices to show that row £ — 2m is occupied; we
will assume it is not.

First examine the case m = 1. If there are any 1-crosspairs, let {(d, £),
(d + 1,£)} be the one on the top edge of U with the smallest positive
mean; by Lemma A we have d > 0. If d = 1 then by Lemma D, square
(d—2,8) = (—1,2) is covered along its difference diagonal and if d > 1 then
by Lemma B, (d—2, £) is covered along its column. Either way, sum diagonal
¢+ d - 2 is empty by Theorem 2(a), which since the row and column of
(d, £ — 2) are empty implies this square is covered along difference diagonal
¢ —d —2. Since difference diagonal £ — d — 1 is also occupied, we see by
Lemma B that any square of the top edge of U to the right of (d +1,) is
a 1-singleton. So Lemma D implies that either each edge of U has exactly
two 1-crosspairs, or there are no 1-crosspairs.

If there are two 1-crosspairs on each edge, we may conclude that (z,¢) €
E,. when |z] < d, that (d,¢) € E;, and that (z,£) € Eq whend <z < L.
By Lemma D we then know how all edge squares of U are covered. In
particular, Diag(£ + d) is full, but the squares of U that are in diagonals
of Diag(£ + d) are in unoccupied orthogonals, so these diagonals contain
occupied squares external to U. However, the only squares external to U
where any of these diagonals meet another occupied diagonal are (0, (£ +
d)) and (£(£+ d),0). As these four squares are pairwise adjacent and D is
independent, at most one can be occupied, which will not suffice to occupy
those four diagonals.

So there are no 1-crosspairs; then for |z| < £—t we have (z,£) € E., and
for £ —t < z < £ we have (z,€) € Ey, so difference diagonal d is occupied
for 0 < d < t. By Lemma D we again know which of the lines meeting
U are occupied. But by Theorem 2(d), every occupied diagonal meets U,
so the occupied diagonals are exactly those of absolute value less than i.
Since each (z,y) € D is the intersection of two occupied diagonals, we see
from |y + z| < t and |y — =| < ¢ that |z] + |y| < ¢ < ¢, so (z,y) is inside
U. Therefore U = Q,, here, and the size (n — 1)/2 of D equals the number
2(¢ — t) + 1 of occupied columns, which along with n = j gives n = 4t — 1.
Then Theorem 1 implies 8 Y521 12 = 4312 i%, s0t =1 and n = 3, but we
are assuming n > 11. This finishes the case m =1, so we consider m > 3.

Claim E1. Ifv is an integer and v # £, —¢ (mod m), then S(v,m) C E..

Let (zo,£) be the rightmost square of S(v,m); then £ —m < zo < £.
Assume for purposes of contradiction that (2o, £) is diagonally covered; then
¢ — g is even, so £ — zg —m is odd, and since —m < £ — 29 —m < 0 we
see by Claim B1 that difference diagonal £ — zo — m is empty. It contains
the square (zo, £ —m), which by assumption is not orthogonally covered, so
(zo, £—m) is covered along its sum diagonal, which it shares with (zo—m, £).
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Then (zo, £) is not in E;, as this would make (zo,£) an m-singleton, which
since v # £, —£ (mod m) would contradict Lemma B. So we may conclude
that (if (xo, £) is diagonally covered) {(zo —m, £), (zo,£)} is an m-crosspair.
Then let d be the largest positive integer such that the rightmost 2d squares
of §(v,m) form d m-crosspairs. The leftmost of these squares is s, = (z', ¢),
where z' = zg + m(1 — 2d). Our assumptions imply the square (z', £ —~ 2m)
has its row and column empty. Could it be covered along its difference
diagonal? If d = 1, this is difference diagonal £ — z¢ — m, which we have
seen is empty. If d > 1 then this difference diagonal contains the left square
of the (d — 1)st crosspair from the right in S(v,m), which by the definition
of m-crosspair is in E,, so the difference diagonal is empty. Thus we may
conclude sum diagonal ' + £ — 2m is occupied.

If this diagonal meets the top edge of U, then by our choice of v it must
do so to the right of (—¢,€). Then square s; = (z' — m,£) = (zo — 2md, £)
must be covered along its sum diagonal to avoid having an m-singleton in
S(v,m), but this gives a (d + 1)st m-crosspair, contradicting our definition
of d. So sum diagonal z' + ¢ — 2m does not meet the top edge of U,
which implies ' — 2m < —f. Then either s; or sz is the leftmost square
of S(v,m). Could it be s; ? If so, then ' < —¢ + m and since s, is the
left square of an m-crosspair, its sum diagonal z; + £ is occupied. Then
Claim B1 implies z’ + £ is even. But £ — ¢ is even and, since m is odd,
' +€# z0+ € =L{— z0 (mod 2), a contradiction.

Therefore s, is the leftmost square of S(v,m), so —¢ < z' —m. But
the occupied sum diagonal =’ + £ — 2m meets the left edge of U where row
11 = z' +2¢—2m does, and from —¢ < ' —m we see {—m < y;. Since also
L—y1 =€ —3" # £ - z0 (mod 2), we see £ — y; is odd, so by the inductive
hypothesis row y; is occupied, giving a double cover of an edge square of U.

Therefore (zo,¢) is in E.. If S(v,m) € E. then by a symmetrical
argument the leftmost square of S(v,m) is in E, and some squares of
S(v,m) are diagonally covered; by Lemma B, the latter are in m-crosspairs.
Then there are positive integers h, ¢ such that the rightmost h squares of
S(v,m) are in E,, the next 2c squares of S(v,m) are in m-crosspairs, and
at least the next square of S(v,m) is in E,.

