Maximum Toughness Among
(n, m)-Graphs

Kevin Ferland
kferland@bloomu.edu
Bloomsburg University, Bloomsburg, PA 17815

Abstract

The maximum possible toughness among graphs with n vertices
and m edges is considered. This is an analog of the correspond-
ing problem regarding maximum connectivity solved by Harary. We
show that, if m < [32] or m > n({ 3] + | 23242 ]), then the maxi-
mum toughness is half of the maximum conectivity. The same con-
clusion is obtained if r = |22] > 1 and 2=10rtD) < ¢ (oD,
However, maximum toughness can be strictly less than half of maxi-
mum connectivity. Some values of maximum toughness are computed
for 1 < n <12, and some open problems are presented.

1 Terminology

We consider only simple graphs G = (V, E), where V is the set of vertices
and E C P,(V) is the set of edges. A graph G is said to be an (n, m)-graph
if n = |V] and m = |E|. In fact, throughout this paper, the variables n
and m are reserved for |V| and |E|, respectively. A K, 3 subgraph is an
induced subgraph that is isomorphic to the complete bipartite graph K 3.
The degree 3 vertex in such a subgraph is called a K 3 center. When no
K 3 subgraph exists, G is said to be K, 3-free. The number of components
of the graph obtained from G by removing the vertices of S C V is denoted
by w(G — S). The connectivity of a noncomplete graph G is defined by
Whitney [11] as

k(G) = min{|S] : S CV and w(G - S) > 1}.

The connectivity of a complete graph K, is defined to be n — 1. A graph
G is said to be k-connected if x(G) > k. The toughness of a non-complete
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graph G is defined by Chvatal [2] as

HG) = min{;-(—Gls_l—S) :SCVandw(G-S)>1}.
For a complete graph K, we adopt the approach of Pippert [9] and define
7(Ka) = 25, (Chvétal defined 7(K,) = o0.) A graph G is said to be
t-tough if 7(G) > t. For any other standard terminology, the reader is
refered to (1] or [7].

"Forn>1land0<m< 5'-@12:—11, define the maximum connectivity
Cn(m) = max{x(G) : G is an (n,m)}graph} (1.1)
and the maximum toughness
T.(m) = max{7(G) : G is an (n,m)graph}. (1.2)

An (n,m)-graph G is said to be maximally connected if k(G) = Cr(m) and
maximally tough if 7(G) = T,(m). As we will see, maximally connected
graphs need not be maximally tough. For a fixed n > 1, the behavior of the
functions C,(m) and T,(m) is best understood by grouping the possible
values for m into intervals (see Theorem 3.1 and Section 7). For 0 < r <
n—1, define the r** interval I,,(r) by I,(0) = [0,n—1)NZ, I,(1) = {n-1},
In(n—1) = {2821} and, for 1 <r <n -1, I,(r) = [[2], [2Z ) nZ.
Note that
[%] <m< "n(r_z-l-lz] ifand only if r = l%nJ .

Special attention is given to the initial value of each interval. For r > 1,
an (n,m)-graph is said to be r-sesqui-regular if n — 1 of the vertices have
degree r and the remaining vertex has degree r or r+ 1. That is, the graph
is as close to regular as possible given the parity of nr.

2 Introduction

The notion of maximum toughness has been considered by Chvital [2]
and Doty [3]. Maximum connectivity was introduced and computed by
Harary [6]. The main reason for discussing connectivity here in addition to
toughness comes from the upper bound for toughness given by Chvatal.

Theorem 2.1 ([2]). 7(G) < ﬂgl

Some immediate consequences of Theorem 2.1 and the definitions are
listed in the following Proposition for easy reference.



Proposition 2.2. Denote r = [22].
(a) For1<m < 202l T, (m — 1) < Tu(m).
Cn
(b) Tn(m) < =),

(c) If To(m) = § for some m € I,(r), then,
for allm < k € I,(r), Ta(k) = -

Remark 2.3. Proposition 2.2(c) is of particular interest in the cases in
which T,([5F]) = § for some r > 2.

