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ABSTRACT. The cxact values of ¢(n) are determined, where
¢(n) denotes the largest k for which there exists a triangle-
free k-regular graph on n vertices containing a cut-vertex. As
a corollary, we obtain a lower bound on the densest triangle-
free regular graphs of given order that do not have a one-
factorization.

1 Introduction

We will be dealing exclusively with finite simple graphs. We will use V(G)
and E(G) to denote the set of vertices and edges of G, respectively. For
z € V(G), Ng(z) denotes the set of neighbours of z in G, that is, Ng(z) =
{y € V(G): {z,y} € E(C)}. The degree of z in G, denoted degg(x), is the
number of neighbours of X in G, i.e. degg(z) = |Ng(z)]. A graph G is
called k-regular if degs(z) = k for all z € V(G). The complete bipartite
graph with bipartition {X,Y} will be denoted K(X,Y). The odd girth of
a non-bipartite graph G, denoted ¥(G), is the length of the shortest odd
cycle in G. The largest k for which there exists a non-bipartite k-regular
graph G on n vertices with v(G) > 5 is denoted ¢(n). The following result
was proven by Shi [5] (part of it was also proven in [2] and [6]).

Theorem 1.1. For all n > 5, t(n) = 2|_§'| except that £(6) does not exist,
¢(8) = 3, t(14) = 5, and L(21) = 9.
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Generalizations and variations of this problem have been discussed in (7]
and (8].

Let F(2m) denote the largest k such that there exists a k-regular graph
of (even) order 2m without a one-factorization. The well-known One-
Factorization Conjecture asserts that F(2m) = 2| 251 |; we refer the reader
to [4] for further discussion. Let f(2m) denote the largest & for which a
triangle-free k regular graph of order 2m which is not one-factorizable ex-
ists. Since a bipartite regular graph is one-factorizable (see, e.g. [3]), f(2m)
is the largest k for which a non-bipartite k-regular graph of order 2 and
odd girth v > 5 which is not one-factorizable exists. Hence f(2m) < t(2m).

On the other hand, it is easy to see that a (regular) graph containing
a cut-vertex is not one-lactorizable. Hence f(2m) > ¢(2m), where c(n)
denotes the largest k for which there exists a triangle-free k-regular graph
of order n containing a cut-vertex.

The purpose of this paper is to evaluate c(n). Let |z]. denote the largest
even integer which does not exceed z. We will prove the following result.

Theorem 1.2. Let n > 16. Then c(n) = |252] + 1 if n € {24,32,42}
and c(n) = | 254 |, + 2 if n € {17,19,27,37}. Otherwise, c(n) = | 2%} if
n is even and c(n) = | 25|, if n is odd.

2 Almost k-Regular Graphs

A graph G will be called almost k-regular if one vertex (called the special
vertez) in G has degree k — 2 and every other vertex in G has degree k. By
a (k, n)-graph, we will mean a triangle-free almost k-regular graph of order
7.

Let ¢/(n) denote the largest k for which there exists a (k, n)-graph. Let
S ={8,11,14,15,18,21,24} and define

4 ifn=29,

224 41 ifneS,

[22=1] -1 ifn=1or5 mod10and n & S,
| 221 ) for all other n > 10.

Q2

a(n) =

In this section, we will prove that t'(n) = a(n) for all n > 8; this result
will be crucial to proving Theorem 1.2.

Lemima 2.1. t'(n) > a(n) for all n > 8.
Proof: We construct an (a(n), n)-graph for all n > 8. If n € SU {9}, then
the corresponding (a(n), n)-graph is shown in Figure 2 of the Appendix,

while if » = 2,3, or 4 (mod 5) and n ¢ SU {9}, then the corresponding
(a(n), n)-graph is shown in Iligure 3 of the Appendix. Thus, we may assume
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that n = 0,1 (mod 5) and n & S. Let H be the 2m-regular graph of order
n shown in Figure 4 of the Appendix. Select a vertex b; € B; fori=0,1,2;
if 7 is odd (whence n > 25) select a second vertex = € B) (i.e. z # by).
Let H’ be the subgraph of H obtained by deleting the vertices by and by,
and also deleting b, when n is odd. Let M be a one-factor in H "ifnis
even, or a 2-factor in H' if n is odd. Then the graph G obtained from H by
deleting the set of edges M U {{bo, b1}, {b1,b2}} (together with the edges
{bo, z} and {by, z} if n is odd) is an (a(n), n)-graph. ]

We work now to show that t'(n) < a(n) for all n > 8. Henceforth, we
assume that G is a triangle-free, almost k-regular graph of order n > 8
containing the special vertex z, where k > [2"—5“1] Now if G is bipartite,
then since the degree sum over each part in its bipartition must be the
same, it is easy to see that —2 =0 (mod k), forcing k < 2, a contradiction.
Hence G is not bipartite.

We will need the following result of Andrisfai, Erdés, and Sés [1] (the
case v = 5 was also proven by Sheehan in [6]).

Lemma 2.2. Let H be a graph of order n and odd girth v > 5. Then for
any odd cycle in H of length ~y with degree sequence {ki:1 <1< v}, we
have 3°7_, ki < 2n. In particular, § < 2n/+y where, as usual, § denotes the
minimum degree in H.

Applying Lemma 2.2 to our graph G, we see that v(G) -k -2 < 2n;
therefore, k& < (2n + 2)/¥(G). Since k > [221], it follows immediately
that y(C) = 5, whence k < (2n + 2)/5. Thus, either k = [”‘T"’J +1or
k= (2n+2)/5 and n = 4 (mod 5). Now in the latter case cvery 5-cycle
in G contains the special vertex z, whence it is easy to see that G —x
must be bipartite, i.e. (- — z is a subgraph of some K (X,Y). Since G
itself is not bipartite, we sce that Ng(z) has non-empty intersection with
eachof X and Y, andson—1>k—-2+2(k—1),ie n>3k-3. But
in this casc n = (5k — 2)/2, which forces (n, k) = (9,4) = (9,a(9)). Now
ifk =224} +1 and n = 2 (mod 5), whence k = (2n + 1)/5, we again
conclude that every 5-cycle in G contains the special vertex z, and again
7 > 3k—3. This forces (n, k) = (12,5), which is easily seen to be impossible
(consider G — ({z} U N¢(z)))-

Thus far we have established the following.

