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Abstract

A G-decomposition of the complete graph K, is a set S of sub-
graphs of K., each isomorphic to G, such that the edge set of K, is
partitioned by the edge sets of the subgraphs in S. For all positive
integers v and every 2-regular graph G with ten or fewer vertices,
we prove necessary and sufficient conditions for the existence of a
G-decomposition of Ky.

1 Introduction

A graph H can be decomposed into subgraphs G,Ga,...,G; if H is the
cdge-disjoint union of Gy, Ga,...,Gy. If, in addition, G; = G for cach i,
then the decomposition is called a G-decomposition of H. The problem
of determining all values of v for which there is a G-decomposition of the

complete graph K, is called the spectrum problem for G.
The spectrum problem has been considered for many graphs (see [12] for

a survey). If G is a complete graph with k vertices, then a G-decomposition
of K, is a (v, k, 1) balanced incomplete block design of order v with blocks
of size k and index 1. After a great dcal of previous work (see [16] for
a survey), the spectrum problem for m-cycles has recently been solved in
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(4, 17]. The spectrum problem has been considered for all graphs with five
or fewer vertices [5, 6], the n-cube [8, 14, 15}, paths [11], stars [7], Platonic
graphs [2], and the Petersen graph [1]. In this paper, we are interested in
the spectrum problem for 2-regular graphs with at most ten vertices.
When G is a 2-regular graph, the obvious necessary conditions for the
existence of a G-decomposition of K, are given by the following lemma.

Lemma 1.1 IfG is a 2-regular graph with m vertices and G-decomposition
of K, exists then

e m<uw,
e v is odd, and
e m divides v(v — 1)/2.

Let Cp, denote the cycle on m vertices and let Cy,, UC,, U ... UCpy,
denote that graph with components Cy,,,Cn,,...,Cm,. In addition to
the spectrum problem for m-cycles, another well-studied problem in the
area of G-decompositions of K, for 2-regular graphs G is the Oberwolfach
problem. The Oberwolfach problem asks for a G-decomposition of K, when
G is 2-regular graph with » vertices. There are two known cases when
the necessary conditions of Lemma 1.1 are not also sufficient. In [3], it
is shown there is no (C4y U Cs)-decomposition of Ko, and no (C3 U C3 U
Cs)-decomposition of /. It is widely believed that these are the only
cxceptions.

On the other hand, the necessary conditions in Lemma 1.1 are sufficient
for the existence of a C',-decomposition of K, [4, 17]. The problem consid-
cred in this paper encompasses both the problem of decomposing K, into
m-cycles and the Oberwolfach problem. We will show that the only addi-
tional exception (other than the two exceptions covered by the Oberwolfach
problem) for 2-regular graphs with at most ten vertices is that there is no
(C3 U C3)-decomposition of Kg (see Theorem 2.1).

2 Main Results

We begin with some notation. The complete multipartite graph with r
parts of s vertices cach is denoted by K, (. If G is a graph and H is
a subgraph of G, then G — H will denote the graph obtained from G by
removing the edges of H. In particular, we will make usc of the graph
K, — K,, and we call the complete graph whose edges are removed the
hole. For even v, the complete graph K, with »/2 independent cdges (a
1-factor) removed will be denoted by K, — F.

136



Let K and M be finite scts of positive integers and let A and v be
positive integers. A group divisible design, denoted by (K, A, M;v) GDD,
is a collection of subsets of size k € K (called blocks), chosen from a v-sct,
where the v-set is partitioned into disjoint subsets (called groups) of size
m € M such that each block contains at most onc element from each group,
and any two elements from distinct groups occur together in A blocks. If
M = {m} and K = {k}, we write (k, A, m;v) GDD. Also, a GDD with
exactly one group of size ms and the remaining groups of size m; is denoted
by (K, A, {m;,m3};v) GDD. Similarly, a GDD with cxactly onc block of
size k2 and the remaining blocks of size ky is denoted by ({1, k3}, A, M;v)
GDD.