The righthand square of the rightmost m-crosspair of S(v,m) is (xo —
hm, £). By assumption, the orthogonals containing s3 = (zo — hm, £ — 2m)
are empty, and its sum diagonal meets the top edge of U at a square that
is either in Ey4 (if ¢ > 1) or in E, (if ¢ = 1). Therefore s3 is covered along
its difference diagonal, which meets row £ at sq4 = (zo — (h — 2)m,¢). If
h > 1 then s4 € E,., contradicting Theorem 2(a), so A = 1. Therefore
this diagonal meets column ¢ at (£,y;), where y» = 2¢ — 290 — m. From
£ —m < zg < € we see both that y2 < £, so (¢,y2) is in the right edge of U,
and that £ — y» < m. Claim Bl implies y» — ¢ = £ — 2o — m is even, but
this contradicts £ — o even and m odd. We have proved Claim El.
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Define p to be the proportion of squares of the top edge of U covered
along their columns. Since exactly n — j occupied columns miss U, there
are "—;l — (n — j) occupied columns that meet U, so p = 1 - %‘- By
the inductive assumption, rows and columns £(£ — 1) are occupied. Any
squares of these lines that are outside U do not satisfy Theorem 2(d), so the
squares of D occupying these lines are inside U. By Theorem 2(d), there are
exactly 2(n— j) squares of D outside U, so we have (n—1)/2 > 2(n—-j3)+1,
which implies 3(n + 1)/4 < j < n and then

1 1
3 <p< 5 4)

By the Division Algorithm there are integers g, 7 satisfying j = mg+7
and 0 < r < m. Then of the m sets S(i,m), r sets contain ¢ + 1 squares
and m — r contain g squares. We examine the possibilities for r.

If r = O then all but two of the sets S(i,m) are contained in E;, so
(G — 29)/i < p < 1/2, which with j = mgq implies m < 4, som = 3
and j = 3¢, which implies £ = 1 (mod 3). As S(0,3) contains exactly j/3
squares, from (4) and Lemma D we see that each of S(1,3) and S(-1,3)
contains a square of E..

Suppose for the moment that column £— 2 is empty. Since S (0,3) C E.,
Lemma D implies rows £ — 1 and £ — 4 are occupied. Then by Theorem
2(a), the difference diagonals containing squares (¢,¢— 1) and (£, —4) are
empty, which means squares (£ —2,£—3) and (£ —-2,£— 6) are not covered
along their difference diagonals. By our assumptions, these squares are in
empty orthogonals, so their sum diagonals 2£ — 5 and 2¢ — 8 are occupied.
This implies squares ss = (£ — 8,) and s¢ = (£ —5,¢) of S(-1,3) are
covered along their sum diagonals. Thus {ss,se} is not a 3-crosspair, so s5
is a 3-singleton. Since S(—1,3) = S(—¢,3), Lemma B implies all squares
of S(~1,3) at or left of s5 are 3-singletons. By assumption, (€ -2,9
is diagonally covered, so no square of S(-1,3) is in E,, a contradiction.
Therefore column £ — 2 is occupied.

A similar argument then applies to the squares (£~ 5,£ — 3) and (£ -
5,€ — 6); their difference diagonals strike the edge of U at squares of E, or
E,, thus are empty, so if column £ — 5 is empty, then sum diagonals 2¢ — 8
and 2¢— 11 are occupied, so (£—8, £) is a 3-singleton, and Lemma B implies
all squares of S(—1,3) at or left of (£ — 8,¢) are 3-singletons.

Continuing, we see that the squares of S(—1,3) are covered as follows:
starting at the right, we have one or more squares vertically covered, then a
diagonally covered square, and the remaining squares of S (-1,3) arein E;.
By Lemma D, reflecting across column 0 gives the coverage of S (1,3). Thus
either S(~1,3)N Eq and S(—1,3) N E; are both empty, or each has just one
member, with their members being (+k, £) for some positive integer k.
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Column ¢ — 2 is occupied, so by Lemma D, row £ — 2 must be. By
Theorem 2(d), the occupied square (z,£ — 2) must satisfy |z| < € + 1,
and |z| = £ is not possible by the definition of U/. It follows that if z =
1 (mod 3), then (z,£ — 2) attacks the square (z + 2,£) of $(0,3) along
its difference diagonal, but S(0,3) C E. so we have a contradiction of
Theorem 2(a). Similarly, if z = —1 (mod 3), then (z,£ — 2) attacks the
square (z — 2,¢) of S(0,3) along its sum diagonal, contradicting Theorem
2(a). Therefore z = 0 (mod 3). Since (+£¢,£ — 1) € E,, we cannot have
z==%(¢-1),s0 (z—-2,£) € S(1,3)NE, and (z+2,¢) € S(-1,3)N E,. By
the last sentence of the previous paragraph, this gives z = 0. Applying a
similar argument to the bottom edge of U shows the squares (0, +(£-2))
are occupied, which since j > 9 contradicts the independence of D.

If r = 1 then £ = —£ (mod m) so at least j — (g + 1) squares of the
top edge of U are in E.. Then (j — (g +1))/j < p < 1/2, which gives
(m — 2)g < 1, impossible for m > 3.

