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Abstract

Classical bin packing has been studied extensively in the literature.
Open-ends bin packing is a variant of the classical bin packing. Open-ends bin
packing allows pieces to be partially beyond a bin, while the classical bin packing
requires all pieces to be completely inside a bin. We investigate the open-ends bin
packing problem for both the off-line and on-line versions and give algorithms to
solve the problem for parametric cases.

1 Introduction

The classical one-dimensional bin packing problem has been studied
extensively in the past two decades. Suppose we are given a list L = (ay, ..., an)
of items, each with a size s(a)) € (0,1) with # =1,...,7and the goal is to find a
packing of these items into a minimum number of unit-capacity bins. This
problem is a basic problem in Theoretical Computer Science and Combinatorial
Optimization. It has many potential real-world applications in paged computer
systems, in packet routing in communication networks, in assigning
advertisments to station breaks on television, in cutting-stock problems etc. Since
the problem of finding an optimal packing is NP-hard [3], many research on
finding near-optimal approximation algorithms have been proposed. In the past
twenty-five years, many interesting results were obtained in this area [2].

In the one-dimensional covering problem, the goal is to pack a list L of
items into a maximum number of bins of size one such that the sum of the sizes in
any one of the bins is at least one. This means that we have to fill as many bins as
possible. The problem was investigated for the first time by Assmann et al. [1]
who showed that the problem is NP-hard. The open-ends bin packing problem
may be considered as a kind of inverse or dual version of the one-dimensional
covering problem.

The open-end bin packing problem which only allows one end open for a
bin was first considered by Young [6]. Some experimental results are shown. This
problem arises in the fare payment system in the subway stations in Hong Kong
[6]. Leung et al. [5] showed that the open-end bin packing problem is strongly
NP-hard and that all on-line algorithms must have an asymptotic worst-case ratio
at least two which can be easily attained by a simple on-line algorithm.
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Open-end bin packing in two and three dimensions are considered in [8,9]
which only allows one end opens for bins and some experimental results and
algorithmic analysis were also given. The number of possible cases for the open
ends in high dimension of a bin were considered in [7].

A bin packing (covering) problem is called on-line if the items are not
known in advance but arrive one by one and must be assigned to bins as soon as
they arrive. Once an item is packed, it is not allowed to be moved again.
Therefore an on-line bin packing (covering) algorithm always packs all items
solely on the basis of the sizes s(a;) of the items a;, 1 <j < n, and without knowing
any information on the subsequent items. The decisions of the on-line algorithm
are irrevocable.

For a given list L of items and an approximation algorithm A4, let A(L)
denote the number of bins used by algorithm 4 and OPT(L) denote the number of
bins in the optimal packing (off-line). Then the asymptotic worst-case

performance ratio, denoted by R, of algorithm 4 is defined to be the ratio

between A(L) and OPT(L) as OPT(L) tends to infinity. If in addition one restricts
lists to those for which all items have sizes at most ¢, one can analogously define

the parametric worst-case performance ratio R (¢¥). Note that R;[1] = R .

In this paper, we consider a variant of the classical bin packing problem,
which we call the open-ends bin packing problem. Like the classical bin packing
problem, we are also given a list L = (a, a3,..., a,) of n pieces and each item with
a size s(a;) € (0,1] and our goal is to pack the pieces into a minimum number of
unit-capacity bins. However, unlike the classical bin packing problem, a bin can
be filled with pieces packed beyond its bin size as long as at least a fraction of
each piece is inside the bin. In other words, there are only two cases for items, one
case is that the item is totally inside the bin and the other case is part of the item is
inside the bin and part of the item is outside the bin. The latter case can occur at
the ends of a bin. Different from the open-end bin packing problem in [5,6] which
allows only one end of each bin open, we consider packings that both ends of bins
can be opened. Examples of the classical, open-end and open-ends (open-2-end)
one-dimensional bin packing problems are shown in Figure 1. Some off-line
algorithms are considered first and then we give an on-line algorithm which has

m+4 . .
the competitive ratio ﬁ for the parametric constraint s(a,) < L.

2 Offline algorithms

The offline open-ends bin packing problem has a close relationship with the
offline bin packing problem. We will show these connections with the following
Lemmas and Theorems.



For a given list L = (py, p»,..., Pu), let Opt(L) denote the optimal solution for
the bin packing of L and Op#(L) denote the optimal solution for the open-ends bin
packing of L. Throughout the proofs of the following results, we assume that
there is no sublist of L whose sizes sum up to one.

Classical Open-end Open—ends
Figure 1. Examples of 1D bin packing

Lemma 1l Let Op#L)=m and p; < pysy, 1 Si<n-1 in L, then the optimal
solution for the bin packing of L, = (py, p2,..., px) satisfies m — 2 < Opt(L;) < m,
where k=n—2m.

Proof First we show that Opt(L,) < m. Since Opt(L) = m, then for each bin
of the optimal open-ends bin packing, pick up the first two Iargest items from the
bin, then the sum of the rest left in the bin is less than 1. Let p” be the smallest item
of the items plcked up from the bins. If there is an item which is inside some bin
and larger than p’, then we can exchange p’ with that item until the smallest item
outside the bins is equal or larger than the largest item inside the bins. So we have
Opt(L;) < m. Next, we show that Opt,(Ly) 2 m—2. Suppose that Opt(Ly) <m—3.
Since each bin of the optimal bin packing of L, can accept two large items for the
open-ends bin packing and an empty bin can accept at least three large items, then
the number of bins used for the open-ends bin packing of L is at most
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assumption that Opt(L) = m. This ends the proof.