We will make extensive use of the following well-known construction
given in [18].

Lemma 2.1 Let s and h be non-negative integers. Suppose there ezxists a
(K,1,M,v) GDD with group set S. If, for some g’ € S, there exists

(1) a G-decomposition of K,y for eachr € K;
(2) a G-decomposition of Kg+n — Ki for each group g € S\ {¢'}; and
(3) a G-decomposition of Kjg/4h,

then there exists a G-decomposition of Kyypp.

The following lemmas will be useful in completing the proof of Theorem
2.1.

Lemma 2.2 Suppose G is a 2-regqular graph with 6 vertices. Then there
exists a G-decomposition of K, if and only if v = 1,9(inod 12) and v # 9
if G=C3UCs.

Proof. Lect G be a 2-regular graph with 6 vertices. By Lemma 1.1, v =
1,9 (mod 12) if a G-decomposition of K, exists, and the result has been
proven in the case G = Cs. Hence, suppose that v = 1,9 (mod 12) and that
G = C3UCs. When G = C3 U C3, a G-decomposition also yields a Cs-
decomposition. There is (up to isomorphism) only one Cz-decomposition
of Kg and it is straightforward to check that the copies of C3 given in this
decomposition cannot be partitioned into copies of G. Hence there is no
G-decomposition of K¢ when G = C3 U C3. Existence for the remaining
values of v is given in [13].

o

Lemma 2.3 Suppose G is a 2-regular graph with 7 vertices. Then there
exists a G-decomposition of K, if and only if v = 1,7 (inod 14).
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Proof. Let G be a 2-regular graph with 7 vertices. If a G-decomposition
of K, exists, then, by Lemma 1.1, v = 1,7 (mod 14). The result has been
proved for the case G = C% so assume that v = 1,7(mod 14) and G =
C3 UCy. Apply Lemma 2.1 with s =7, h=1ifv = 1(mod14), h =0
if v = 7(mod 14), and with G-decompositions and GDDs as indicated in
Table 2. The G-decompositions in the table can be found in the Appendix
and the GDDs are well-known to exist [10].

v GDDs G — decompositions of
v=42x+ 1,z > 1 (3,1,2,62)GDD K5, K37y
v=42x + 15,z > 1 (3,1,2,6x + 2)GDD K5, K37y
v=422+29,z > 1 | (3,1,{2,4*},6x + 4)GDD K15, K29, K37y
‘U‘—‘42§L‘+7,.’L‘21 (3,1,1,6$+1)GDD K7,K3(7)
v=42r 4+ 21,z >0 (3,1,1,6z + 3)GDD Kq, K37y
v=42x 4+ 35,2 > 0 ({3, 5*},1,1,6$+5)GDD K7,.K3(7),K5(7)

Table 2
a

Lemma 2.4 Suppose G is a 2-regular graph with 8 vertices. Then there
exists a G-decomposition of K, if and only if v = 1(mod 16).

Proof. Let G be a 2-regular graph with 8 vertices. By Lemma 1.1, v =
1 (mod 16) if a G-decomposition of K, exists, and the result has been proved
in the case G = Cg. So assume that » = 1 (inod 16) and suppose G = C3UCs
or G = CyUCy. Apply Lemma 2.1 with s = 8, A = 1 and with G-
decompositions and GDDs as indicated in Table 3. The G-decompositions
in the table can be found in the Appendix and the GDDs are well-known
to exist [10].

v GDDs G — decompositions of
v=48x+1,z>1 (3,1,2,6x)GDD K7, K3(3)
v=48x+ 17,2 > 1 (3, 1,2,6x + 2)GDD Kz, K3(3)

v=48z + 33,2 > 1] (3,1,{2,4*},62 + 4)GDD K17, K33, K3(8)

Table 3
|

Lemma 2.5 Suppose G is a 2-reqular graph with 9 vertices. Then there
exists a G-decomposition of K, if and only if v = 1,9 (mod 18).