Otherwise 7 > 2, and from (j —2(g+1))/j < p < 1/2 we get (m—4)q <
4-r<2 Ifm25thenthisimpliesm=5a,ndq=landr=2,soj=7,
contrary to j > 9. So m = 3 and then 2 < r < m gives j = 3¢ + 2. By the
inductive assumption, columns and rows numbered +(£ — 1) are occupied.
As (£-2,¢) € S(0,3), we see column £ — 2 is occupied, so (£,£ —2) € E,.
Then the difference diagonals of (£ —4,¢ — 3) and (£ — 4, £ — 6) are empty,
so if column £ — 4 is empty then their sum diagonals are occupied, giving
a run to (—¢,£). Continuing as in the case r = 0, we see S(1,3) has at
most one square in Ey4 and symmetrically S(—1,3) has at most one square
in E,. For some z with |z|] < ¢, the square (z,£ — 1) is occupied. To
avoid double attacks on squares of S(0,3) we need £ = 0 (mod 3). Then
(z—1,£) € S(~1,3)NE, and (z+1,£) € S(1,3)N E4 together imply z = 0,
but applying the same argument to the bottom edge of U implies squares
(0, £(€ — 1)) are occupied, which since j > 9 contradicts the independence
of D.

Therefore any value of r leads to a contradiction of the assumption that
row £ — 2m is empty, and then Lemma D implies Orth(£ — 2m) is full. As
column £ — 2m is occupied, ¢ < 2, and since column £ — m is empty we see
(€ — m, €) is diagonally covered, so either ¢t = 0 or ¢ = 2. This completes
the proof of Lemma E.

Let S denote the set of m-crosspairs of row £ of U. By Lemma D and
the fact that m is odd, reflecting any member of S across column 0 gives a
different member of S, so |S| is even. Examining the cases ¢ = 0,2 shows
there are 2 —t members of S that involve corner squares, so for some integer
b there are 2b members of S that do not involve corners. By Theorem 2(c)
and (d), exactly (n+1)/2 squares of row £ of U are covered diagonally. Then
counting squares of m-crosspairs and m-singletons, 2(2b + (2 — t)) + 2t =
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(n+1)/2, giving b= (n—T7)/8.

Moving left from (£ — 1,£) along row £, let ¢;,ca, ..., ¢y be the numbers
of the difference diagonals containing the right-hand squares of the first b
m-crosspairs encountered (thus not including the corner m-crosspair if there
is one). Let C* be the set of these numbers. If t = 0, set C = C*t U {0},
associating ¢y = 0 to the corner m-crosspair; if ¢ = 2 then set C = C*.

Lemma F We have |[C*| = (n —7)/8, [C] = (n+1— 4t)/8, and n =
—1 (mod 32).

Proof. The first statement has just been proved, and the second follows
easily upon examination of the cases ¢ = 0,2. We use the Parallelogram
Law (Theorem 1) to prove the last statement.

By Theorem 2(d), every occupied diagonal meets the sub-board U. So
the symmetry of occupied lines established in Lemma D implies that we
can find both sides of equation (2) from the set C.

It is easily seen that the occupied diagonals with positive numbers meet
the top edge of U. The top edge m-crosspair associated to ¢ € C has
occupied difference diagonal ¢, which passes through square s;(¢) = (£ —
¢, £), and so this m-crosspair also contains the square s3(c) = (£ —c—m, ),
which means sum diagonal 2{—m—cis occupied. If t = 2, the four diagonals
numbered 0 or m are occupied but not in m-crosspairs. Then using Lemma
D, the right side of equation (2) here becomes

4 (%mz +y [P+ (2-m- c)z]) . (5)

ceC

By Theorem 2(a), the members of {1,2, ..., (n—1)/2} that are not numbers
of occupied columns are the column numbers of the squares s;(c), s2(c)
defined above, for all c € C; if t = 2, £ and £ —m are numbers of unoccupied
columns that do not contain squares associated to any top edge m-crosspair.
By Lemma D, the left side of (2) here becomes

(n=1)/2
8 ( S =Y [t-0+(—c-m)?] - —;—(£2+(£—m)2)) . (6)

i=1 ceC

Equating (5) and (6) and simplifying yields

%—2=%( 24202 +2(0-m)?) + (7)
[P+ @-m—c) +2(—c) +2(—c—-m)?].

ceC
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Since m is odd, each of the quantities m? and £2 + (£ — m)? is congruent
to 1 modulo 4, as are ¢® + (20 — m — ¢)? and (€ — ¢)? + (£ — ¢ — m)?
for each ¢ € C. Thus the right side of (7) is congruent to —|C| — (¢/2)
modulo 4. Since n = —1 (mod 8), the left side of (7) is divisible by 4,
so 0 = —|C| — (¢/2) (mod 4). Then examining the cases ¢t = 0,2, we see
(n+1)/8 =0 (mod 4), son = —1 (mod 32) and Lemma F is established.

For any m-crosspair W, one of its two squares lies on an occupied dif-
ference diagonal, say with number w. By Lemma D, there is a unique c € C
such that for some ¢ in Dy, (W) is the m-crosspair from S with differ-
ence diagonal c. The function f,, defined below sends w to c; note that
if lw| > €— 2L, then ¢~!(c) is the occupied sum diagonal containing a
square of W.

_f if w] < € — 2L,
fm(w) = { 2 —m — |w| otherwise.

The following lemma summarizes restrictions on C, including what may
be loosely described as closure under a binary operation.