Lemma 2.3. If G is a triangle-free, almost k-regular graph of order n > 8
and k > |22=1], then either (n,k) = (9,a(9)), or n # 2 (mod 5) and
k=24 4+1= |2

Suppose now that G —z is bipartite. Then, as above, we have n > 3k -3.
Furthermore, it rmust be that

INe(z) (1 X|(k = 1) + (X - |Na(z) 0 Xk
= [Na(z) N YI(k = 1) + (IY] = [Na(@) N Y )k,
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which means that
| Xk — |Ne(z)N X| = |Y|k — [Ne(z)NY]|. (2.1)

Thus, |Ng(z) N X| = |Ng(z) N Y| (mod k). But |Ng(z)| = k — 2, since
z is the special vertex in G and so in fact it must be that |Ng(z) N X| =
[Ng(z)N Y| and so we conclude from Equation (2.1) that | X| = |Y|. Thus,
n is odd. Since also n > 3k — 3 and k = |£], we deduce that (n,k) =
(11,4), (15, 6), or (21,8), i e (n,k) = (11,a(11)),(15,a(15)) or (21, a(21)).
We may henceforth assume therefore that G — z is not bipartite, whence
G contains a 5-cycle C = {a;: 1 € i £ 5} that does not contain z, i.c.
z & V(C), where a; is adjacent to «; if and only if j — ¢ = 1 (mod 5).
Let T = V(G)\V(C). Then each vertex in T is adjacent to at most two
vertices in C since G is triangle-frec. So we can write
T=XuYUuz X=U_X;, Y=UL_Y,,

where

Xi={zeT: Nz)NC ={ai-1,ain1}},

Yi={yeT: Ny)nC={a}},
and

Z={zeT: N@)nC =0}.
Using lower-case letters to denote the cardinality of the corresponding up-
percase letter set, we have

z+y+2=Lt=n->5. (2.2)

Now q; is adjacent to cach vertex in X;_, U X;,, UY;; since a; has degree
k, we therefore have

Tt Tty =k =2 (2.3)
for each : = 1,2, ...,5. Summing the five corresponding equations vields
2z +y =5k —10
which, together with lsquation (2.2), yields
y+ 2z = 2n — 5k. (2.4)

Now by Lemma 2.3, k = || and n # 2 mod 5, whereupon we can set

0 fn=0 mod5
c=yt+22= 2 i[nElmod5:
1 ifn=3 mod5"
3 ifn=4 mod5
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in particular, this implies that 0 < |[Y U Z| < 3.

Given a collection W = {W;: 1 < i £ n} of disjoint nonempty sets, we
define a weighted cycle with weight set W, denoted C(n, W) to be the graph
H with V(H) = U | W,, in which two vertices z and y are adjacent il and
onlyifzx € W, and y € W;,,, forsome 1l <i<n.
Lemma 2.4. Suppose that G is a spanning subgraph of some weighted
cycle C(5,W). Then (n,k) = (8,3) or (14,5), i e. (n,k) = (8,a(8)) or
(14, a(14)).
Proof: Let w; = |W;| for 7 = 1,2,...,5. Suppose that the special vertex
z € W,. Then since z € C, we have w, > 2.

Foreachi=1,2,...,5, let

Wy + Wiq2 = k =+ €;. (25)

Note that ¢; > 0, since degg (1) = k. Summing the five corresponding

equations yields
5
2n = S5k + Z €
i=1

which, by Equation (2.4), means that

Bl
Zc,- =2n-5%k=¢<3.
i1
Therefore, there exist 1 < i < j < 5 such that ¢; = ¢; = 0. Now let ¢;

denote the number of edges joining W; to W;.;. Then, without loss of
generality, we may suppose that es = wows.

Now the system of 5 equations in the 5 variables w;, given by Equation
(2.5), yields the solutions

t
w; = E(k 46 —€ip1 — €42 F €43+ €iqq), 1 <I<H (2.6)

Now e; + €;41 = wi1k, 1 <1 <4, and e5 + ¢; = w1 k — 2. Therefore,
1
ey = wyws = §k(w2 + w3 —wy +ws —wy) + 1. (27)
Now by Equation (2.6) we have
1
wy +wy —wy+ws; —wy = 5("7'*'61 +co + €3 — 3eq + €3)

(k+ € — 464),

N —



whence Equation (2.7) yields

e3 = wyws = %k(k+e—4€4)+l. (2.8)

On the other hand, Equation (2.6) gives

¢s = wpwy = %(k b= 2es — 2)- %(k te—2e—2s).  (29)

From Equations (2.8) and (2.9), we get
(k + € — 2e3 — 2¢4)(k + € — 24 — 2¢5) = k(k + € — 4eq) +4. (2.10)
Now Equation (2.10) implies that € # 0. Otherwise, we solve for k to yield

_ 4 —(e—2¢3 — 2¢q) (€ — 2€4 — 2¢5)
- € — 2e3 — 25 ’

k

Thus, for example, if € = 1, then either eg+¢5+¢€5 = 0 (whence €; +¢3 = 1)
or €3 + €4 + €5 = 1 (whence ¢; = e = 0); in the former case we gel k = 3,
n = 8, while in the latter case (with ¢4 = 1) we again get k = 3, n = 8.
A similar analysis in the cases ¢ = 2, 3 yields only one more solution (with
n > 8), that being when ¢ = 3, with 3 = ¢4 = 1 and €5 = 0, yielding k = 5,
n = 14. We leave it to the reader to verify the gruesome details. O

From Lemma 2.4, we can henceforth assume that YUZ # 6; in particular
¢ # 0. Consider now the case ¢ = 1,ie. Y = {v} and Z = 0. As we can
assume that G is not a subgraph of any weighted cycle C(5, W) it follows
that for some i = 1,2,...,5, v is adjacent to some verlex in X; and to
some vertex in X; ). (Suppose that v is adjacent to a; and to some vertex
in X;, 7 # 1. Then 5 = 3 or 4 since G is triangle-free. Now if » is not
adjacent Lo some vertex in cach of X3 and X4, then it is easy to see that
G C C(5,W).)