For any number of vertices n > 1, if the number of edges m is very
small, then T,,(m) is easy to compute. It is well known that graphs with
fewer than n — 1 edges are disconnected. Further, a graph with n —1 edges
is connected if and only if it is a tree. Since the toughness of a tree is the
reciprocal of its maximum degree [9], the toughest tree is P,, the path on
n vertices, and 7(P,) = 3. It is also easy to see that the toughest graph
with n edges is the n-cycle Cp, and 7(Cy) = 1 [2]. These observations are
summarized in the following theorem.

Theorem 2.4. Letn > 1.
(a) If m € I,(0) = [0,n — 1) NZ, then Th(m) =0.
(b) Ta(n —1) = 1. Recall, I,(1) = {n — 1}.
(¢) If m € I,(2) = [n, [32]1) N Z, then T,(m) = 1.

A connection between 7 and x that is stronger than Theorem 2.1 is
established by Matthews and Sumner.

Theorem 2.5 ([8]). If G is K, 3-free, then 7(G) = '—‘%9

Theorem 2.5 can be used to show that many of the maximally con-
nected graphs are also maximally tough. As we will see, equality is actually
achieved in Proposition 2.2(b) most of the time, but not always. In fact, it
is the failures to achieve this upper bound that make the computation of
Tn(m) interesting and non-trivial.

3 Maximally Tough Harary Graphs

The relevance of the intervals I, (r) is made clear by Harary’s computation
of Cp(m).
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Theorem 3.1 ([6]). Forn>1and0<m < ngnz—q,

o ifm<n-2,
Cn(m) = {L"’T’"J ifm>n—1.

That is, Cn(m) = 7 if and only if m € I, (r).

In fact, the very graphs constructed by Harary to prove Theorem 3.1
can also be used to determine some of the values of T;,(m).

3.1 Harary graphs [6]

Forn>3andn<m< 1("2—"12, let H(n,m) denote the Harary graph with
n vertices and m edges. Throughout our description, r denotes the value
|22|. Let the vertex set of H(n,m) be given by V = {0,1,...,n — 1}.
The edge set depends on the relationship between the values of n and m
and must first be described for the special cases in which m = [3F] with
2 < r < n —1. That is, we first describe the sesqui-regular Harary graphs.

Case: m = & for some 2<r<n-1.
If r is even, then

E={{i,j} :}i-jl=k modn forsomel <k< g}
If r is odd and hence n is even, then
E = {{ij):li-dl= o
{{i,j} :li-jl = 5 modn}.
Case:m:%l,forsome3§r§n—2.
In this case,
E = {{i,j} :li-jl=k mo i

ti+ 2 rocic BN U0

General Case.

Harary only uniquely determines H(n,m) for the cases in which m =
[22] for some 2 < r < n— 1. In general, for m € I(r), a Harary graph
H (n, m) is obtained by arbitrarily adding m — [ZF] edges to H(n,[5]).
In fact, since it is easy to see that C,(m) < |22], Theorem 3.1 is a conse-
quence of the following result.

Theorem 3.2 ([6]). Forr >2, s(H(n,[%])) =7.
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3.2 Conditions implying that 7(H(n, [%])) = 3

It turns out that many of the Harary graphs, although only constructed to
be maximally connected, are maximally tough as well. Chvital noted that
the following result is easy to see.

Theorem 3.3 ([2]). If r is even, then T(C,?) = £. Moreover, if r = | 22]
is even, then Tp,(m) = §. That is, if r even and m € I,(r), thenTp(m) = 3.

Perhaps the easiest way to see Theorem 3.3 is to use Theorems 3.1 and
2.5 together with the following Lemma. Its hypothesis is clearly satisfied

by the Harary graph H(n, ') = Ci when r is even.

Lemma 3.4. If, for every vertez v of G, the subgraph N(v) induced by the
neighbors of v is spanned by two complete graphs, then G is Ky 3-free.

Proof. For any three distinct vertices in N(v), at least two must be in the
same complete subgraph and hence adjacent. O

Theorem 3.3 bounds the behavior of T,,(m) over the intervals I,(r) and
implies a result of particular interest when r is odd.

Corollary 3.5. For any r, if m € In(r), then 52 < Tp(m) < 5.

