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Abstract. We describe a random variable D, ;,, n 2 m > 1, as the number
of failures until the first success in a sequence of n Bernoulli trials containing
exactly m successes, for which all possible sequences containing m successes
and n-m failures are equally likely. We give the probability density function,
the expectation, and the variance of D, ,. We define a random variable D,, n 21,
to be the mean of D), ..., D,,. We show that E[D,] is a monotonically
increasing function of n and is bounded by In n. We apply these results to a
practical application involving a video-on-demand system with interleaved
movie files and a delayed start protocol for keeping a balanced workload.
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1. A Practical Problem

In a video-on-demand (VOD) system, customers are able to watch a
movie on their television at home, using a VOD terminal instead of a VCR.
Large files of compressed digitized movies are stored in an array of magnetic
disks on the VOD server. The server transmits blocks of the movie file over a
communication line to the terminal, on a just-in-time basis. At any time, the
system may be serving many users (e.g., 3,000). Each user is treated as a movie
stream. Different streams may use the same movie file, with different start
times. Wright [7] describes an efficient model for the system.

The server reads the disks in rounds, reading the necessary next blocks
for all of the movie streams. A block might typically generate one or two
seconds of playing time, and the rounds need to take less time than that in order
to keep up with the "consumption" of the digitized data at the terminals. Ofall
the blocks (3,000, say) that need to be read during a round, each disk must read
whichever ones are stored on it.

An efficient pattern for storing the movies on the disks uses interleaving,
whereby each movie file has its blocks spread in a regular sequence over all the
disks. Figure 1 illustrates interleaving in which there are 100 disks and 500
available movies. The figure shows (for simplicity) each movie having its first
block on disk 1, but the starting disks for the movies would probably be
randomized.

The purpose of interleaving is to balance the workload evenly over all the
disks. Each movie stream accesses all of the disks in sequence, hence all of the
disks are used evenly, on the average. If each movie file were stored instead on
a single disk, then the disks storing the most popular movies would be
overworked and disks storing unpopular movies would be underutilized.
(Balancing popular with unpopular movies on the same disk would help, but it
would generally not be nearly sufficient to even out the workload. It would also
be vulnerable to unreliable and changing predictions of movie popularity.)
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Disk 1 Disk2 Disk 100
Block 1 Block 2 Block 100
Movie 1 Block 101 Block 102 Block 200
Block 1 Block 2 Block 100
Movie 500 Block 101 Block 102 Block 200
Figure 1.
Interleaved Files

Although interleaving balances the workload evenly on the average, it
does not guarantee a balance during each round. For example, if there are 2,864
movie streams and 100 disks, then the average number of block reads per round
per disk is 28.64. However, due to the randomness of when each stream started
(and which disk it started on), some disks might have to read 34 blocks during a
round and others only 25, say. The best possible balance would occur if exactly
64 disks were serving 29 streams during a round, and 36 disks were serving 28.

In general, the best balance is attained when

max = [s/n] and min = |sml 6))

where s is the number of streams, n is the number of disks, and max (min) is the
maximum (minimum) number of streams served by all of the disks. In this case,
the number of disks serving max and min streams during a round is given by

Npnax = s-minn
Nin = N - N
Note that we must have
max - min = 0 ifsisamultipleofn
max - min =1 otherwise
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Balance is achieved when max and min differ by at most 1.

An important goal of a VOD system design is to make the system
capable of serving as many simultaneous streams as possible without a
“starvation," i.e., a terminal whose buffer empties out before the next block
arrives. Since each disk has time to read only a limited number of blocks during
a round, it follows that the design should try to keep max to a minimum, which
is accomplished by ensuring that (1) holds.

Fortunately there is a simple strategy for enforcing this constraint in the
presence of new movie requests. The strategy is to delay the start of a new
stream, as necessary, until the disk on which it starts will be serving the
minimum number of streams. Using the example above, suppose the system is
prepared to start a new movie stream on the current round. If the starting disk
for the stream has 28 other streams assigned to it for the round, then it can start
the new stream, giving it 29. However, if it already has 29 streams, then the
system delays the start until the next round and repeats the test.

Using interleaving, the streams for one disk on one round are passed on
to the next disk for the next round. Accordingly, the policy is to continue
delaying the start of the new stream until the first round for which the starting
disk is assigned only 28 other streams. This process guarantees that each new
stream will start when its disk is serving only 28 other streams, until the total
number of streams reaches 2900. At this time min becomes 29, max becomes
30 (after one more new stream), and the process repeats.