Lemma 2.5. If ¢ =1 (whence n =3 mod 5) and G is not a subgraph of
any weighted cycle, then (n, k) = (8,3) or (18,7), i.e. (n,k) = (8,a(8)) or
(18,a(18)).

Proof: Let Y = {v} where v is adjacent to oy € V(C), and v is also
adjacent to w3 € X3 and v4 € X,4. Let S; = Ng(v)NX; fori=1,2,...,5
(whence Sz = S5 = 0) and let s; = |S;|. Then

Zy + 83+ 854 > degg(v) - 1,
To + (.’L‘4 -s5)+12 deg(;(’ljg) -2,
and
x5 + (23 — $3) + 1 > degg(vg) — 2. (G is triangle-free.)
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Summing these three inequalities gives us

z+2>3k—7 (one of v, v3, v4 May be special)
(n—5)+1>3k—7 (sincex+y+z=n-5)
whence
n >3k - 3.

But k = |2 and n = 3 mod 5 implies (n, k) = (8,3),(13,5), or (18,7).
Now since the degree sum in any graph must be even, no (5, 13)-graph can
exist. Hence (n, k) = (8,3) or (18,7). O

The following lemma summarizes our progress to this point.

Lemma 2.6. If C is a triangle-free, almost k-regular graph of order n > 8
withk > | 221}, then either (n, k) = (s, a(s)) for s € {8,9,11,14,15, 18, 21},
orn==x1 mod5, k= [2"_| C is not a subgraph of any weighted cycle
C(5,W) and G — z is not bipartite, where z is the special vertex in G.

We consider now the case ¢ = 2, i.e. » = 1 mod 5. We have two
subcases, according to whether |Y| = 0 and |Z] = 1, or |Y| = 2 and
|Z| = 0.

Lemma 2.7. Suppose that ¢=2 (i.e. n=1 mod 5) and Z = {v}, Y = 0.
Then (n,k) = (11,4) = (11,a(11)).

Proof: Since C is not a subgraph of any C(5, W), we may assume that
v is adjacent to some vz € X3 and vq € X4. Let S; = Ng(v) 0 X; for
i=1,2,...,5, and let s; = |S;|. We consider two possibilities.

(i) so =55 =0. Then

Ty + 53 + 84 > degg(v),

Ty + (x4 — 84) + 1 2> degg(v3) — 2,
and

x5 + (.’L‘;; - .5'3) +1> degG(v,.) -2,
whence

z+2>3k-6.
But z 4+ y + z = n — 5, and so we get
-4 >3k -6,

ie.

n>3k-2. (2.11)
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(i)

Now k = | 2] and n = 1 mod 5 implies (n, k) = (11,4) or (16,6).
But if (n,k) = (16,6), then Inequality (2.11) becomes an equality
as, therefore, do all inequalities preceding it. In particular, s; = z,,
and one of v, v, vs is special. Now consider Equation (2.3); we get

ZTi_1+zi41 = k—2fori=1,2,...,5, which system has the unique
solution z; = %k —1fori=12,...,5. That is, in our particular
case, we have £; = z9 = --- = x5 = 2. Now each vertex in Xo U X5

has degree 6, which implies that each vertex in X is adjacent to each
vertex in X2 U X5. But each vertex in X is also adjacent to a2 and
as and, since s; = z, to v. This brings the degree count of each
vertex in X to 7, a contradiction. Hence, (n, k) # (16, 6).

89+ s5 > 0. Suppose, without loss of generality, that s3 > 0, i.e. that
v is adjacent to some v € Xo. Now

51 + 82 + 83+ 84 + 55 = degg(v)
and
(zic1 — 8i-1) + (Tig1 — Si41) + 1 > deg(vi) — 2,1=2,3,4.
Summing these four inequalities gives us
z+ (x3 —s3) +3 > 4k - 8.

Now, as in (i), we have z3 = 3k — 1, and furthermore s3 > 1. Hence,
the foregoing inequality gives us

1
again z + 1 = n — 5, and so we have
7
> -k-3.
> 2
But k= |£] and n =1 mod 5 forces (n, k) = (11,4).

This completes the prool of Lemma 2.7. O

Lemma 2.8. Suppose that ¢ = 2 (i.e. n =1 mod5) and Y = {v, v},
Z = 0, and v is adjacent to v'. Suppose further that neither v nor v’
is adjacent to both X; and Xy, for any i = 1,2,...,5. Then (n,k) =
(11,4) = (11, a(11)).

Proof: Since G is not a subgraph of any weighted cycle C(5, W), we may
assume that v € Y} (i.c. v is adjacent to a;) and that » is adjacent to some
vy € X3. Furthermore, v’ is not adjacent to a, (G is triangle-free) and v’
is not adjacent to az (C is not a subgraph of C(5, W)). We therefore have
three possibilities Lo consider.
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(i) v’ adjacent to a3 (i.c. v’ € Y3). Then Ng(v') C X, UX3UXsU{as, v}
and Ng(v) C X UX3U{a;,v'}; now from Equation (2.3) (withy, = 1,
ys = 1 and y = yq = ys = 0) we quickly deduce that z; = z3 =
Tg = —k— 1, whence in fact Ng('u) + Ne(@') < | Xi|+|Xs]+ 1 Xs]| +4
(smce G is triangle-free) = —k + 1. But Ng(v) + Ne(v') > 2k — 2,
whence 3k + 1 > 2k — 2, and so (n,k) = (11,4) or (16,6). Now if
(n, k) = (16 6), then the foregoing inequalities become equalities. In
particular, we deduce that X, U {a1,v'} C Ng(v) and X5 U {a3,v} C
N¢(v'), since v’ is not adjacent to both X5 and X,. Then either
X3 C Ng(v), in which case v has degree 6 and v’ is the special vertex
with degree 4, or X3 C Ng(v’) in which case v has degree 6 and
v is the special vertex with degree 4. In either case, an analysis
similar to that in possibility (i) of Lemma 2.7 leads us to conclude
that each vertex in Xy has at least 7 neighbours, a contradiction.
Hence (n, k) = (11,4).