The fact that Harary graphs of even regularity are K, 3-free and hence
maximally tough is also observed in [5]. Moreover, it is observed that those
of odd regularity are not always K, 3-free. Here, we explore the odd case
in detail. For large odd values of r = | 22|, the Harary graph H(n,m) can
also be seen to be maximally tough. In the following theorem, note that

[n mod 6| 0 ifn=0,1,0r2 mod 6,
3 " ]11 ifn=3,4,0r5 mod 6.

Theorem 3.6. If m>n (2[%] + L%‘.’_ﬁj), then Tn(m) = C'.;mz ]

Proof. Let r = |22 |. The hypothesis of the theorem is equivalent to the

condition that 46
n n mo
r>2 (2 lEJ + [—3—J) : (3.1)

Since Theorem 3.3 handles the cases in which r is even, it suffices to assume
that r is odd and hence r > 2(2[ 2] + 22243 ) + 1. Since the Harary
graph H(n,[%F]) is r-connected by Theorem 3.2, our desired conclusions
will follow from Theorem 2.5 by showing that H(n, [5"]) is K) 3-free.

To show that no vertex v of H(n,[5]) is a K 3 center, it suffices to
consider only the cases in which v € {0,...,[5]}. Moreover, when n is
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even, H(n, [5]) is vertex transitive and only v = 0 needs to be considered.
When 7 is odd, all of the different cases for v will be essentially the same,
except for the case in which v = 0, since v = 0 is the unique vertex of degree
r+1. Consequently, to simplify notation, we consider only the case in which
v = 0, and we remark on any necessary extra considerations arising when n
is odd. In fact, our proof is most easily followed by first understanding the
case in which n is even and then considering the extra fussiness required
when n is odd.
The neighbors of v = 0 are naturally broken into three sets

T - r—1

5 5 yooyn—1}, and%:{[%_’,[%]}.

Of course, when n is even, V3 has only one element. This is also the case
when n is odd for the appropriate version of V3 when v # 0. Clearly
each of the sets Vj, V2, and V3 induce a complete subgraph of H(n, [5F]).
Consequently, a trivial graph on 3 vertices among the neighbors of v would
have to consist of one vertex from each of V;, V5, and V3. Without loss of
generality, we assume that [2] is the vertex of V5. Since, in such a trivial
graph, the vertices from V) and V; cannot be neighbors of [4], they must
actually come from the subsets

1
V1={1,..., },Vg-“—{n-—

"]—T"I =l o)

V1'={1,---,‘[§ 2 2

The situation imposing these restrictions is pictured in Figure 1.
Let ¢ and j be vertices of V{ UV, and let k = |i — | mod n. Clearly,

—1}andV2’={[g]+

kg(n—([g]+r;1+1))+([g]—T;1—1)+1=n-r—1.

r—1

Our proof is completed by showing that k¥ < 5 and hence {,5} is an
edge of H(n, [5]).

For each of the congruence classes of n mod 6, it is easy to check that
3|2med€) 2 > n—6(2]. Therefore, 12[2] + 6[2m2d€] + 3 > 2 — 1.
It follows that r > 4|2] + 2| 2mgd€| 4+ 1 > 2821 Hence, 2n < 3r + 1.
Therefore, k <n—-r—-1< "—;l as desired. a

Theorem 3.6 tells us that, for large values of n, Harary graphs with
roughly %— or more of the ﬁ(-'-‘{-ll possible edges are maximally tough.

4 Maximally Tough Sub-Harary Graphs

The bounds given in Corollary 3.5 raise two natural questions which are
central to our work in the cases that r is odd and inequality (3.1) is not
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Figure 1: A portion of H(n, [5F])

satisfied. Is T([2F]) > 2517 Is there some m € I,(r) such that T, (m) =
£? In Section 8, the answer to the first question is conjectured to be yes.
The second question can be answered in the affirmative by considering sub-
Harary graphs.

4.1 Sub-Harary Graphs

Define a sub-Harary graph to be a sequi-regular Harary graph with some
of its edges removed. Specifically, we construct H'(n,m) by removing a
particular set F of c edges from the Harary graph H(n, q), where g = m+c.
However, we only consider the cases in which ¢ = &, for an even integer
s> 4,and 0 < ¢ < £. In these cases, the edge set E for H(n,g) is given by

E={{i,j} :|i—j] =k mod n, forsomelgkgg}.