Lemma G For eachc € C* ,2 < c < ¢ — 2L, if ¢ is odd then m < c.
The set C contains neither m nor 2m, and no two members of C differ by
m.
Suppose that c; < cx, with strict inequality if t = 2. Then ezactly one

of the following holds:

(I) Both c;. — ¢i = fm(ck — ¢i) and fm(cx +¢i) are in C;

(I) All of fm(ck + ¢i — m), fm(ck — ¢i + m), fm(ck + ci + m), and
fm(ck —c; —m) are in C;

(IIT) We have t = 2, ¢ — ¢; = 2m, and £ > 2m, and C contains all of
fmler + ¢ =m), fm(ck — ci +m) = fm(3m), and fm(ck +c; +m);

(IV) We havet = 2, ¢ +¢; = 20— 3m, and £ > 2m, and C contains all
of fm(ck +ci— m) = fm(2 - 4m): Jm(ce — ¢ +m); and fr(ck —ci — m).

Thus if (I) does not hold, C contains fm(ck — |ci — m]).

Proof. For each odd i, 1 <i < m, Claim B1 implies i ¢ C. By Lemma E,
square (£—2m,£) € E, som ¢ C and 2m ¢ C. The last two sentences imply
1 € C, so for any c € C* we have 2 < c¢. Since m-crosspair c has positive
mean, ¢ < £ — 21, Suppose ¢,¢’ € C; by Theorem 2(a), the left-hand
square of an m-crosspair of the top edge of U cannot be the right-hand
square of another m-crosspair, so ¢ and ¢’ do not differ by m.

For the second part of the lemma, we take m-crosspairs with numbers
¢; < ck. By definition of the m-crosspair ¢; and Theorem 2(a), columns
¢ — ¢; and £ — ¢; — m are empty; then Lemma D implies rows £ — ¢; and
£ — ¢; — m are also empty. Likewise columns £ — ¢ and £ — ¢ — m are
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empty; then the squares of U where these rows and columns meet must be
diagonally covered. We name four of these squares below by their relative
position (top or bottom, left or right) in the square they make.

Difference Sum
Square diagonal diagonal
su=({l—cr—m,l—ci) ck—ci+m | 26—m—cr—c
str = (€ — ¢, — i) Cr — G 20— ¢ —c;
sp=(L—-cr—m,l—c;i—m) Cr — C; 20 —2m — ¢ — ¢
spr = (£ — cp, £ — ci —m) ck—c;i—m | 28—m—cr—c

If ¢t = 0, all occupied diagonals come from m-crosspairs. If ¢ = 2, the
diagonals numbered 0, +m are the only occupied diagonals not coming from
m-crosspairs. We begin by investigating how these last could be involved
in the diagonal domination of s, Str, Sat, Spr-

Suppose first that t = 2 and ¢; < ¢k By their difference diagonal
numbers, Sy, Str, Sbi, Spr are strictly above difference diagonal —m. Since
cx # ¢; +m, none is on difference diagonal 0, and if any of the four is on
difference diagonal m, it must be s, giving ¢ — ¢; = 2m. By Lemma
E, (£ — 2m,£) € E, so difference diagonal 2m is empty. Thus s;r and sy
are covered along their sum diagonals 2¢ — c; — ¢; and 2£ — 2m — ¢ — ¢;.
Fromc¢,+2m =¢, <€ - %"—1- it follows that these diagonal numbers are
positive, and the oddness of m implies neither equals m, so each covers
the left square of an m-crosspair of the top edge of U. The right-hand
squares of these m-crosspairs are in the difference diagonals cx +c; —m and
¢x + ¢; +m, so C contains fi,(ck + ¢; —m) and fm(ck + ¢i +m).

It remains to see how sy is covered. Its sum diagonal 2 —m — ¢ — ¢;
cannot be occupied, as it meets the top edge of U where the occupied
difference diagonal c; + ¢; + m does. So sy is covered along difference
diagonal c; —c;+m = 3m, which meets the top edge of U at (£—3m, £). Then
fm(3m) € C, and as (£ — 2m,£) € E, by Lemma B the square (£ — 3m, {)
is not an m-singleton. Thus (£ — 4m, ) € E;, implying £ — 4m > —£ and
thus £ > 2m. This shows how (III) arises; a similar argument shows that if
t = 2 and any of sy, S¢r, S, Sr lies on any of the occupied sum diagonals
0, +m then (IV) occurs. Otherwise all occupied diagonals covering the four
squares come from m-crosspairs, and the remaining cases (I), (IT) can be
established by remembering that two m-crosspairs of the top edge of U
cannot share a square.

To prove the last statement of the lemma, note that if (I) does not apply
to the pair ¢;, ¢k, then both fm(ck +¢i —m) and fr(ck —ci +m) arein C,
and one of ¢x + ¢; — m and cx — ¢; + m equals ¢x — |c; — m|.

Definition. Set v = min({c;} U {c;i —¢ci—1:2<i < (n—7)/8}).
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Since n and j are odd, there is a non-negative integer z such that n—j = 2z.
From ¢; + 22257)/8(0,- —¢i—1) = C(n-7)/s < £ — 2, we have
4(5 — 2z —m)

n—17 ’

Lemma H We have v € {1,2,3} and v < m/2.

v<4+

(8)

Proof. From Lemma F we have n > 31, and then (8) gives v < (29 — 2z —
m)/6, so v < 4; later we show v # 4. For the rest, assume for purposes of
contradiction that v > m/2.

