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ABSTRACT. A broadcast graph on n vertices is a network in
which a message can be broadcast in minimum possible (=
[log, »]) time from any vertex. Broadcast graphs which have
the smallest number of edges are called Minimum Broadcast
Graphs, and are subjects of intensive study. In this paper, we
study how the number of edges in minimum broadcast graphs
decreases, as we allow additional time over [log, n].

We improve results obtained by Shastri in [15] and prove a
conjecture posed by Shastri in [15, 16).

1 Introduction

Efficient broadcasting is a key component in achieving high performance
(throughput) from parallel and distributed processing. The motivation for
this work was triggered by our interest in performing an optimal query
on distributed database on diverse MIMD multiprocessor architectures [1].
There we investigated how to schedule and evaluate a query in a minimal
cost.

We define broadcasting from an originator(s) (source(s)) to be the pro-
cess of passing one (many) unit(s) of information from that source to a set
of predefined destinations which are connected via a network. This is ac-
complished by a series of transmissions over the network. The messages are
distributed over the network and spread using the communication network,
where each vertex transmits a message to its neighbors upon receiving it
regardless of the activities in other vertices (beside the vertex that receives
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the message that has to be idle). Eventually, broadcasting should logically
be viewed as a many-to-many communication.

The broadcasting problem usually is described by the following rules:

1. A processor may send a message to an adjacent processor only.

2. Time is discrete. At a given time each processor will do exactly one
of the following:

(a) receive a message,
(b) send a message to one neighbor,
(c) be idle.

More formally, we can view the communication network as a finite, con-
nected, undirected graph on n vertices, where the set of vertices are con-
sidered as processors and each edge which connects two vertices assumed
to be a direct communication link between these vertices. Then, we define
broadcasting from a vertex v (the originator) as transmitting a message
from v to every vertex in V\{v} using the above rules. This problem, that
was introduced in [14), is a variation of the gossiping problem [11].

For basic graph theoretical definitions one may see [9] or [17].

We define the broadcast number of v € V(G), G = G(V, E), denoted
by b(v), as the minimum time required to broadcast one message from v.
The broadcasting time of G is defined as: b(G) = max{b(v) | v € V(C)}.
Let b(n) denote the minimal message broadcast time b(G) over all graphs
G with n vertices. A graph G is said to be minimal broadcast graph if
b{(G) = b(n).

The problem of broadcasting in a general graph, namely, the problem of
determining b(x) for an arbitrary vertex in an arbitrary graph, was proved
by Johnson (see [14]) to be NP-complete. On the other hand, in a tree
with equal weights it happens to be linear [14]. Recently a generalization of
broadcasting in trees was obtained [2], where, positive weights were assigned
to the edges or the vertices of the tree. There are known results in a two and
three dimensional grid [18], complete graph and hypercubes (see [3] - [5]).
Recently, planar graphs were treated as well [12]. A conjecture concerning
minimum broadcasting time starting from a given vertex in a d-dimensional
grid (d > 3), was posed in [18]. This conjecture was recently validated in
(13].

The notion of m- Relaxed Broadcast Graphs (m-RBG), as appeared in
(15), is a generalization of /-RBG that appeared in [8], and was motivated
by exploring the sparest possible graphs in which broadcasting can be ac-
complished in slightly more than the optimal time of [log, n].
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Denote by B,,(n) the number of edges in the sparsest possible graph on
n vertices in which broadcasting can be accomplished in [log, n] +m steps.
Such a graph is called m- Relaxed Minimum Broadeast Graph (m-RMBG).

In [6] -RMBG graphs were introduced and constructed for all values
of n < 15, and the question of constructing such graphs was posed there.
Recently, Kwon and Chwa [5] obtained:

Theorem 1.1.

Bo(n) < ([log2 n] - 1)2“0g2 nl-1 +n

In [15], Shastri obtained the following bounds and posed a conjecture.

Lemma 1.1.
' Bi(n) < 2n — [logyn] — 3,

for all n.

This result is a slight improvement upon a former result due to Grigni
and Peleg [8].