We choose s
F={{i,z‘+§} :0<i<e—-1}.

Note that H(n,q) is s-regular, and H'(n,m) has minimum degree r =

[27"‘J = s — 1. For example, when n =8, m = 14, and s =7 + 1 = 4, the
graph H'(8, 14) is pictured in Figure 2.
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Figure 2: The sub-Harary graph H'(8,14)

4.2 Conditions implying that 7(H'(n,m)) = §

For odd values of r = [%"J > 3, sub-Harary graphs provide examples of
maximally tough graphs. Basically, we can remove up to Lgi well-chosen

edges from the Harary graph H(n, ﬂrzil—z) and still have a maximally tough
graph.

Theorem 4.1. Ifr is odd and B=U+) <  Brtl)
then T,(m) = T7(H'(n,m)) = 5.

Proof. Let s =741, ¢ = 5%, and ¢ = ¢ —m. Note that 0 < ¢ < § and
H'(n,m) is H(n,q) with the set F of c edges removed. As we shall see later
in the proof, it suffices to consider the case in which ¢ = §. By Lemma 3.4,
it is easy to see that H'(n,m) is K, 3-free. By Theorem 2.5, our desired
conclusions follow by showing that x(H'(n,m)) =r =s—1.

Since H'(n,m) has minimum degree r, it is clear that x(H'(n,m)) <.
Let R be a set of r or fewer vertices whose removal disconnects H'(n,m).
By Theorem 3.2, k(H(n, q)) = s, and hence R does not disconnect H(n,g).
Consequently, for some 0 < i < § —1, there must be two vertices ¢ and i + 3
that are in different components of H'(n,m) — R. Foreach 1 <j < § -1,
there is a path {i,i + j,% + £} in H'(n,m) of length 2 from i to i + 3.
Since all of these paths are internally disjoint, R must contain the § — 1
vertices {i +1,...,i + § — 1}. Note that, besides the edge {7,7+ §}, it is
now irrelevant that the other § — 1 edges have been removed from H(n,q)
to form H'(n,m).

Since H(n, q) is s-connected, there are at least s internally disjoint paths
in H(n,q) from i to i + 5. Moreover, since H(n,q) is s-regular, there must
be exactly s such paths. Besides the single edge path {i,7 + 3} and the
2 — 1 paths of length 2 mentioned above, there must be 3 more such paths
in H(n,q) and consequently in H'(n,m). Since R disconnects H'(n,m), it
must contain at least § vertices besides {i +1,...,i + 5 — 1}. Therefore,
|R| > (§ —1)+ § =s—1=r,and x(H'(n,m)) =r as claimed. a
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5 Doty’s Graphs [3]

The task of finding r-regular Z-tough graphs when r is odd was first con-
sidered by Chvétal [2], and hls results were greatly generalized by Doty
[3]. Throughout this section, let r be an odd integer such that r > 3, and
let a be an even integer such that 2 < a < r — 1. Chvétal showed that
K, X Ky12-4 is an r-regular Z-tough graph.

Theorem 5.1 ([2]). Supposer > 3 is odd and a is even with2 < a < r—1.
Let n = a(r +2 — a). Then, for allm € I,(r), To(m) =%

In [3], Doty defines a class of graphs which provide a generalization of
Theorem 5.1. For each k£ > 1, Doty constructs an r-regular §-tough graph
on n = ka(r +2 —a) vertices [3], which we denote by Dy(r,a). In particular,
Di(r,a) = Ko x Kyp2—0.

Theorem 5.2 ([3]). Suppose r > 3 is odd, a is even with2 <a <r -1,
and k > 1. Let n = ka(r + 2 — a). Then, for all m € I,(r), To(m) =%

Corollary 5.3. Let r > 3 be odd. If eithern =74+ 1 or n = 0 mod 2r,
then T,,(F) = §.

Corollary 5.3 inspires Question 8.2 in Section 8.