We first consider the possibility v = 2m. As v < 4 and m is odd, this
implies v = 2 and m = 1. Then 2 = 2m ¢ C by Lemma G, so 2 < ¢; and
2 < ¢cp — ¢;, implying 4 < ¢;. Choose h with ¢cp41 —cp = 2. As 2 € C,
Lemma G(I) does not apply to the pair cp, ch+1, S0 f1(3) € C, and since
3<e<€-1, here 3 = f3(3). Thus 3 € C, and from 3 < ¢; we have
C = 3.

Let k be the largest integer such that ¢; = 3i foreach 7, 1 < i < k. Since
v # 3, cp41 exists and cp+1 # ¢k + 3. By Lemma G, one of ¢xyy — ¢ =
ck+1 — 3 and cg41 — €1 + M = cg41 — 2 is in C, which implies ¢x41 < ¢ + 3,
and by the definition of v we have c; + 2 < cr41, S0 ce+1 = ¢ + 2. Now
consider the pair ¢, cg1; a8 Ckp1 —C1 =ck—land cppy1 —Cc1 —m =c¢ —2
are not in C, only Lemma G(III) applies, so ¢x+1 — ¢ = 2, giving k = 1
and ¢; = 5.

Let 7 largest with ¢; = 2i + 1 foreach i, 1 <7 < r. Since ¢, —¢; =
2r — 2 ¢ C, Lemma G(I) does not apply to the pair ¢, ¢, so C contains
filer+c1—1) = fi(er+2). By the definition of r, ¢, +2 & C, so fi(c,+2) #
¢r+2 Ifr < (n—-17)/8 =|C*|, then c 4 exists, and by the definition of
v we would have ¢, + 2 < ¢,41, which would give fi(e, +2) = ¢, + 2, a
contradiction. Thus r = (n — 7)/8, so all members of C* are known, and
then for some s > 0 we have ¢; = fi(c, +2) = 2 — 1 — (¢ + 2), which
implies ¢, + ¢, is odd, a contradiction.

Therefore v # 2m; we will show ¢; = v. If not, there is h with cp41 —
¢, = v and Lemma G(I) does not apply to the pair ¢, cp+1. Since v # 2m
also (III) does not apply, so either (II) or (IV) holds, and then fi,(ch4+1—ca—
m) € C. Fromm/2 < v < 4 wesee jvy—m| < €—2FL 50 frn(chy1—ch—m) =
Jv — m|. By Lemma G we have cp41 — ¢ # m, and then our assumption
v > m/2 implies 0 < |v — m| < v < ¢;, which contradicts ¢; being the least
positive member of C. Thus ¢; = v.

Let p largest such that ¢; =vifor 1 <i¢ < p; weshowp=(n—-"7)/8. If
not, the definitions of p and v imply ¢, + v < ¢cp+1. Thus cp41 —v € C, s0
Lemma G(I) does not apply to the pair ¢;, ¢p+1, but then the last sentence
of Lemma G gives ¢p41 — [v — m| = fm(cpy1 — |v = m|) in C. As noted
previously, |[v — m| < v so ¢p < cpy1 = |v = m| < cpy1, but C does not
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contain a value between ¢, and cp41. Thus p = (n — 7)/8, so all of C* is
known.

By Lemma F we have n > 31 and then p > 3, so we can apply Lemma
G to the pair ¢i, cp. If (I) does not occur, then C contains ¢, — [v —m| =
fm(cp — |v — m|), which is not possible since [v — m| < v and C contains
no values between cp—; and ¢,. So (I) holds, giving fm(cp +¢1) € C. Since
cp+cy € C, weseethat frn(cp+c1) = 26—m—v(n+1)/8 is the number of the
sum diagonal associated to an m-crosspair W of the top edge of U, and the
mean of W is negative. It is easily calculated that the difference diagonal
through the right-hand square of W has number v(n + 1)/8. Therefore v
squares to the right of W is the m-crosspair W’ whose right-hand square
is in difference diagonal v(n — 7)/8. That is, W’ is associated to ¢, and
has positive mean. It follows that W is the rightmost of the top edge
m-crosspairs with negative mean, so fm(cp + ¢1) = ¢p. This equation gives

j=v(n-3)/4+m+1. 9

Since j and m are odd, (9) implies v is odd. We have shown v < 4, and
if v = 1 then ¢; = 1 which is not possible by Lemma G, so v = 3. Our
assumption v > m/2 implies m € {1,3,5}. The bound 3(n +1)/4 < j from
Theorem 2 with (9) implies 2 < m, and m = 3 conflicts (Lemma G) with
cg=v=3,som=35.

Then (9) gives j = 3(n + 5)/4; since n > 31 by Lemma F, this means
j < n. Therefore by Lemma D, row (£ + 1) is on Qn, and by Theorem 2(b)
this row is occupied, so it contains an eligible square (z,£+ 1). By Lemma
D and Theorem 2(d), we may assume 0 <z < £ —2.

The squares of the top edge of U that are in Ey4 are those of form
(€ — 3i,£), and one of (£(£ — 5),£). The top edge squares of U in E; are
those of form (—£ + 3i,£), and one of (£(¢ — 5),£). As the diagonals of
(z,€ + 1) are occupied, we have (z — 1,€) € E;g and (z + 1,¢) € E,.