Lemma 1.2. 3
By(n) < 5n — [logynl,
for all n > 8.

Lemma 1.3.

Bn(n) <n+2yn-—1,
for m > 1[logy n] and for all n.

Conjecture 1.1:
Bp(n)=n-1,
for all n and m > [1(logon+ 1)} + 1.
Conjecture 1.1 coincides with conjecture 1 in [16].

In this paper we improve significantly the bounds of Lemmas 1.1- 1.3 and
give an affirmative answer to Conjecture 1.1.

2 Time-Relaxed Broadcasting Graphs
In this section we supply significantly better bounds than those of Lemmas
1.1-1.3 and supply a proof to Conjecture 1.1.

However, before supplying the constructions and proofs we start, in Sec-
tion 2.1, with some preliminary results which are essential to our construc-
tions. The main results follow in Section 2.2.
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2.1 Preliminary Results

One of fhe main tools in our preceding proofs is the notion of the Binomial
Tree, which was first introduced in [10].

In this paper we denote [log, n] by t.

Definition 2.1. The Binomial Tree on n = 2° vertices, denoted BTy,
is defined recursively: BTy, = ({v},0) and the unique vertex is called the
root; BT, is constructed by connecting the roots of two copies of (denoted
to the rest of the paper by vy and vy) BT.—1. The root of the new tree is
one of the two previous roots (See Figure 1 for example).

Vo
(Originator)

A:23 tree B: 2t-tree

Figure 1: Binomial tree

One can easily observe that d(vp) = d(vy) = A(BT3:) = t, where
A(BTj:) is the maximum degree of vertices in BT and d(v) is the de-
gree of a vertex v. The vertices vg and v} are the only vertices in BTy
having the maximum degree. In addition the diameter of that tree d(BTy:)
is 2t — 1.

As it was observed in [10] b(vo) = b(vp) = t and b(u) < ¢t — 1 for any
uw € V(BTy). Also BTy is the maximal .possible tree among all trees
while broadcasting from a certain vertex where the total broadcasting time
given is t. Furthermore, each non-leaf vertex in BTy has exactly one leaf,
a fact which yields that their number is exactly 2¢~!. Therefore, while
broadcasting from vy (or vy) and since in each time unit the number of
announced vertices should be doubled, the leaves receive the message at
the last time unit (namely, t). Also each non-leaf vertex should continue
broadcasting from the moment it received the message until the end of the
process.
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In view of the above we define for 27! < n < 2¢ the n-tree, to be the
tree obtained from BTy:. by deleting 2¢ — n leaves from BTs.. Again, the
n-tree is an optimal one among all trees on n vertices (2!~! < n < 2') while
broadcasting from a certain vertex. Also we still have b(vg) = [logo n] = ¢.
Example: In Figure 1A we demonstrate BT5s3, as well as BT5:,where either
vp is the originator (and either vp or v} in the general case). Assume vg
is the originator. Then at ¢ = 1 it transmits the message to v;. Then,
both vp and v; act as originators in their BTs2-sub-trees, to accomplish
broadcasting within at most 2 time steps. The essential properties of BTy
are presented in the next two lemmas. The proof of the Lemmas is easy
and can be done either by induction on ¢ or by labeling each vertex of BTy
by a £-bit vector identifying how the broadcast message will reach it.

By d(u,v) we denote the shortest path (distance) between the vertices u,
v in a connected graph G.

Lemma 2.1. Let T = BT,:.. Define A C V(T) to be: Ay = {u|d(u,v) =
k}. Then,
t
e

Lemma 2.2. Let T = BTy:. Define Axq C V(T), Axa = {u € Aild(u) =
d}. If d,k > 1, then,
t—d
| Ak,al = (k _ 1)-

One of the main tools in our construction is the next lemma proved in
(6]
Lemma 2.3.
By(2%) = t2'71,

and the graph realizes that number is the 2'-vertex hypercube, which we
denote by Q.