This straight-forward strategy can maintain a balanced workload over all
the disks during every round, regardless of movie popularity. However, it does
raise (at least) one question: how many rounds will a new user have to wait, on
average, for his movie to start? That number is a random variable, and we wish
to analyze it in this paper.

2 Mathematical Background
Several discrete probability distributions have been defined based on
repeated Bernoulli trials. Some examples presented in Parzen [6] are as follows:

1. The binomial distribution with parameters p and n can be characterized as
the number of successes in n > 1 independent Bernoulli trials in which the
probability of success in each trial isp, 0 <p < 1.

2. The geometric distribution with parameter p can be characterized as the
number of trials until the first success in a sequence of independent Bernoulli
trials for which the probability of success in each trial is p.

3. The negative binomial distribution with parameters p and m can be
characterized as the number of failures until the m-th success (m > 1) in a
sequence of independent Bernoulli trials for which the probability of success
in each trial is p.

We analyze here a probability distribution that can be characterized in
terms of a sequence of Bernoulli trials which are not independent. For
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convenience of reference in this paper, we need to name the distribution, and
have rather arbitrarily chosen to refer to it as the "delta distribution.”
Accordingly, let n and m be integers with 1 <m <n. A random variable is said
to have the delta distribution with parameters n and m if it can be characterized
as the number of failures until the first success in a sequence of n Bernoulli trials
containing exactly m successes, for which all possible sequences containing m
successes and n-m failures are equally likely. The sequence of trials is clearly
not independent since, for example, the outcome of the last trial can be
determined exactly from the outcomes of the first n-1 trials.

It is interesting to note that the delta distribution has a combination of
characteristics from the binomial, geometric, and negative binomial
distributions. Like the binomial distribution, it has a fixed number of trials.
Like the geometric distribution, the random variable is the number of trials until
the first success. Like the negative binomial distribution, there are m successes
in the sequence of trials. Unlike these three distributions, the delta distribution
does not have an explicit parameter p, although it is obvious that the probability
of success in each trial is p =m/n.

It is also possible to characterize the delta distribution in other ways.
Feller [1] describes a class of distributions based on sampling balls from an urn.
He assumes that an urn originally contains b black balls and r red balls. A ball is
drawn at random and replaced. Moreover, c balls of the color drawn and d balls
of the opposite color are added to the urn, for some parameters ¢ and d, and the
procedure is repeated. If c = d = 0, we get independent and identical Bernoulli
trials. If we look for runs of the form bb...br, we get the geometric distribution.
For runs of the same form with ¢ = -1 and d = 0, we get the proposed delta
distribution.

The distribution of runs of a given length was studied by Mood [5].
Statistics relating to runs of both identical and non-identical independent
Bernoulli trials were presented by Fu and Koutras [2]. The number of 0 bits
until the first 1 bit in a random bit string containing exactly m 1 bits and exactly
n-m 0 bits, has the delta distribution. In this context, a 0 bit is interpreted as a
failure (in a Bernoulli trial) and a 1 bit as a success. For a treatment based on
strings, see Guibas and Odlyzko [3].

3. Analysis of the Distribution

Let D, , be a delta random variable with parameters n > m > 1. We use
C(a,b) to denote the number of combinations of a objects taken b at a time. For
d an integer with 0 <d < n-m,

P[D,n = d] = Pfthe first d trials are failures and the (d+1)-th trial is a
success])
= C(n-d-1,m-1)
C(n,m)

Therefore the probability mass function fp(d) is given by
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fy(d) = Sedtml if0<d <n-m [0)

C(n,m)
=0 otherwise
To show that (2) defines a valid density function, we prove the following:
n-m
Theorem 1. —C("Ef,; :,‘,';'_” =1
d=0
Proof: (by induction on n)
If n = m, the result is clearly true. Assume it is true forn =k >m. Then
+l-mC(k+|—d—l,m-l) = Clkm-)) | C(k+|-d-—l m-1)
C(k+1,m) = C(k+1,m) Z C(k+1,m)
d=0

Clk-d'=1,m-1)
k+1 + Z C(k+1,m)

For fixedn>m=21landd=0,1, ..., n-m-1,

-d-2)(m-1
f(d) — fp(d+1) = o2

Therefore, as a function of d, fp(d) is decreasing if m > 1 and constant if m = 1.
Figure 2 is a graph of fp(d) for n = 10 and m = 3.
We now wish to determine the expectation and variance of D,
Lemma: For any positive integer j, E[D},, , 1= %2 E[(Dyq + 1)]
Proof: (by induction on n)
If n = m, the result is clearly true, since D, = 0. Assume it istrue forn=k
2m. Then

E[Dj,, »1=E[D4,, , | first trial is a failure] - P[first trial is a failure]

+E[D},,, | first trial is a success] - P[first trial is a
success]
= E[(Dynt1)] 522 +0-
= k2l E[(Dywm + 1))
Thus the formula holds for n = k+1, and by induction it holds for alin > 1.