(ii) v" adjacent to aq (i.e. v’ € Y3). Since G is not a subgraph of C(5, W),
we deduce that Ng(v') € X1 U X4 U {a4,v}. But again, Ng(v) C
X1UX3U {a,v'}, whence Ng(v) + No(v') < | X 1|+ | Xq| + [ X3] + 4.
Now by Equation 2.3 (with nn=lLy=landyy =9y3 =y5 = 0) we
get ) = 3 = 14 = —k——l and so Ng(v) + Ng(v') < 3k+l But
Ng(v) + Ne(@') > %% 2 and 50 as in possibility (i) we have 3k+12>
2k — 2, whence either (n,k) = (11,4) or (16,6). But (n,k) = (16,6)
leads one to conclude that each vertex in X3 must have degree 7, a
contradiction (we use the same analysis as in possibility (i)). Hence
(n, k) = (11,4).

(ili) »" adjacent to as (ie. v € Ys). Then we must have Ng(v') C
X3UXsU{as, v} and Ne(v) € X1UX3U{a;,v’} whereupon Ng(v')+
Ng(v) < |Xi| + |X3] + |X5] + 4. Now in this case Lquatlon 2.3
(w1thy1 =1, ys=1and yp = y3 = y4 = 0) ylelds =; = —k—2
I3 = —k and z5 = ~k 2 whereupon Ng(v)+Ng(v') < 3k But again
NG(v)+NG(u’) > 2k —2 and so 3k > 2k -2, forcing (n, k) = (11,4).

This completes the proof of Lemma 2.8. O

For € = 2, it remains to consider what happens when Y = {v,v'}, Z =0
and at least one of v, v’ (say v) is adjacent to both X; and X, for some
i=1,2,...,5. (Since C is not a subgraph of C(5, W), this case will include
the possibility that v and v’ are not adjacent.) Thus, we will suppose
that v is adjacent to oy (i.e. v € Y7) as well as to some v3 € X3 and
vg € Xy Let S; = Ng(w)N X; for i =1,2,...,5 and let s; = |Si|. Let
Ri = Ng(v)NY;andlet r; = |Ry| fori=1,2,...,5. Letag = |N(u3)NY\Y|
and a; = |N(v4) N Y\Yi]. Note that in this case each of r;, a3, and ay4 is
either 0 or 1.
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Now we have
Ty + 83+ 84 +T2+7r3+74+ 75 > degg(v) — 1
(r1 = 0 since G is triangle-free)
To+ (x4 — 54)+y1 +a3 2 degg(va) — 2 (2.12)
and
zs + (T3 — 53) + Y1 + aa > degg(va) — 2. (2.13)

Since v3 is not adjacent to any vertex in Y2 U Y4 and vy is not adjacent to
any vertex in Ya3UYs, we have ag+73+7s < y3+ys and ag+72+74 < y2+s,
whereupon summing the foregoing three inequalities yields

z+y+y; 23k 7.

Now since Z = @ we have £ +y = n — 5. Since y; < y = 2 we therefore
deduce that

—3>3k-7,
n >3k -—4.

Butk=|Z]andn =1 mod 5, whereupon (n, k) € {(11,4),(16,6), (21,38),
(26,10)}. We can rule out (n, k) = (26,10) as follows. If (n, k) = (26,10),
then all of the foregoing inequalities become equalities. In particular,
y1 =y =2and yp» = --- = ys = 0. Additionally, each of r;, a3, and a4 is
equal to 0 since Y = Y;. We see also that one of v, v3, v4 is the special ver-
tex (of degree 8). Now Lquatlon (2.3) (withy; =2and y2 =--- =y5 =0)
yields z5 = =, —az=—k 2=3and z3 =124 = —k—o At,lea.st one of
the two vertices in Y will have degree 10 and, since |X1 U{a}|=3+1=4,
that vertex will contain at least 6 neighbours in X3UX,. Since z3 = 24 = 5,
that vertex will contain at least one neighbour in cach of X3 and X4 and
so we may assume that vertex is v. That is, v has degree 10 and so one of
v3, vq is special. Suppose that vs is special. Then Ng(v) N X3 = {vs} (if
there were a second neighbour v4 of v in X3, then one of v3, v4 would also
have to be special, a contradiction). This means that s3 = 1 and s, = 5,
whence Inequality (2.12) becomes

3+(5-5)+2+02>6,

a contradiction. If on the other hand v4 were the special vertex, we would
arrive at a similar contradiction with Inequality (2.13). Hence (n, k) cannot
be (26, 10).
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Since (11,4) = (11,a(11) and (21,8) = (21,a(21)), we need now only
consider the possibility that (n, k) = (16,6). The foregoing series of in-
equalities implies that, in this case, either 3 = 2, or y; = 1 and one of
v, va, vq is special. Suppose that y; = 2. Then Equation (2.3) yields
Zs = 1 = o = 1 and z3 = z4 = 3, so that, as above, we may assume
that the vertex v has degree 6. Now if neither vs nor vg4 is special, then the
foregoing series of inequalities become equalities; in particular, Incqualities
(2.12) and (2.13) become

zg + (1‘4 - 34) +ytaz= degc(v3) -

and
z5 + (z3 — s3) + 1 + aq = degg(va) — 2.

Now zo + x4 = 4, y1 = 2, a3 = 0 and degg(v3) = 6 implies s4 = 2 and,
similarly, s3 = 2. Thus, v has 2 neighbours in each of X3 and Xj; since
we may assume that none of these 4 neighbours of v is special, it is not
difficult to see that each of these 4 neighbours of » must also be neighbours
to v’ = Y;\{v}, whereupon we quickly deduce that G must be 6-regular
(i.e. there is no special vertex), a contradiction. Thus, il y; = 2, one of vy,
vq must be special, v3 say. Since both vertices v, v’ in Y7 have degree 6, it
follows from the above that vs is adjacent to each of v, v’. But vy € X,
whence v is also adjacent to both g and a4. Now consider a vertex ¢ € X.
Since ¢ has degree 6 and c is not adjacent to either of v or v’, it must be
that Ng(c) = X; U X3U {a1,a3}. In particular, ¢ is adjacent to v3. But
this brings the degree count for v3 to 5, contradicting the assertion that v3
is special. If, on the other hand, v, is the special vertex, then we arrive at
a similar contradiction by considering a vertex ¢ € X5. So y; cannot be
equal Lo 2.

Hence y; = 1 and one of v, v3, v, is special. There are two possible con-
figurations to consider, namely whether y, =1 or y3 = 1. (By symmetry,
the cases yq = 1 and y5 = 1 will then have been dealt with.)