Since (£ — 3,£) € E; we see  # £ — 4, and since (£ — 7,£) ¢ E; we see
z # € — 6. Thus square (£ — 5, £) does not share a diagonal with (z,£ + 1),
which implies £ —1 = £—3i and £+ 1 = —£+ 3h for some integers %, h. But
these equations imply j = —1 (mod 3), contrary to j = 3(n + 5)/4. Thus
v < m/2. If v = 4 then from (8) we have 5 — 2z —m > 0 so m < 5, counter
tov < m/2. Thus v € {1,2,3}. This completes the proof of Lemma H, and
also completes our proof that Orth(£ — 1) is full.

We will show v € C. If not, we may choose h with cp+1 — ¢ = v. As
Lemma G(I), (III) do not apply to the pair cp, ch41, the square sp, is in the
occupied difference diagonal v — m; since —m < v — m < 0 here, Claim Bl
says v — m is even, so v is odd. Therefore v € {1,3}. One of Lemma G(II),
(IV) applies to the pair ¢, Cht1, 50 fm(v+m) and frm(v —m) = fm(m—v)
are in C. We need to evaluate these.
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Suppose first that v +m < £ — %tl Here m + v = fn(v +m) and
m —v = fu(v—m) are in C. By Lemma G, 2m ¢ C, so Lemma G(I) does
not apply to the pair m — v, m + v, but then (m+v) +(m —v)—m=m
is in C, which is not possible.

Therefore v + m > £ — ™l Let d be the integer such that m =
- 2£ —d Then fn(v+m)=20—m—(v+m)=m—v+1+2disan
odd member of C, so m - v + 1+ 2d > m, implying 2d > v — 1 and thus
d>0. Thenm < ¢— =L L __landv+m>€- ¢+1 which implies
v>2,50v=3. Thenm >¢— 2 —2s0d € {1, 2}

Ifd = 1then f,(v+m) =mis m C, a contradicting Lemma G. Sod = 2,
giving 2¢ = 3m+5 and m+2 = f,(m+3) inC. Sincem—3 = m—-v < m+2,
also m — 3 = fr,(m —v) is in C. Apply Lemma G to the pair ¢; = m — 3,
¢y = m+2. By Lemma H we have m > 2v = 6,s0¢cx —¢; = 5 € C,
so (I) does not apply. Then C contains fm(ck — ¢i + m) = fm(m +5) =
2¢ — m — (m + 5) = m, which is not possible.

Therefore v € C, s0 ¢y = v. As v < m/2 by Lemma H, ¢; = v cannot
be odd by Lemma G. Since v < 3 (Lemma H), we have v = 2.

Let p largest with c; = 2i for each ¢, 1 < i < p. We will show p = (n —
7)/8. If not, look at the pair ¢;, cp+1. By the definition of p, cp41 —c1 €C,
50 by Lemma G we get fm(cp41 +c1 —m) in C. Let u = cpy1 + 1 —m.

If 0 < u then since u < cpt1 < £— ZEL, we get u € C so u = 2i for
some i, 1 <i<p. Butthenifi>1wegetcpys =ci-i+mandifi=1
we get ¢p+1 = m, neither of which is possible.

Otherwise —m < u < 0, and u is the number of an occupied difference
diagonal so u is even, implying cp41 is odd. But also u < 0 implies cpy1 <
m — ¢; SO Cp41 IS even, a contradiction. Therefore p = (n — 7)/8.

Then by Lemma F we have p > 1, and we may apply Lemma G to
the pair ¢;, ¢p. If (I) holds then fr(c, +¢1) € C, but ¢, +¢1 € C so
2¢ —m — (¢cp + c1) = 2i for some integer i. Then m odd and ¢, + ¢
even gives a contradiction. So (I) does not hold, implying square s;. is
covered along its sum diagonal 2¢ — ¢, — 2. By parity, this cannot be sum
diagonal m, so it passes through the left-hand square of an m-crosspair of
the top edge of U. Then the right-hand square of that m-crosspair is in the
occupied difference diagonal ¢, + ¢; — m, whence ¢, +c¢1 —m > 0 Since
v = 2, Lemma H implies m > 5, so ¢p +¢; — m<cp<£— . Then
cp+cr—m = fu(cp+c1 —m)isinC, but ¢, + ¢ —m is odd and each
¢; = 2i is even.

This completes the proof that Orth(£ — m) is full for each odd m, 1 <
m < £. In particular, columns (¢ — m) are occupied for these m, and by
Lemma A, column 0 is also occupled This lmphes at least £ squares of the
top edge of U are in E, giving 5> Elep=1- 2l which implies n < j,
and thus n = j. It follows that every square of D has both coordinates
even. O
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Theorem 4 Define a sequence of integers by ny = 3, np = 11, and n; =
dni_y —ni—g — 2 for i > 2. Ifv(Qa) = (n — 1)/2 then n = n; for some 1.

Proof. Suppose ¥(Qn) = (n — 1)/2 and D is a minimum dominating set
of Q,. By Theorem 2 there is an integer k such that n = 4k + 3; then
d = 2k + 1 is the cardinality of D. By Theorem 3, each square of D has
both coordinates even, and thus the numbers of the occupied rows and
columns are

0,42, +4,...,+2k. (10)

The numbers of the occupied diagonals may then be obtained from Corol-
lary 12 and Theorem 1 of [15}, or from Theorems 16, 17 of [3]; for com-
pleteness, we give an argument here.