Proof. Let G be a 2-regular graph with 9 vertices. From Lemma 1.1,

if there exists a G-decomposition of K, then v = 1,9 (mod 18), and the
problem has been settled in the case G = Cy. Hence we assume that
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v=19 (mod 18) and that G = C3UC3UC3, G =C3UCs, or G = C4UCs.
Apply Lemma 2.1 with s = 3, h = 1 if v = 1(mod18), h = 0if v =
9(mod 18) and G =C3UC3UC3 or G =C3UCs, h =9 if v = 9(mod 18)
and G = C4 U Cj3, and with G-decompositions and GDDs as indicated in
Table 4. The G-decompositions in the table can be found in the Appendix
and the GDDS are well-known to exist [10]. This leaves the isolated cases
v=37Tfor G=C3UC3UC3,G=C3UCg and G=CyUC s, and v =45
for G = C4 U 5. These decompositions are given in the Appendix.

v GDDs G — decompositions. of
v =18z + 1,1‘ >3 (3,1,6,6$)GDD K]g,K3(3)
v=18zx+9,2 > 1, |(3,1,3,6z + 3)GDD Ko, K3(3)
G=C3UCs

or G=C3UC3UCs
v=18z + 9,.'1,' > 3, (3, 1,6,6.’13)GDD K27,K27 - KQ,K3(3)
G=C4UC5s

Table 4
1]

Lemma 2.6 Suppose G is a 2-regular graph with 10 vertices. Then there
exists a G-decomposition of Koz — K.

Proof. Let G be a 2-regular graph with 10 vertices. The result is true if
G = Cyp (see [9]) so assume that G = C3 UC3UCy, C3 U Cr, C4 U Cg or
C5 U C5. Let the vertex set of K95 — K5 be Zs x Z5 and let the hole be
on the vertices (0,0),(1,0),(2,0), (3,0), (4,0). For each 2-regular graph G
with 10 vertices, a G-decomposition of K19 — F is given in the Appendix.
We place this decomposition on the vertex set {(z,y) : = € Zs,y € {3,4}}
ensuring that the edge set of F is {{(z,3),(z,4)} : = € Z5}. Note that
there are 29 copies of G in a G-decomposition of Ks5 — K5 and 4 copies of
G in a G-decomposition of K19 — F. Thus we require 25 more copies of G
that form a G-decomposition of (K25 — K5) — (K10 — F') (where the K5 and
the Ko are vertex disjoint) for each 2-regular graph G with 10 vertices.
The required G-decompositions, constructed cyclically modulo 5, are given
in the Appendix. il

Lemma 2.7 Suppose G is a 2-reqular graph with 10 vertices. Then there
exists a G-decomposition of K, if and only if v = 1,5 (mod 20) and v # 5.

Proof. Let G be a 2-regular graph with 10 vertices. By Lemma 1.1, if
a G-decomposition of K, exists then v = 1,5(mod 20) and v > 5, and
the result has been proved for the case G = Cyp. Hence assume that
V= 1,5 (mod20), v > 5, and G = C3UC3UC4, G= CsUC7, G= C4UCG,
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or G = C5UCs. Apply Lemma 2.1 with s = 10, h = 1 if v = 1 (1nod 20),
h =35 if v = 5 (1nod 20), and with G-decompositions and GDDs as indicated
in Table 5. The required G-decompositions of Kas — K5 exist by Lemma
2.6 and the remaining G-decompositions in the table can be found in the
Appendix. The GDDS are well-known to exist [10].

v GDDs G — decompositions of
v=060r+1,2>1 (3,1,2,62)GDD KQ],Ks(]O)
’U=60.73+21,.’l?2 1 (3,1,2,62+2)GDD KQ],K;;(W)
v=60x + 41,z > 1 (3,1,{2,4‘},67‘+4)CDD Kzl,K41,K3(10)
v=60c+5,2>1 (3,1,2,6x)GDD Koz, Ko5 — K3, K3(10)
v=060z + 25,2 > 1 (3,1,2,6x + 2)GDD K25,K25—K5,K3(10)
v =00z +45,2 > 1 (3,1,{2,4'},6.’1)+4)GDD Kys, Koz — {5,K3(10)

Table 5
o
Combining the results of Lemmas 2.2, 2.3, 2.4, 2.5 and 2.7 (and the
well-known existence results for Cyp,-decompositions of K, for m < 10), we
have the following theorem.