Theorem 2. E[Dym] = &5

m+l
Proof: (by induction on n)
If n = m, the result is clearly true, since E[D,,] = 0. Assume it is true forn =
k 2m. Then by the lemma

E[Dwiml =42 E[Dyn+ 1]
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— k-m+l ( k-m +1 )

kel Umal

— k+l-m

m+]

Thus the formula holds for n = k+1, and by induction it holds for alln > 1.
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Figure 2.
Probability Mass Function of Do 3

Theorem 3. E(D; ml= S_?;Tn(i?;z";)

Proof: (by induction on n)
If n = m, the result is clearly true, since E[ D,z,',,, ]1=0. Assume it is true forn

=k >m. Then by the lemma
E[D}, ] =421 E[(Dem+ 1))
_ k- (lr-m)(2k—m) 2(k-m)
- "k'l'.* l ((m+l)(m+2) m+1 +1)

— (k+1-m)(2k+2-m)
(m+1)(m+2)

Thus the formula holds for n = k+1, and by induction it holds for all n > 1.
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From Theorems 2 and 3 we get

__ (n—mY2n-m) n—m 2 _. m(n+tyn-m)
Var[D, ] = (m+lym+2) "\ m+l (m+1)?(m+2)

4. The Mean of D,,;, ..., Dy

For n>1 we define the random variable D, to be the mean of D,
Dy, i€,

Dl'i = 'rlu_iDn,m
n

ThenE[D,] =+ %%

n m+]
m=1

Table 1 gives the value of E[D,] for several sample values of n.

cesy

Table 1.
Sample Values of E[D,

e

n 112 1|5 10 50 100 200 500 1000

E[D.] | 01.25].74{1.2219 | 2.5892 | 3.2393 | 3.9074 | 4.8064 | 5.4930

Theorem 4. e(n) = E[D,] is a monotonically increasing function of n.
Proof:
We need only show that e(n+1)-e(n) > 0 for n > 1. We have
n+l n
mriye) = > - P
m=] m=]

n

n
AN n#-m .LZM
n+l m+l n m+1
m=1

m=1

I

( n+l-m n-m )
(m+1)(n+l) (m+1)n

3
n

m
(m+1)(n+l)n

™

\Y
© 3

Theorem 4 enables us to conclude, for example, that not only is E{Djgg0] =
5.4930 but E[D,] < 5.4930 for every n < 1000.
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Theorem 5. E[D,] <In n for n > 1, i.e,, In n is a bounding function for

E[Dx] = e(n).
Proof:
n
m = gy
m=]
n
< w2
m=1
= Hy-1, whereH, is the harmonic series 1 +1 +..+1.
H, < Inn+.577+ % from Knuth [4]
en) < Inn+.577+ 25—l<lnn forn>2
el) = 0=In1l,
en) < Inn forn>1

Table 2 gives some sample values of In n.

Table 2.
Sample Values of In n
n 100 500 1000 5000 20000
Inn 4.605 6.215 6.908 8.517 9.903

Thus, for example, the expectation of D, is less than 10, even if n is as
large as 20,000.

5. Application to the Video-on-Demand Problem

Referring back to the example and notation in Section 1, let k = s — min
and m =n — k. Then k is the number of disks serving the maximum (e.g., 29)
number of streams during a round, and m is the number serving the minimum
(e.g., 28). Define a Bernoulli trial to be a success if the starting disk for a new
movie request is serving min streams during the current round, and a failure
otherwise. The number R, , of rounds the VOD system must wait, under the
delayed-start policy, is then the number of failures until the first success. The m
disks serving the minimum are distributed randomly among the n disks, with all
possible combinations equally likely. Hence, R, has a delta distribution with
parameters n and m and

ERom] = o
- m(n+1)(n-m)
Var[R, ] ey me3)

from Theorems 2 and 3.
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In realistic VOD systems, it is reasonable to assume that, over most time

periods, k and m take on the values 0, 1, ..., n-1 with equal likelihood. Hence
the average value R, of R, over time is given by

R, = 1R,
m=1

and the results of Theorems 4 and 5 and Tables 1 and 2 apply to R,. For

example, E[R,] < In n for all n, E[R,] < 5.4931 forn < 1,000, and E[R,] < 10 for

n <20,000. .
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