2.2 Construction of m-RMBG, m > 1

In this section we supply in Theorem 2.1, a general upper bound to B,,(n),
m > 1, which yields a significant improvement of the bounds obtained in
Lemmas 1.1 - 1.3. We close the section by producing a construction which
confirms affirmatively Conjecture 1.1.

Theorem 2.1.

(i) Bm(n) < (1+2'"™)n - O((F)3), n > 2™, n =2,
and the leading constant depends on t (mod 3) for any fixed m.
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(i) Bm(n) < Ampn = [F212 7™ —t 4+ k+m —2) — (2 = n),
n>2mtl 2=l <« n <2

where A is the bound in (i) (withn=2!) and k = [%(t - m)].

(ili) Bm(n)=n—1,n < 2™,

Proof:

Case 1: n =2

Construction of the m-RBG graph G: We construct the required
graph G as follows:

We take 2% copies of BTy« trees, with z1, 2, ...,z as originators in
each T(i), i = 1,2,...,2*, respectively, and establish with them a Q-
cube. The value of k that will give the optimal construction (depending on
m), will be determined later.

We have only to describe the additional edges to be added between each
z; to vertices in T(i). As was viewed before concerning BTz, we can
decompose each BTy« into isomorphic copies of a BTym-1 tree. There are

t-k
exactly 22,,?— such copies. (We suppose that m — 1 <t — k). Hence, each
originator z; is joined Lo one of the originators in each BTom-1 tree, which
is at distance at least 2 from z;. So that we add (by using Lemma 2.1)

22,:‘—__'} — (¢ = k — m + 2) additional edges to obtain:

# edges | b otk edges added to each 2¢~*-tree
edges in eac -tree A

B‘m(n) < 2k 2t_k -1 +

~

’2l—-k

o~ (t—k—m+2)

edges in Q,k-cube

——
+ k25!
=n(l+%) —2"(t+3—m)+3k2’°“
1
=n (1 + 2,"_,) — 25=1(2(t — m) + 6 — 3k), (1)

where the minimum is achieved by choosing:
k=Ta(t-m),

satisfying m — 1 < t — k. Now, defining r = (¢t — m) (mod 3) yiclds k =
2
2(¢ —m) + §, so that the subtracted term in (1) is: 2577(6 —r) ()7, or

cr (;—,t,)?‘ sothat co =3, ¢; = 5-27%, cp = 4-27%. Hence, substituting the
value of k in (1) yields (i).
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To have (iii) we take G to be a BTpm+1. Then, one can check that within
at most 7 time units each vertex of the tree can rcach one of the originators.
Then, that originator finishes broadcasting within at most m 41 additional
time units. Since G was a tree we have B,(n) =n —1, n < 2™*1,

The broadcasting algorithm in G:
Case i: The originator is v ¢ {z;|1 <1 < 2%}

Assume v € T(j). Then, v needs at most m time units to reach
z;. Then, another k time units are needed to z; to broadcast
in the Qq«-cube and at most another ¢{ — k time units in any of
the T(4)-trees to accomplish broadcasting, within at most t+m
time units.

Case ii: The originator is v € {z;|1 <1 < 2k}

An originator z; broadcast first to all other originators within k
time units (using the Qq«-cube construction). Then it has ¢t — k
time units to accomplish broadcasting in each tree T'(¢), which
makes all together at most ¢ time units.

Case 2: 27! <n < 2¢

We start with the same construction as in Case 1 for n = 2* by
taking 2% copies of a 2¢~*-tree. Then, verlices are deleted, as
follows: first we delete whole trees T'(7) (without the originators
z;) as needed, as long as the number 2* —n is at least |T'(z)| — 1.
The remaining vertices to be deleted are from the same tree and
we start with the leaves there. Observe that since &k = [%(t -
m)] we never delete vertices from the Qqe-cube of originators.
Further, since [log, n] = ¢ the broadcasting scheme is the same
as in the previous case. Hence from Ay, 5, the number of edges
obtained in the previous case, we delete,

zl_n _ 2t—-k
O = lgmeig) (27 -1+ o — (k= m+2))
_ 2t —n
+2'-n— (27 - 1) Iy )

2t —n ot—k
= th_k_lj (Qm—l -(t—k—m+2)) +2t_n.