Theorem 2.1 Let G be a 2-regular graph with m vertices where m < 10.
Then there exists a G-decomposition of K, if and only if

o m v

e v is odd;

o m divides v(v — 1)/2; and

e v£ 9 when G=C3UCs3 or G=CyUC5.
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3 Appendix

Let the vertex set be Z7. Decomposition is:
CyuCs: ((0,1,3,4),(2,5,6)), ((0,2,3,5),(1,4,6)), ((1,2,4,5),(0,3,6)).

Let the vertex set be Z;5. Develop the following mod 15:
C4UCs3: ((0,1,7,2),(3,6,10)).

m Let the vertex set be Zsg. Develop the following mod 29:
CsUC3:  ((0,1,3,6),(2,11,15)), ((0,5,19,7),(1,9,20)).

Let the vertex set be Zz; (with the parts obtained by cycling {0, 3,6, 9, 12,15, 18}

mod 21). Develop the following mod 21:
C4UCs: ((0)]-’318)1(276) 13))

Let the vertex set be Z3s (with the parts obtained by cycling {0, 5, 10, 15, 20, 25, 30}

mod 35). Develop the following mod 35:
CsUCs:  ((0,1,3,6),(2,15,19)), ((0,7,21,9),(1,12,20)).

Let the vertex set be Z,7. Develop the following mod 17:
CsUCsq:  ((0,1,3,6),(2,7,14,10)).
CsUCs: ((0:11371014):(2:5» 14))

Let the vertex set be Z33. Develop the following mod 33:
CsUCy: ((0,1,3,6),(2,7,11,18)), ((0,8,19,9),(1, 13,28, 14)).
CsuCls: ((0,1,3,6,10),(2,7,13)), ((0,7,16,2,17),(1,9,21)).

Let the vertex set be Z24 (with the parts obtained by cycling {0, 3,6, 9, 12,15, 18, 21}

mod 24). Develop the following mod 24:
CaUCy:  ((0,1,3,7),(2,10,5,15)).
CsUCs:  ((0,1,3,7,14), (2,10,15)).

Let the vertex set be Zg. Decompositions are:

C3uC3UCs: ((0,1,2),(3,4,5),(6,7.8)), ((0,3,6),(1,4,7),(2,5,8)),
((0,4,8),(1,5,6),(2,3,7)), ((0,5,7),(1,3,8),(2,4,6)).

CeUCs: ((0,1,2,3,4, 5), (61 7a8))1 ((01 2,4, 61177):(3)5:8))7
((1,3,7,2,6,5),(0,4,8)), ((1,4,7,5,2,8),(0,3,6)).

m Let the vertex set be {i; | 0 <7 < 12,5 = 1,2} U {co}. Develop the following
mod (13, —), with the vertex oo remaining fixed:
C3 (8] Cﬂ UCS: ((01, ll » 31)’ (21 y 61) 02)1 (4]y91, 12))v
(01,61, 12),(11,02, 32), (22,42, 92)),
((01, 02, 92), (11,42, 52), (21,82, 00)).
CsUCy: ((01,11,31,61,02), (21,71, 111, 12)),
((01,61,12,31,42),(11, 32,101, 62)),
((02, 12,32, 92,42), (01, 102, 72, ©0)).
CeUC3: ((01,14,31,61,21,71), (41,02, 12)),
(01,02, 11,29, 44, 62), (21, 52, 72)),
((01,42,02,52,22,82),(2],92,00))-
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Let the vertex set be Z1g9. Develop the following mod 19:

CsUCsUCs:  ((0,1,4),(2,7,13),(3,5,12)).
CsUCy: ((0,1,3,6,10), (2,7, 15,8)).
Cs UCa: ((07 113167219)7 (4y 10: ]5))'

Let the vertex set be Zzy. Develop the following mod 37:

CaUC3UCs:  ({(0,1,3),(2,6,11), (4, 10,22)),
CsUCy: ((0,1,3,6,10),(2,7,13,20)),
Cs UC3: ((0,1,3,6,2,7), (4,10, 18)),

C'5U04

. Ko7 — Ko I Let the vertex set be Zy7, with the hole on {0,1,...,

((0,9,1,10,11),(2,12,3,13)),
((0,13,1,12,14), (2,11, 4, 15)),
((0,16,2,17,18), (1, 19, 3, 20)),
((0,20,4,9,22),(1,21,2,23)),
((0,25, 3,10, 26), (4, 12, 5,13)),
((2,24,4,17,26), (3, 16, 6, 21)),
((4,21,5,14,23), (6,10, 7,12)),
((5,15,6,17,19),(7,9,8,11)),
((5,22,6,20,23), (7, 16, 8,21)),
((6,25,7,20,26), (8,10,9,13)),
((7,24, 8,14, 26),(9, 15, 10, 16)),
((8,20,11,14,25),(9,17,10,23)),
((9,25,10,13,26), (11,17, 14, 18)),
((10,22,12, 16, 24), (11,19, 13,25)),
((12,18,15,17, 20), (13, 16, 14, 24)),
(14,19, 15,21, 22), (16, 18, 24, 25)),
((15,23, 16,21, 24), (18, 19, 25, 22)),
(27,23, 25, 26,24), (16, 19, 20, 22)).

((0,7,20),(1,9,23),(2,12,28)).
((0,8,17,4,20), (1,12, 27, 13)).
((0,9, 24,5, 25,12), (1, 11, 22)).

8}. Decomposition

((0,10,2,9,12),(1,11,3, 14)),
((0,15,1,16,17), (2, 14, 4, 18)),
((0,19,2,20,21),(1,17,3,18)),
((0,23,3,9,24),(1,22,2,25)),
((1,24,3,15,26), (4, 10, 5,16)),
((3,22,4,19,26), (5,9,6,11)),
((4,25,5,18,26), (6,13, 7, 14)),
((5,17,7,15,20), (6, 18, 8, 19)),
((5,24,6,23,26), (7, 18,9, 19)),
((7,22,8,12,28), (9,11, 13, 14)),
((8,15,11,12,17),(9, 20, 10, 21)),
((8,23,11, 16,26), (10,12, 13, 18)),
((10,14,15,12,19), (11, 21,13, 22)),
((11,24,12, 21, 26), (13, 15, 16, 20)),
((12,25, 15,22, 26), (13, 17,21, 23)),
((14,20, 18,25, 21), (19, 22, 23, 24)),
((17,22,24, 20, 25), (18, 21, 19, 23)),

Let the vertex set be {i; | 0 £ 7 < 10,5 = 1,2,3,4} U {oo}. Develop the
following mod (11, —), with the vertex co remaining fixed:

Cs UCy:

((017 1y, 317 61:02)1 (03, 13, 14, OO)),
(01,42, 51,02, 72), (11,92, 12, 03)),
((01,43,71,13,63), (11,83, 12,04)),
((01,54,02,03,64),(12,23, 42, 63)),
((02,24, 52, 14,44), (03, 33, 73, 34)),

{(01,41,91,02,12),(21, 52, 32, 0)),
{(01,92,32,03,23), (11,13, 31, 43)),
((01,04,21,34,24), (11,44, 81,54)),
((02, 33, 82,13,04), (12,24, 42, 74)),
((03, 14, 33,04,24), (13, 54, 104, 64)).