Suppose first that yo = 1, i.e. Yo = {v'}. Then degs(v’') = 6. From
Equation (2.3) (with y; = yo = 1 and y3 = y4 = ys = 0) we obtain
Ty =x9 =1, z3 = x5 = 2 and z4 = 3. If v’ is not adjacent to v, then
v’ has at least 4 neighbours in X4 U X5 and therefore has at least one
neighbour v; € X4 and one neighbour vz € X5. Moreover, at least one of
v’, vy, v is special. This forces vy = v4 to be the special vertex. But then
Nc(v’) NX, = {vq} (if there were another neighbour v, of v’ in X4, then
one of v/, vy, v§ would have to be special as well) and so [Ng(v')| < 5, a
contradlcl,lon. Hence v’ must be adjacent to ». But then v’ is not adjacent
to vq (else v'vqv forms a triangle) and so v’ has at least 3 neighbours in
(X4\{va}) U X5 and so has at least one ncighbour v; € X,\{vq} and one
neighbour v§ € X;. Moreover, at least one of v/, vy, v5 is special. Bul this
is impossible, as {+/,v),v4} N {v,v3,v4} = 0. Hence yp # 1.
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Suppose then that y3 = 1, i.e. Y3 = {v'}. Then again degg(v') = 6.
From Equation (2.3) (with y; = y3 = 1 and 3y = y4 = ys = 0) we obtain
zo =1 and z3 = z4 = 25 = 71 = 2. Now if ¥/ is not adjacent to v, then
v’ has at least 3 neighbours in X, U X5, while if v’ is adjacent to v, then
v’ is not adjacent Lo v3 (else v’vsv forms a triangle) and so again v’ has at
least 3 neighbours in X; U X5. Thus v’ has a neighbour v} € X, and a
neighbour v, € X5 and, moreover, one of v, v}, vg is special. But this is
impossible, as {v',v},v§} N {v,vs,va} = 0. Hence y3 # 1.

This exhausts all cases with ¢ = 2; Lemmas 2.7 and 2.8, together with
the discussion following Lemma 2.8, now yield the following.

Lemma 2.9. If ¢ = 2 (whence n = 1 mod 5), then the graph G hy-
pothesized by Lemma 2.6 satisfies (n,k) = (11,4) or (21,8), i.e. (n,k) =
(11, a(11)) or (21, a(21)).

Finally, we consider the case ¢ = 3 (whence n = 4 mod 5). Now we
note that when n =9 mod 10, k = [?"j =3 mod 4, i.e. k is odd and so
no (k,n)-graph can exist. As {14,24} C S, we may therefore assume that
n=4 mod 10, n > 34.

We have two subcases, according to whether |Y| = 3 and |Z] = 0, or
Yi=12]=1

Lemma 2.10. Suppose that ¢ = 3 (whence n =4 mod 5) and Z = 0, and
suppose further that for some v € Y, v is adjacent to X; and X, for some
i=1,2,...,5. Then (n, k) = (14,5) or (24,9), i.e. (n, k) = (14,a(14)) or
(24, a(24)).

Proof: Without loss ol generality, we take v € Yy with v adjacent 1o some
vz € X3 and some u4 € X4. Using the analysis following Lemma 2.8 and
noting that in this case y; < y = 3, we deduce that n > 3k — 5. Since
k=|%]and n =1 mod 5, it must be that n < 34. But we can rule out
(n, k) = (34,13), as follows. Since in this case n = 3k — 5 we deduce that
y1 =3 (and y = --- = y5 = 0) and that one of v, v3, v4 is special. Now
from Equation (2.3) we obtain z5 = 21 = z2 =4 and z3 = 4 = 7. Now
one of the vertices in Y; has degree 13, and since |X; U {a1}| = 5, that
vertex will have at least 8 neighbours in X3 U X, and so contains at least
one neighbour in each of X3 and X4; thus we may assume that vertex is
v, i.e. v has degree 13 and so one of vs, v, is special. If v3 is special, then
Ng(v)N X3 = {vs} (if there were another neighbour v3 of v in X3 then one
of v}, vq would have to be special), whence s3 = 1 and s4 = 7. But then
Inequality (2.12) becomes 4 + (7 — 7) + 3+ 0 > 11 — 2, a contradiction.
If on the other hand vy is special, we arrive at a similar contradiction in
Inequality (2.13). Hence (n, k) # (34,13). ul

Lemma 2.11. Suppose that ¢ = 3 (whence n = 4 mod 5) and |Y| =
|Z| = 1, and suppose further that for some v € Y U Z, v is adjacent to
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X; and X;;, for some i = 1,2,...,5. Then (n,k) = (14,5) or (24,9), i.e.
(n, k) = (14, a(14)) or (24, a(24)).

Proof: Suppose first that v € Y7 with v adjacent to both v3 € X3 and
vqs € X4. Modifying the analysis following Lemma 2.8 by setting P =
Ne(w)N Z,p=|P|, a3 = |Nc(vs) N Z| and a4 = |Nc(va) N Z|, and noting
that all R; = 0, we get the following:

1+ 83+ 85 +p 2 degp(v) —1

xy+ (x4 — 84) + 1 + ag > dege(vz) — 2

Is + (:z:;; — 53) +14a4 2> degc(v4) -2
Summing these inequalities yields

z+2+p+az+ag23k—T.
Now z+2=n -5, and p+ az + a4 < 2 since G is triangle-free. So we get
n—-3>3k-17,
ie. '
n > 3k - 4.

Since k= | 2] and n =4 mod 10 we get n < 24, as desired.

Thus let v € Z, i.e. Z = {v}. Let Y = {v'}. We may suppose that
v’ is adjacent to «, i.e. Y =Y}, and that v’ is adjacent to X3 but v’ is
not adjacent to any vertex in X4. Now from Equations (2.3) (with 3, =
landyy = -+ = ys = 0) weget =5 = z; = 3 = 3(k — 1) — 1 and
T3 = x4 = -;-(k — 1). Suppose, if possible, that v’ has degree k. Then
Ne(@') = X1 U X3 U {a,,v}. Since G is triangle-free, v is not adjacent to
any vertex in X; U X3 and so v is adjacent to some v, € X4 and Lo some

vs € Xs. Modifying the analysis in the proof of Lemma 2.7 (case (i)), we
obtain

Ty + 84 + 85+ 1 > degy(v) (v is adjacent to v')
3+ (x5 — s5) + 1 > degg(vy) — 2
Z1 + (24 — 54) + 1 > degg(vs) ~ 2
whence
z+3>3k—6.