The first product in Cp, ¢ is exactly the total number of cdges
deleted with the deletion of “whole” trees T(z). The rest of
the amount deleted is due to the remaining vertices left to be
deleted. Here we notice that actually the number of delcted
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edges is greater than the one subtracted, but it is difficult to
determine that number using only parameters (namely, ¢, m).
It is possible to do it for explicit values of ¢ and m.

This completes the proof of the theorem. a

As one can see Theorem 2.1 supplies a better general bound than Lemma
1.3. In the particular cases of m = 1,2 we have the following theorems
which produce better upper bounds than those in Lemmas 1.1 - 1.2. The
calculation of the explicit values of C) ,,, Cy,, are omitted since these are
Jjust substitutions m = 1,2 and the relevant values of t = j (mod 3), j =
0,1,2.

Theorem 2.2.
() 2
2n —con%, t=0 (mod 3), n > 4
Bi(n) £{2n—cin¥, t=1 (mod 3), n >4
In—con¥, t=2 (mod 3), n > 4,

where, cg =2, ¢; = 3-2“'§, cy = % . 2‘§, and n = 24,
(i) Bi(n) < Ayn — Cyn, when 2171 < < 28,

(iii) By(n)=n—-1,n < 4.

Figure 2: 1-RBG graph G for k =3

Theorem 2.3.
(i)

%n—conizi, t=0(mod3), n>38
Bay(n) << 3n—cn¥, t=1 (mod3), n>8
3n—cmd, =2 (mod3), n>8,

o 1 1
where, co = 2,¢1 =23, ¢ =3-273, and n = 2%.
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(ii) B2(n) < Agn — Con, when 21 <« n < 28,

(iii) Ba(n) =n—1,n <8.
Remarks:

1. Although our bound in Theorem 2.1 is significantly better bound
than that in Lemma 1.3, in the next theorem we give an ad-hoc con-
struction which proves Conjecture 1.1 which is similar to a conjecture
appeared in [16].

2. Substituting m =t gives the obvious 2:-binomial tree.

In the next theorem we prove Conjecture 1.1.
Theorem 2.4.

Bm(n)=n-1, foralln and m > [%logznj + 1.

Proof:
Case 1: n=2*

We take the BT,:+1-tree, with originators z; and z7, and delete vertices
in each BTue-subtree in a way that each vertex in the resulting trec is able
to reach one of the originators within at most |£] time units. We delete
all vertices at distance greater than £, and (in case ¢ is even) we delete half
the vertices at distance exactly 5.

By lemma 2.1, lemma 2.2 and the well-known combinatorial identity,

L ()

=0

the deletion stops at distance 4] from one of the originators. Therefore,
we obtain a subtree of order 27! such that broadcasting from z; (or z3)
is accomplished within ¢t + 1 time steps. Each other vertex can transmits
a message to z; (or z2 ) within at most |Z] time steps, so that thc broad-
casting procedure is finished within at most ¢{ + m time steps.

The result is obtained since the constructed graph is a tree (see Figure
3).
Case 2: 2! <n < 2t

We take the tree that was constructed in the previous case and delete
leaves as required. Since [log,n] = ¢t we accomplish the broadcasting in
that tree within the needed time. a
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deleted vertices

B: The tree for t = 5.

Figure 3: m-RMBG for t =4,5
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3 Final Remarks

In [15] Shastri calculated values for n < 65, m < 3. For example: he
conjectured that B,(15) = 18 and B;(16) = 19. The construction presented
in Theorem 2.2 shows that in particular B1(15) < 18 and B1(16) < 20. Also’
it was obtained there that By(16) = 16, which is exactly the upper bound
of Theorem 2.3.

Hence, we can conclude that for the valuesof m, 1 <m < f% log, n], the
obtained bounds here are almost the best possible.
Acknowledgment. We would like to thank the referee for his valuable
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