Let the vertex set be Zjp. Decompositions are:

CiUC3UCs:  ((0,2,1,3),(4,6,8),(5,7,9)),
((0,6,1,7),(2,5,8),(3,4,9)),
Cs U Cs: (0,2,1,3,4),(5,6,8,7, 9))
((0,5,8,1,7),(2,4,6,3,9)),
Cs U Cy: ((0,2,1,3,4,6),(5,8,7,9)),
: ((0,5,2,6,3,7),(1,8,4,9)),
CruCs: ' ((0,2,1,3,4,6,8),(5,7,9)),
((0,4,7,1,6,3,9),(2,5,8)),

143

((0,4,1,5),(2,6,9),(3,7,8)),
((0,8,1,9),(2,4,7),(3,5,6)).
((073,7,4,8),(1,5,2,6,9))
((0,6,1,4,9),(2,7,5,3,8)).
((0,3,5,1,7,4),(2,8,6,9)),
((1,4,2,7,5,6),(0,8,3,9)).
((0,3,5,1,4,8,7),(2,6,9)),
((1,8,3,7,2,4,9),(0,5,6)).



K3z | Let the vertex set be {0,1,2} U {3,4,5} U {6,7,8}, with the obvious vertex

partition. Decompositions are:

C3UC3UC3: ((0,3,6),(1,4,7),(2,5,8)), ((01418)7(1y5y6)1(2»3a 7))’
((0,5,7),(1,3,8),(2,4,6)).

Cs UCq: ((0131 1,4, 6)1(27 7, 518))7 ((014: 2, 675):(117731 8))1
((1,5,2,3,6),(0,7,4,8)).

Cg U C3: ((01 16v114y7)r(21 5y8))1 ((0’4y 69213a8)a(1151 7)):
((1731 772:4!8)7 (0l5!6))'

| (K25 — Ks) — (K10 — F) | Let the vertex set be {i; | 0 < i < 4,1 < j < 5}, with

the Ks on {01,11,21,31,41}, the Kio — Fon {i; |0 < i< 4, j =23} and F =
{(02,03),(12,13),(22, 23), (32,33), (42,43)}. Develop the following mod (5, -):
C4UC3UC3:  ((01,02,11,22),(21,03,04), (31,12,24)),
((01,03,11,23), (21, 24, 34), (31, 04, 05)),
((01105v2l,15)1 (02y03)24)a (12104)25))y
((02104,22y05)) (42115135)1 (031 14125))y
((03, 34,14, 45), (23, 25, 35), (33, 24, 15)).
((01102)11122y23)y(21)42,04)311 13))$
((01,32,04,11,13),(21, 24,41, 0s5,34)),
((01,0s5,11,45,25), (02,04, 12,44, 35)),
((02)05132125115))(03104y13!24134))7
((03)241051 13125)7(339 15y04,34135))'
((01102711t22141)03)’ (21y42,43,04)),
((01123731313)04714)1(11134741305))'
((01,04,02,14,22,0s), (11, 35, 32,4s5)),
((02,24,42,15,03,45), (13, 14, 33, 35)),
((03324104705a14135)y (34715y25y45))‘
((01, 02, 11,22,41, 12, 13), (21,03, 04)),
((01,03,11,33,04,31,44), (21,24,05)),
((01,05,1y,35,02,04, 15), (12,24, 34)),
((02,34,42,05,12,15,25), (03, 14, 44)),
((03,34,05,04,45,43, 25), (23, 15, 35))-

CsUCs:

CeUCy:

C;UCs:

Let the vertex set be {i; | 0 < i < 4,1 £ j £ 5}. Develop the following mod
(5, _):
C4UC3UCs:
((01y11131y02)7(21: ]2y32)7(41122:03)))
((011 l4y41105)1 (31y 15725)7 (027 12703))v
((02,34,03,15),(12,0s,35), (13,23, 4s)),
CsUCs:
((01,11,31,02,12), (21, 22,41, 32,03)),
((01714131)04105):(11)25v021 03935))7
((02714)32)043 15)1 (42y35313724745))7
CeUCy:

((01,03,11,33), (21,04, 14), (31,34, 05)),
((02,13,42,04), (12, 34, 15), (22, 14,0s)),
((03,23,34,45), (13, 14, 15), (33, 04, 24)).