But again z + 2 =n — 5, and so we get
n>3k-2

whereupon n < 14 < 34, as desired. It follows then that v’ is the special
vertex. Now v is adjacent to X; and to X;,; for some 7 = 1,2,...,5.
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Suppose that v is not adjacent to any vertex in X;—; U X;12. Then as
above we have

Ti—g + si + siq1 + 1 > degg(v)
Tio1 + (Tir1 — Siv1) +2 2 degg(vi) — 2
Ziyz + (Ti — 8:) + 2 2 degg(vigr) — 2
whence
z+5>3k -4,
since none of v,v; € X, vit+1 € Xi4+1 is special. Again z +2 =n -5, and
so we get n > 3k — 2, as before.

So v is adjacent to some vertex in X;—; U X9, say v is adjacent to some
v;_1 € X;_1. Modifying the analysis in the proof of Lemma 2.7 (case (ii))
we obtain

51+ S92+ 53454 + 855+ 1 > degg(v)

and
(Zj-1 = $5-1) + (Tjr1 — 5541) +2 2 degg(v;) - 2,
j=1-1,4,1+1.
Summing these four inequalities yields
T4+ (zi—s)+T7>4k -6
since none of v, v; are special. Now z; < -%(k —1) and s; > 1, whence we
get
z+%(k—l) >4k —12.

Since £+ 2 =n - 5, we get
n_>_4k—%(k—l)—5

which, since k = |2*| and n =4 mod 10, forces n = 14.
As this exhausts all possibilities, Lemma 2.11 is proved. O
It remains only to consider each of our subcases (|[Y| =3 and |Z| =0, or
|Y| = |Z| = 1) under the assumption that for no v € Y U Z is v adjacent to
X; and X4, for some i =1,2,...,5, and that G is not a subgraph of any
weighted cycle C(5, W).
Lemma 2.12. If ¢ = 3 (whence n =4 mod 5) and |Y| = |Z| = 1, then
under the foregoing assumptions we have (n, k) = (14,5) = (14, a(14)).
Proof: We may take Y = {v}, where v is adjacent to o (i.e. Y =Y) and
v is adjacent to X3 but not to any vertex in X,. Since G is not a subgraph of
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any C(5, W), it follows immediately that v is adjacent to v’, where Z = {v'}.
Moreover, it follows for the same reason that Ng(v')\{v} € X, U X4 and
Ne(v')\{v} € X5 U X2. Hence, we must consider three cases:

(i) Ne(v')\{v} C X U X3. Following the proof of Lemma 2.8, we first
deduce from Equation (2.3) (with ; =1 and y = - -- = y5 = 0) that
zs =21 =23 = 5(k— 1) — 1 and z3 = 7, = §(k — 1). Since G is
triangle-free, we must have Ng(v) + Ng(v') < 3+|X,|+|X3| = k+1.
But Ng(v) + Ng(v') 2 2k — 2, whence k < 3, which cannot happen.

(ii) Ne(@')\{v} € X3U X5. Then Ng(v) + Ng(v') < 3 + | X1 + | X3| +
| Xs| = k+l+%(k—l)—l = (3k—1)/2. Again Ng(v)+Ng(v') > 2k-2,
whence k < 3.

(iii) Ne(v')\{v} € X4U X;. Then Ng(v) + Ng(v’) < 3+ |X1| + | X3| +
|Xa| = k+1+3(k—1) = (83k+1)/2. Since Ng(v)+ Ne(v') > 2k -2,
we must have k = 5, i.e. (n,k) = (14, 5), as asserted.

0

Lemma 2.13. If ¢ =3 (whencen =4 mod 5) and |Y| =3, |Z| = 0, then
under the assumptions preceding Lemma 2.12, we have (n, k) = (14,5) =
(14, a(14)).

Proof: Let Y = {v,v,v" }. Since G is not a subgraph of any C(,W), a
least one pair of vertices in Y are adjacent We may assume, then, thdt v
is adjacent to v’, v’ is not adjacent to v , and that v € Y;, i.e. v is adjacent
to ;. Moreover v is not adjacent to any vertex in X,4. There are now two
subcases to consider.

(I) v is not adjacent to v”.

This case is essentially identical to the S]tlld.tlon in Lemma 2.8; the
difference is that we have a t,hlrd vertex v € Y whose position (i.c.
the particular Y for which v € Y;) will determine the distribution
of the z;s. Thus for example, as in Lemma 2.8, v’ is not adjacent to
ai (since G is triangle-free) and v’ is not adjacent to s (as G would
then be a subgraph of C(5, W) regardless of the position of v"). We
must consider the following possibilities.

(i) 'u € Y3. Then gby symmetry) we must consider, in turn, v" € Y,
v € Y2, and v €Y. By Equation (2.3), we get the following:

'U Gyl = I =.’£5=§(k—3),123 =:c4=—(k—l),:z2=§(k—5).

- N

" 1

v GYZﬂ.’L']=I’3=§(k—3),.’1.‘4=.7:5=—2-
1" l 1

v €Y4=>;E1=§(k—l),IQ=I3=:L‘4=;r;5=§(k_3)_

1 -
(k= 1),22 = 5(k - 5).
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Now, in all cases we have
Ng(v) + Ng(v') <4+ |Xa|+ [ X5] + | Xs].

=4+k—3+%(k—1).

3 1
But Ng(v)+ Ng(v') > 2k—2, whence k <5, and (n, k) = (14, 5).
(ii) v € Y,. Here we must consider, in turn, v €Yy, v €VYs and
v" € Ys. We leave it to the reader to verify that in all cases
k <5, ie. (nk)=(14,5).
(iii) v € Y;. Here we must consider, in turn, v €Yy, v €Yy and

v' € Ys. We again leave it to the reader to verify that in all
cases k < 5, i.e. (n,k) =(14,5).