As n = 3 (mod 4), the edge orthogonals are empty, so since D covers
the corner squares, sum and difference diagonal 0 are occupied. We may
thus define e, f, u to be the largest integers such that difference diagonal
2i is occupied for |i| < e, sum diagonal 2i is occupied for [i| < f, and
difference diagonals +(2e + 4i) and sum diagonals (2 f + 4i) are occupied
for each i with 1 < i < u. There are then at least 2e + 2u + 1 occupied
difference diagonals, which gives e < k — u; similarly f < k — u.

By the definitions of e and f, we may choose one of difference diagonals
+(2e + 2) and one of sum diagonals £(2f + 2) such that both are empty.
These diagonals meet, possibly off the n-board, at an even square (z,y); the
larger of |z| and |y| is e + f + 2. If e # f (mod 2), then (z,y) is odd-odd,
thus is not covered by D, so is off the board; we have e + f +2 > 2k +2, so
e + f > 2k, which since e + f is odd implies e + f > 2k + 1, contradicting
e, f<k—u<lk.

Therefore e = f (mod 2). By the definition of u, either at least one
of difference diagonals +(2e + 4u + 4) or at least one of sum diagonals
+(2f + 4u + 4) is empty. If the former, we look at the intersection of an
unoccupied one of difference diagonals +(2e + 4u + 4) with an unoccupied
one of sum diagonals £(2f + 2); if the latter, we look at the intersection
of an unoccupied one of difference diagonals +(2e + 2) with an unoccupied
one of sum diagonals £(2f + 4u + 4). In either case, we obtain a square
(z',y') for which the larger of |z'| and |y'| is e + f + 2u + 3. Then z' and ¢’
are odd, so (z',y') is not covered by D, so must be off the board: we have
e+ f+2u+3>2k+2, and then e + f + 2u > 2k — 1, which since e + f
is even implies e + f +2u > 2k. Thene,f < k—ugivese= f =k —u, so
the numbers of the occupied sum and difference diagonals are

0,42, +4,...,+2%, +(2e +4),£(2e +8),...,:(4k —2¢).  (11)

(Conversely, if e, f, u are defined as above for a set D, and e = f and
u = k — e, then Theorem 1 of [15) implies that D dominates Q)
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Thus the values of k and e determine exactly which lines are occupied
by D; applying Theorem 1 to (10) and (11) gives the equation

k e k—e
2-2. 22(%)2 =2-2 Z(zi)2 + Z(ze + 4i)2J .

i=1 i=1 i=1
This simplifies to (2k + 1)2 + 2 = 3(2k + 1 — 2¢)?, or
d? - 3(d —2¢)? = -2. (12)

Set X =dandY = d — 2¢; then X,Y > 0 and X2 —3Y2 = —2. The
positive solutions of this Pell’s equation can be found by standard methods
(e-g., Chapter 13-5 of [6]); we obtain a sequence (X;,¥;)?2, which may be
recursively defined by (X3,Y1) = (1,1), (X3, Y2) = (5,3), and (X;,Y;) =
4(X;_1,Yi—1) — (Xi—2,Yi—2) for i > 2. Returning to d, e, we obtain a
sequence (d;, e;)2; defined by

(dl)el) = (1,0), (d2v 32) = (5a 1): and (13)
(di, i) = 4(di-1,€i-1) — (di~2, €i-2) for i > 2.

Then using n; = 2d; + 1 gives the desired sequence. O
Here are the first few values of n;, d;, and e;.

GIi[2[3[ 456 7 8
n; || 3|11 (39} 143 { 531 | 1979 | 7383 | 27551
di || 1| 5 [19] 71 | 265 | 989 | 3691 | 13775
e; |0 1| 4] 15 | 56 | 209 | 780 | 2911

The linear recursion (13) gives

d; = [(V3 - 1)(2+ V3) — (V3 +1)(2 - V3)¥]/2
= [(V3-1)(2+V3)i/2],
e; = (2 +v3)i~1/2v/3], and
n = [(V3-1)(2+ v3)']

80 lim; 00 72i/ni—1 = lim;yo0 di/di_y =lim; 0 €i/€;-1 = 2 + /3.

We now relate our results to some conjectures of Burger and Mynhardt
[3]. Theorem 3 implies that a dominating set of size (n — 1)/2 for Q,
contains no edge squares of @Q,, which is their Conjecture 1. Let & be a
non-negative integer. In [3], a set D of 2k + 1 squares of Q4143 is said to
be edge dominating if D covers each edge square of Q4.3 exactly once, not
necessarily dominating the rest of the board. The radius of a square (z,y)
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is defined by R(z,y) = max{|z],|y|}. Conjecture 3 of [3] states that if D
is an edge dominating set that occupies the even-numbered orthogonals of
Q4k+3, then z(z,y)eD R(z,y) = 8k(k + 1)/3.

From Theorems 2 and 3, we see that if v(Q,) = (n — 1)/2, then any
minimum dominating set D of @, satisfies the hypotheses of Conjecture 3;
we verify this case of the conjecture. Note that R(z,y) = max{|z|,|y|} =
(ly—z|+ |y +=2])/2, so Z(z,y)GD R(z,y) can be computed from the list (11)
of numbers of occupied diagonals. It is then not difficult to show that the
desired equation is equivalent to (12).

By assuming their conjectures, and that a dominating set of size (n —
1)/2 for @, occupies the even-numbered orthogonals, Burger and Mynhardt
thus derived an equation which gives the sequence (n;) .

Corollary 5 v(Q23) = 12.