Remark 5.4. In addition to the graphs Di(r,a), Doty [3] also gives an
ezample of a —-tough, (11, 29)-graph with 8 vertices of degree 5 and 3 vertices
of degree 6.

6 Computing T,(m) for small n

The results of the previous sections can be used to determine all of the
values of T,,(m) for n < 6 and many of the values for 7 < n < 12. In this
section, some of the values not completely determined in previous sections
are pinned down. Tables listing these values are presented in Section 7.

Theorem 6.1. T7(11) = 1.

Proof. All graphs on 7 vertices are listed in [10]. Hence, 7%(11) can be
computed directly from the definitions. a

Remark 6.2. A much better means of computing T7(11) is given in [{].

Remark 6.3. Theorem 6.1 gives the smallest value of n (and its only
corresponding value of m) for which Tp(m) < &g—ﬂ

Theorem 6.4. Ty(23) = 2
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Figure 3: A maximally tough (9, 23)-graph

Proof. By Corollary 3.5, T5(23) < g As verified by computer, the (9,23)-
graph in Figure 3 is $-tough. O

Theorem 6.5. T1;(28) € {1,32}.

Proof. By Corollary 3.5, T11(28) < 3. As verified by computer, the (11, 28)-
graph in Figure 4 is %-tough. There are no possible fractions ﬁaﬁ_l?) strictly

Figure 4: A Z-tough (11,28)-graph

between I and § when there are only 11 vertices. a
Theorem 6.6. T12(42) = %

Proof. By Corollary 3.5, T12(42) < %. As verified by computer, the (12, 42)-
graph in Figure 5 is 3-tough. O

7 Values of T,(m) for small n

Table 1 lists the values of T,(m) for all 3 < n < 6. Next to each value we
also give a Theorem which justifies that value. Note however, that Propo-
sition 2.2 is never cited, though often it is used implicitly. For example, the
value Tyo(6) = $ follows from Proposition 2.2(c) together with the value
Ty(6) = £ given by Theorem 5.1.
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Figure 5: A maximally tough (12,42)-graph

m"n=3 Thm||n=4 Thm = Thm|n=6|Thm|
0 0 2.4 0 2.4 0 2.4 0 2.4
1 0 2.4 0 2.4 0 2.4 0 2.4
2 3 2.4 0 2.4 0 2.4 0 2.4
3 1 2.4 : 2.4 0 2.4 0 2.4
4 1 2.4 3 2.4 0 2.4
5 1 2.4 1 2.4 3 2.4
6 3 3.6 1 2.4 1 2.4
7 1 2.4 1 2.4
8 3 3.6 1 2.4
9 3 3.6 3 5.1
10 2 3.6 2 5.1
11 3 5.1
12 2 3.6
13 2 3.6
14 2 3.6
15 2 3.6

Table 1: Maximum Toughness Values for 3 <n <6
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Since Theorems 2.4 and 3.6 specify the values of T, (m) for small and
large values of m, respectively, we exclude these values in subsequent tables.
We also exclude the values for m € I,,(3) as those cases are handled in [4].
Consequently, there are no tables to display for n = 7 or 8. The values of
Tn(m) for 9 < n < 12 are listed in Tables 2 and 3.

m n=9|Thm|| m n=10 | Thm
18 —22 2 3.3 19 3 4.1
23 6.4 20 — 24 2 33
24-26| 2 4.1 25 — 26 : 5.1
27 - 29 2 4.1,5.1

Table 2: Maximum Toughness Values for 9 < n <10

rm n n =11 | Thm " m n=12 | Thm
22 — 27 2 3.3 24 — 29 2 3.3
28 Tor3| 65 30— 35 2 5.1
29 — 32 s 5.4 36 — 41 3 3.3
42 — 47 z 6.6

Table 3: Maximum Toughness Values for 11 <n < 12

8 Conjectures and Questions

In this section, we list some open problems in the determination of maxi-
mum toughness.

Conjecture 8.1. Forn>1and1<r<n—1, T.([%]) > F.

Question 8.2. For r odd and n even, does the equality T,(3') = § imply
thatn =0mod a(r +2 —a) for some2<a<r—17

Question 8.3. Which is the correct value of T1;(28) in Theorem 6.5
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