(II) v is adjacent to v

Again this case is essentially identical to case (I); note that here v,
like v, is not adjacent to ¢ since G is triangle-free. We must consider
the following possibilities.

(i) v € Yg Then we must consider, in turn, v' € Ys v €Y
and v" € Ys (if v € Y, then G is a subgraph of C(5, W)). By
Equation (2.3), we get the following:

7 1 1
v €Ya= 1) =23 = 5(k—3),:z4 =I5 = —%(k—l),xg: 5(1::—5).

P 1 1
v €Yy =>:):4=§(k—1),:1:5=x1=:1:2=:c3=—(k——3).

” 1 1
v €Ys=z5=1I9= E(k—3).$3=$4 =§(k-1),$1 = §(k 5).

[3V)

In these cases, we have to consider, respectively,

Ne(@) + Ne(@") <44 |X1] + | Xs| + | Xs| = Sk +

w Nl

No(@) + No(@") <4+ | X1+ | Xs| + | Xal = Sk +

w N
— 0| — N3] —

Ne() + No(@”) <4+ 1X1| + | Xa] + | Xs| = sk 3

(Note that in the (second) case v’ €Yy, v cannot be adjacent
to any vertex in X2 since G is not a subgraph of C(5, W). Tor
the same reason, v cannot be adjacent to any vertex in X3 in
the (third) case v €Y. ) In all cases, it quickly follows that
k < 5, since Ng(v) + Ng(v "y > 2k -2
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(ii), (iii), (iv) v’ € Ya,v' € Y3, V' € V5.
In each of these cases, we proceed as in case (1), considering the
sum Ng(v) + Ng(v') and so deducing that in all cases k < 5.
We leave the details for the reader to verify.

O

Collecting all of the results of this section, we have now proved the fol-
lowing result.

Theorem 2.14. Let ¢/(n) denote the largest k for which there exists a
(k,n)-graph, that is, an almost k-regular triangle-free graph on n vertices.
Let S = {8,11, 14, 15, 18,21, 24} and define

4 ifn=29,

|22 +1 ifne s,

|24 -1 ifn=1o0r5 mod 10andn¢S
|22 ) for all other n > 10.

a{n) =

Then t'(n) = a(n) for all n > 8.

Remark 2.15: For the sake of completeness, we note that t'(n) does not
exist for n=1,2,3,4, and that l'(5) = t'(6) = t'(7) = 2.

3 Determining ¢(n)

In this section, we will prove Theorem 1.2. Let

2n—4J +1 ifne {24,32,42},
12254, +2 ifne{17,19,27,37),
|22 ] for all other even n > 16,
[2"9_4.[6 for all other odd n > 21.

a(n) =

Lemma 3.1. ¢(n) > a(n) for all n > 16.
Proof.: Define

ool ifn e {24,32,42},
[E(L‘l'lL 2 for all other even n > 16,

m= ’)a n) . p . p
[==™T0 iln e {19,27,37},0or 9iln =17,
[3 (")]0 +2 for all other odd n > 21.

It is straightforward to verify that n — m > 2a(n) for every n > 16. Since
n — m is even we can, therefore, construct an a(n)-regular bipartite graph
G, of order n — m. On the other hand, it is again straightforward to verify
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that ¢'(m) = a(n) for every n > 16, with the single exception that ¢t'(18) =
7 = a(30)+1. Now in this exceptional case, we can construct a triangle-free
almost 6-regular graph of order 18 by removing the edges of a one-factor in
the (7,18)-graph constructed in Lemma 2.1 (see Figure 2 of the Appendix).
Hence, we can always construct a triangle-free almost a(n)-regular graph
G2 of order m, with special vertex z, such that V(G;,) N V(G3) = 0. Now
select two adjacent vertices a and b in G;. We then obtain an a(n)-regular
graph on V(G,;) U V(G2) by deleting the edge {a,b} and adding the new
edges {z,a} and {z,b}. This a(n)-regular graph is triangle-free and has «
as a cut-vertex. Hence c(n) > a(n) for all n > 16, as asserted. 0

We must now show that ¢(n) < a(n) for all n > 16. Thus, we assume that
G is a triangle-free, k-regular graph of order n containing a cut-vertex z,
where k > [ 2574 |. Let G —z = G UG}, with ny = [V(G})|, n2 = |V(G3)|
and n; +np =n — 1. Now let G, = G — V(GY%) and Gy = G — V(GY),
and let s = degg,(z), whence k — s = degg, (). Now if n is odd, then
k is even, whence s is even (the degree sum over G, must be even). On
the other hand, if n is even, then without loss of generality, n, is even and
so regardless of the parity of k it must be that s is even (again consider
the degree sum over G3). Thus s is even, s > 2. Now each of G, and G,
has all but one vertex of degree k, with the remaining vertex = of degree
0 < deg(z) < k. Hence neither of G}, Gy can be bipartite. Applying
Lemma 2.2 to G and G5 in turn we get the following:

2+ 1) 2 (W(G)-Dk+k-s=n 22k+%(k—s—2). (3.1)

2(no+1) > (¥(Ga) - 1}k +s=ny 22k+%(s—2). (3.2)

Now my + np = n — 1, so adding Inequalities (3.1) and (3.2) yields

9 2n+2
-1>=-k-2 k< .
n 23 =Kk < 9

Hence, k = | 2272 | + 1. Consider now the following cases.

(I) G} and Gj bipartite.

Now G contains k — s vertices of degree k—1 and n; — (k—s) vertices
of degree k. Since G is triangle-free, no two vertices of degree k — 1
are adjacent and so we deduce that n; > (k —s)+2(k —1). Similarly,
we have ny > s+ 2(k — 1). Furthermore, both n; and ns must be
even. Therefore, n =n; +np+1>5k~-3,1e. k< %(n + 3). Now
é(n-{-S) > “T"' & n < 47. Specifically, those odd 7 with 17 < < 45
and |3(n+3)] = [#5] +1 =0 mod 2 are n = 17,19,27 and 37.
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(I1) One of G}, GY is not bipartite; say G not bipartite.
By Lemma 2.2, we have
V(G (k= 1) € 20 = 2(n —ng — 1).

From Inequality (3.2) we now deduce that
HEAk = 1) S 2n — 2% = 5(s-2)— 1) S 2(n — 2%~ 1),

whence
k < (2n =2+ 7(G1))/(¥(G1) +4).