((01,03,11,23,04),(21, 43,02, 22, 14)),
((01, 35,02, 33,45), (12, 23,03, 13, 14)),
{(03,24,33,25,03), (14, 34,44, 35,45)).

((011 11131v02y 21: 12)7 (41)421 22) 03))1
((01133y 221 12) 03705)’ (lly25y 41’ 35))v
((02) 34)03704) 13705)$ (121 25) 14y 45)))
C7UCs:

((01,11,31,02,21,12,03), (41,42, 13)),
(01, 33,22,23,03,13,24), (11,44, 0s)),
((02,34,42,05, 12, 15, 25), (03, 24, 44)),

((017031 11,33, 12, 04)7 (211 14,35, 44))v
((02, 03,13, 33,04, 14), (12, 34, 32, 05)),
((03, 14, 34, 0s, 33, 15), (44, 35, 25, 45))-

((Ol) 12a 02, 221037 11104)1 (21)33)34)))

((Ola 05y2ly35)021 04125)1 (121 24134))y
((031 34’ 15) 13, 35144,45)! (431051 25))
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Let the vertex set be Zo;. Deve‘lop the following mod 21:

CaUC3UCs3:  ((0,1,3,8),(2,5,11), (4, 14, 18)).
Cs UCs: ((0,1,3,9,4), (5,8, 15,7,16)).
CsUCy: ((0,1,3,6,2,7), (4, 14, 8, 16)).
CrUCs: ((0,1,3,6,10,2,9), (4, 14, 19)).

Let the vertex set be Z41. Develop the following mod 41:

CsLUC3UC3:
((27, 32, 39, 40), (10, 26, 36), (23, 34, 37)),

Cs UCs:
((0,7,15,1,18), (2, 14,29, 4, 23)),

Ce UCy:
(0,1,3,6,2,7),(4,10,18,27)),

C7;0Cs:
((0,1,3,6,2,7,13), (4,11,19)),

((0,2,8,17),(1,5,23), (3,11, 32)).

((0,1,3,6,10),(2,7,13,4, 15)).

((0,10,21,1,13,26), (2, 16, 35, 18)).

((0,9,19,7,24,1,20), (2, 13,27)).

Let the vertex set be {i; | 0 <7 < 8,1 < j < 5}. Develop the following mod

9,-)

CyUC3UCs:

{(01,11,81,02), (21, 51, 12), (41, 81, 22)),
((01,43,63,04), (11,63, 73), (21, 14, 34)),
((Oly 15131)65)1 (11) 35955)1 (021 121 32))1
((02, 33, 52,04), (12, 73, 24), (22, 14,44)),
((02;451 721 55):(03y 04754)5 (13y24)05)):

Cs5 UCs:

((Oly 12)51)721 03); (11123, 31) ]31 33));
((01: 14,41,04, 34)9 (ll ,54,09, 12, O5))a
((01:551 02,42, 65): (12172» 13, 22,23)),
((02y 24, 32104y44)1 (12184r52r 2s, 85)),
((031 44, 73134725)y (13705)231 5s, 75))7

Ce UCy:

((01, 32,41, 82,02, 03), (11, 23, 31, 53)),
((01,34,51,24,02,05), (11, 25, 31, 55)),
((02, 42,03, 22, 33, 23), (12, 53, 82, 04)),
((021 35) 03) 23: 63) 85)) (13: 43: 049 14))a
((03»341 04,24, 64, 15)v (13> 05744155))’

C7UCs:

((61,54,65,81,22,13,55), (31,84, 7s)),
((62,2s, 63, 64, 53, 14, 75), (31, 03, 85)),
((32,83,62,4s, 73,14, 74), (51, 13, 63)),
((01,11,31,61,21,02,12), (41, 62, 82)),
((01; 041 311 54142143a25)y (021 24» 05)):

((03,24,33,0s), (13, 44, 35), (53, 34,65)),
((017 127 6l303)1 (11132a 23)7 (211 13143))v
((0])24141105)1 (lly 54: 64)1 (21 ) 841 15))1
((02,42,03,23), (12, 13, 53), (22, 33, 04)),
((02,34,62,0s), (12,64, 2s), (22, 15,45)),
({03, 35,34, 7s5), (13, 55, 65), (74,45, 85)).