Proof. From Theorem 4 we have y(Q23) > 12, so it suffices to give a
dominating set of size 12; we give two related ones, the first of which was
also found by Kearse and Gibbons [12]. Let A = {£(1,-1),+£(11,3)},
By, = {(3,7), (5, —11),£(7,-5),%(9,9)}, and By = {=*(5,5), £(3, -9),
+(9,—7),+(7,11)}. Then each AU B; occupies all odd-numbered orthog-
onals of @23, so orthogonally covers all but the even-even squares. Each
AU B; occupies difference diagonals 0, +2, 4, 8, +£12, +16 and sum diag-
onals 0, £2, £6, +£10, +14, +18, so here e = 2, f = 1, and u = 4. By
Theorem 1 of [15], this implies each A U B; is a dominating set of Q23. O

It is interesting that each square of B, is two squares distant along its
sum diagonal from a square of Bs.

Returning to the question of when ¥(Q,) = (n — 1)/2, we note one
further restriction. From (11) we see that each number ¢ of an occupied
diagonal satisfies either ¢ = 2e (mod 4) or t = 2e — 2 (mod 4), and that
there are d — e of the former and e of the latter. Following [3], we refer
to the latter as core diagonals (both difference and sum). Equation (12)
implies d ~ (3++/3)e, so the core diagonals are outnumbered by the others.
Since all numbers of occupied rows and columns are even, a square of D
is on a core difference diagonal if and only if it is on a core sum diagonal.
It is then easily seen that when e > 0, the intersection squares of the core
diagonals induce a copy of Q., and that this Q). contains e squares of D,
which we will call the core placement of D.

Proposition 6 Suppose that v(Q,) = (n — 1)/2, D is a minimum dom-
inating set of Qn, and C is the core placement of D. There is i with
n = n;; choose r; € {—1,0,1} such that e; = r; (mod 4). Let Z = {(z,y) :
(z,y) € C andz = 0 (mod 4)}. Then we have |Z| = (e; + r;)/2 and
|C - Zl = (65 - 1',')/2.
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Proof. From the recursion (13) for (e;) we see that e = 2 (mod 4) does not
occur, so there is such an r;. We will examine the case r; = 1 (corresponding
to i = 2 (mod 4)); the others are similar.

For h,j € {0,2} let g(h,5) = |{(z,y) € D : £ = h (mod 4) and y =
J (mod 4)}|. The recursion of Theorem 4 for (n;) implies that the sequence
(ki) defined by k; = (n; — 3)/4 satisfies k; = 0, ky = 2, and k; = 4k;—; —
ki—2 +1 for i > 2. When ¢ = 2 (mod 4), this gives k; = 2 (mod 4), to go
with e; = 1 (mod 4). Then (10) implies the numbers of occupied rows and
columns include exactly k; + 1 that are congruent to 0 modulo 4. Thus
9(0,0) +¢(0,2) = k; + 1 = g(0,0) + 9(2,0) and ¢(2,0) + g(2,2) = k;. The
core placement gives g(0,0) 4+ g(2,2) = e;. Solving these equations gives
g(0,0) = (e; +1)/2. O

Thus if the core placement were drawn on a normally colored e; x e;
board, the numbers of queens on each color would be as nearly equal as
possible. It is interesting that if ¢ = 0 (mod 4), so r; = —1, the majority
of the core placement squares will be on the minority color.

The necessary condition on n for ¥(Q,) = (n — 1)/2 provided by The-
orem 4 is not sufficient: Theorem 3 plus a computer search reported in [3]
establish that y(Q39) # 19. We give here a short direct proof which may
generalize to other n;’s (the squares near the ends of row and column 0
seem to merit attention), and show v(Q39) = 20.

Proposition 7 v(Q39) = 20.

Proof. We first establish y(Qsg) > 19. If not, then v(Qs9) = 19 by (1);
let D be a dominating set of size 19. From Theorem 4 we have e = 4, so
the core placement of D consists of four squares in the copy of Q4 induced
inside Q39 by the intersection squares of Diag(2) U Diag(6). There are only
two ways to choose a set of four independent squares from Q4, and the
two sets occupy the same lines, so we will take the core placement to be
{£(2,4),%£(4,-2)}. Then from (11) the diagonals remaining to be occupied
are those with numbers 4i for |¢| < 7, and the orthogonals remaining to be
occupied include row 0 and column 0. ‘
Let S = {(0,+16),(+16,0)}. If no squares of S are in D, it is not
difficult to see that the other eligible squares of the eight difference diagonals
+16, £20, +24, £+28 all lie in the seven sum diagonals 0, +4, 8, +12; as
D is an independent set, it will not be possible to occupy all eight. Then
as the squares of S are pairwise adjacent, exactly one square of S is in D;
using symmetry, we may assume it is (16,0), on difference diagonal —16,
and the other seven difference diagonals given above must be occupied by
squares of D that also occupy the seven sum diagonals named. But none of
these seven squares can lie in column 0, and the seven together with (16, 0)
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dominate all eligible squares of column 0, which thus contains no square of
D, a contradiction.

On the other hand, the set D; = {%(0,8),+(2,4),£(4, —2),+(6,18),
+(8, —12),2(10, 10),%(12, 16),+(14, —14), £(16,0), +(18, —6)} consists of
20 squares that jointly occupy the lines specified in (10) and (11), so by
Theorem 1 of [15], D; dominates Q3. O

From (1), Theorem 4, and Proposition 7, we have

Corollary 8 Ifn ¢ (n;)R, orn =39, then v(Qn) > n/2.
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