But k = [2274| +1 and n > 16, which forces y(G}) = 5. Applying Lemma
2.2 to G, noting that v{(G,) = ¥(G7) = 5 and that G, contains a 5-cycle
that does not contain z, we have

5k < 2(ny + 1) = 2(n — ng) < 2(n — 2%k — %(s —9)).

Hence (s —2) = O or 1 (else k < 2%74), ie. s = 2 or 4. Thus either
s=2and nyg =2kor 2k+1, or s =4 and ny = 2k + 1. This last case
cannot occur, as follows. If s = 4 then no = 2k + 1 is odd, and so G}, is
not bipartite. (To see this, note that G4 has s = 4 vertices of degree k — 1
and ngp — 4 vertices of degree k. Now s =4, s < k and ny odd implies that
k > 6, whence no > 13. It is therefore impossible to partition the vertex
set of G into two independent sets X and Y so that the degree sums over
each of X and Y are equal.) Moreover, s =4 and ny = 2k + 1 implies that
Inequality (3.2) is in fact an equality, which means that ¥(G2) = 5 and
every 5-cycle in G5 contains the vertex z. But G’ not bipartite implies (by
Lemma 2.2) that
Y(Gy)(k - 1) < 2np =4k + 2,

whence
(Y(Gy) - 9k < v(G3) + 2,

which, since k > s = 4, yields v(G5) = 5. This means that G, contains a
5-cycle that does not contain the vertex x, a contradiction. Hence s = 4
cannot occur and therefore we must have s = 2 and ny = 2k or 2k + 1; this
in turn forces G; to be an almost k-regular graph of order n; +1 =n — 2k
orn—2k—1.

Now note that if &k < (2(n; + 1) — 4)/5 then k < (2(n — 2k) — 4)/5,
whereupon k < (2n — 4)/9. Therefore k& > (2(n; + 1) — 4)/5(k > (2(ny +
1)-2)/5ifn+1 =n—-2k-1), whencen;+1 € SU{9}. If n; +1 =9 then
k =4, whereupon n=(n, +1)+2k=170orn=(n; +1)+2k+1=18.
Now if n = 18 then G5 must be a triangle-free graph on 9 vertices with
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7 vertices of degree 4 and 2 non-adjacent vertices of degree 3; moreover,
G has odd girth 5 (Lemma 2.2) and every 5-cycle in Gj contains the 2
non-adjacent vertices of degree 3. We leave it as an exercise for the reader
to verify that no such graph exists, whence n # 18.

Otherwise, n; + 1 € S and k = [WJ + 1. Since n > 16 and

k= Ll’-‘gij +1>4,n; +17# 8. We summarize the various possibilities in
the following table.

nm+1eS\{8}) k n=(r+1)+2k or n=(m+1)+2k+1
11 4 19 20
14 5 24 25
15 6 27 28
18 7 32 33
21 8 37 38
24 9 42 43

We’ll now show that in fact none of the entries in the last column n =
(n1 + 1) + 2k + 1 can occur. First of all, for n; +1 = 14,18 or 24, we
have k taking an odd value, whence n must be even in order that a k-
regular graph on n vertices exists. Now suppose that.n; +1 =11 or 21 and
n=(ny+1)+2k+1. Thenn;+1=mn—2k—1and so by the analysis
in the preceding paragraph we must have k > (2(n; + 1) — 2)/5. Thus,
for n; +1 = 11 (resp. 21) we would require k > 4 (resp 8), contradicting
k = 4 (resp. 8). Finally, for n; + 1 =15 and n = 28, it must be that Gj
is a triangle-free graph on 13 vertices with 11 vertices of degree 6 and 2
non-adjacent vertices of degree 5; it can be concluded from Lemma 2.2 that
no such graph exists.

Collecting the results of the foregoing discussion now gives us the [ollow-
ing.

Lemma 3.2. c¢(rn) < a(n) for all n > 16.
Combining Lemmas 3.1 and 3.2 now yields our main result.

Theorem 3.3. Let n > 16 and let

|Z2=4] 41 ifn e {24,32,42},
|224), +2 ifne{17,19,27,37},

a(n) = |22 for all other even n > 16,
|24 ), for all other odd n > 21.

Then c(n) = a(n).

Remark 3.4: For the sake of completeness, we note that c(n) does not
exist for n=1,2,...,13 or for n = 15, and that c(14) = 3 (see Figure 1 in
the Appendix).

28



4 Conclusion

As we stated in the introduction, a regular graph containing a cut vertex is
not one-factorizable, and so c¢(2m) is a lower bound on f(2m) = max{k:
there exists a triangle-free k regular graph on 2m vertices which is not
one-factorizable}. Hence for every m > 8 we have f(2m) > a(2m) =
[%(m - 1) +1if m = 12,16 or 21, or |§(m — 1) otherwise. Now using
Petersen'’s results that (i) every 2¢-regular graph contains a 2-factor, and (ii)
every bridgeless cubic graph contains a 1-factor, it can be shown that f(2m)
does not exist for m < 4 and that f(10) = 3 (attained by the Petersen
graph), f(12) = 2 and f(14) = 3. Moreover, there are exactly two non-
isomorphic triangle-free cubic graphs of order 14 with no one-factorization
(see Figure 1 in the Appendix).

Finally, it is an immediate consequence of Theorem 3.3 and Remark 3.4
that if G is a connected triangle-free k-regular graph on n vertices with
k > 3 when n = 14, or k > a(n) when n > 16, then G is 2-connected.
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Appendix

We use the following notations. A solid circle (i.e. a dot) denotes a single
vertex, while a hollow circle with the number ¢ inside denotes an indepen-
dent set of t vertices. A solid line between two circles indicates the presence
of all possible edges between the corresponding sets of vertices; a dotted
line indicates the presence of all possible edges except those of a one-factor
between the corresponding sets of vertices, while two dotted lines indicate
the presence of all edges except those of two disjoint one-factors.

Figure 1
Note the first graph has a cut-vertex, while the second one does not.
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(9, 24)

Figure 2
In the second (7, 18) figure, each line represents an edge;
the 9 edges form a one-factor in the (7, 18)-graph
in the first figure (see the proof of Lemma 3.1).
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Figure 4
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