((011 11)31 ] 61v02), (21y 71» 22v 41) 12))1
((01, 33,61, 13, 53), (11,04, 21,24, 34)),
((01,0s,21,3s,2s), (11, 45, 02, 22, 55)),
((02: 43162123, 04)y (12, 73: 13)03) 24))1
((02,05,03,04,15), (13, 24, 33,64, 25)),
((03,45,04,74,55), (14, 15,44, 75,35)).

(01,11, 31,61,21,02), (41, 12,51, 62)),
((Oly 337 51: 13141104)9 (11:243 31)54))1
{(01, 35,51, 15,02, 65), (12, 32, 62, 03)),
((02,04,22,54,12,64),(32, 15, 52, T5)),
((03, 14,23, 04, 33, 05), (13, 34, 83, 65)),
((04,0s, 14, 3s, 1s, 65), (44, 25, 85, T5))-

((7’ ,4s,25, 83, 52, 81, 85)1 (05y 1s, 65))v
((41)84a 32,43, 5s, 53, 75)) (047 44, 45))a
((02104) 231 52)75) 82: 64)) (221 541 85)))
((51,42,82,81,64,44,03), (71, 53,63)),
((01,52,22,03,61,63,34), (11,33, 24)),
((02743)63v 03,24, 14,3s5), (12y 04, 55)).
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Let the vertex set be {i; | 0 < i < 4,1 < j < 6}, with the vertices with
subscripts 2i — 1 and 2i in the i’th partition, i = 1,2, 3. Develop the following mod 5:

CsUC3UCs:  ((11,04,06,24),(12,03,26), (42, 23,05)),
((21,2s,23,3s5), (41,03, 46), (22, 14,05)),
((21) 03131106)1 (027 23’ 45); (32) 34: 26))7
((Olyoax 11;34)y(2])24105)1 (02, 13, 26))’
((01725) 33, 16),(02,03,06),(12,24,46)),
((01y45y34v46)v (02124x25)1(12744r 15)).

C5 UCs: ((41,03, 45,23, 06), (22, 16, 13,32, 46)),
(21,04, 15, 02, 35), (22, 23, 36,44, 45)),
((04,03,11,33,3s), (21, 14, 41,23, 1)),
(01,04, 02,13, 25), (11, 24, 12,33, 15)),
((01,4s,02,24,06), (41, 16, 12,04, 2¢)),
((02,43, 16, 14,05), (12, 44, 15, 34, 4¢)).

Cs UCy: ((13,1s,24,3s5,04, 26), (42, 43, 46, 44)),
((32,03, 15,23,42, 36), (02, 14, 26, 44)),
((11,13,06, 22,36, 44), (02, 34, 12, 15)),
((04,13,21,03,31,04),(11,05,41, 15)),
((Ol) 14) 2]7 05; 121 36)7 (]lyOGa 417 16)):
((02, 13,22,05,04,25), (33, 15,43, 16)).

C7UCs: ((32,35.13,45,04, 42, 16), (11,44, 05)),
((22, 26, 23,25, 33,42, 36), (11, 14, 1)),
((02, 34, 16, 33, 26, 13, 25), (12, 14, 45)),
((01,03,11,23,41,13,36), (21, 34, 46)),
((017247 16y 21: 257 11135)a (417 34y 06))»
((02, 03, 22,43, 32, 25,24), (42, 34,05)).
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