As Opt (L,)+ <Sm-1, it is contradictory to our

Lemma2 If there is an a-approximation offline algorithm A4; for the bin
packing with time complexity O(f(n)), then there is an offline a-approximation
algorithm A for the open-ends bin packing with time complexity O(f{n)log n).

Proof Suppose algorithm A4 is an orapproximation offline algorithm for the
optimal bin packing of a list L = (py, p2,..., P») With time complexity O(f(n)). We
construct an algorithm 4* which produces an a-approximation for the optimal



open-ends bin packing of a list with time complexity O(f{n)log n) as follows.
For a given list L, we first sort the list in an increasing order as L = (p,, ps,...,

Pn), i.. pi < puy, for 1 i< n—1.This will cost O(n log n) time.

Algorithm 4"

Step 0. Initialize LB = [ Z p,} and UB = [2 p,.].
i=1

i=1
LB+UB
Step 1. Use A for the list L, = (py, pa,..., pp), for M = [—J

and k=n-
2M.
Step 2. If 1) A(Ly) < M then set UB = M and return Step 1.

2) A(L;) > M then set LB = M and return Step 1.

3) A(Ly) = M then A°(L) = A(Ly).

Since there are at most O(log [ z D; .,) (i.e., O(logn) as 0 < p; < 1 for
i=]

all 1 <7< n)loops in the algonthm A’, we know that the time complexnty of 4" is

O(fin)log n). Let k' = n—2 x A"(L). Smce A'(L) 2 OpiL), k' <n-2x Opt(L).

From Lemma 1, we know that Opt, (L, ) < Opt(L) . Since A(L,) is at most

atimes Opt (L, ) , we have that 4°(L) is at most o times Opt(L). This ends the
proof.

Combining the above two lemmas and using fully polynomial
approximation schema for the classical bin packing problem, e.g., Karmarkar and
Karp’s algorithm [4], as scheme 4, we have the following theorem.

Theorem 1 There is a fully polynomial approximation scheme for the
one-dimensional open-ends bin packing problem.

3 Online algorithms

From the above section, we know that the offline open-ends bin packing
problem has a fully polynomial approximation scheme. In this section we
consider algorithms for the online version of open-ends bin packing problem
which must pack the pieces in the order they arrive, and once a piece is packed, it
can not be repacked again. Probably the most natural online algorithm for the
open-ends bin packing problem is the Next Fit (NF for short) which was proposed
in [5,6). This algorithm operates by keeping only one open bin and the pieces are



packed in the order they arrive. Unlike the case for the one end open bin problem
considered in [5,6], we modify the NF algorithm for the open-ends bin packing as
Central First Next Fit (CFNF for short) algorithm which packs the first piece at
the center of the bin if the bin is empty and then use NF for the following pieces at
the two sides of the bin, When the open bin is filled at its two ends, the bin will be
closed and a new open bin is started. Clearly, The CFNF has a linear time

implementation. Furthermore, it has an asymptotic worst-case bound of %, if

all pieces are bounded by +-.

An algorithm for the open-ends bin packing is called a full packing
algorithm if the output has only one or two bins which may have some empty
space and the others are all fully packed.

Lemma 3 Let 4 be a full packing algorithm and M’ be the optimal open-ends

Y. p,

n-2M"<ign

bin packing for L = (p|, ps,..., p») and p; € py where 1 Si<n, & = M

then 4 is an (1 + ¢)-approximation of the optimal packing.

Proof Let ), v<icnPi =1 and A{(L) be the output of a full packing
algorithm. Since the maximum size of items which are totally inside a bin must be
smaller than 1, we have M~ +t=M" + Zn_wds” Pi2 D, Pi-Asthe
level of a bin must reach one before it is closed, Zk < Pi 24, (L) . Hence,
4,L) M+t
M M

=1+ & This ends the proof.

For the open-ends bin packing, and for an empty bin, one can pack the first
item any where if part of the item is inside the bin. To make things easy, we will
mainly consider the CFNF. Since CFNF is a full packing algorithm, we have the
following theorem.

Theorem 2 If the size of every item is less than ';, then CFNF has the

: : s M2
approximation ratio £>=.

Proof Since the item size is bounded by -,'; , then for the optimal open-ends
bin packing, each bin has at most % outside the bin, i.e., this is just the case for

a= —,2; . From Lemma 3, the theorem holds.



Assume that all items are less than —'- . An p; item is called a Jarge item if its size

is greater than — +2 ; otherwise it is called a small item. With this classification,

we can give a better online algorithm which is called Harmonic Algorithm as
follows.

Harmonic Algorithm (HA for short): If m is odd, then apply the Central First Next
Fit algorithm to small items and large items, respectively. If m is even, then apply
the CFNF to small items and pack the first large item for an empty bin beyond the
center of the bin and then use NF for the rest of the large items. In other words, we
have two bin sets, one of which is for packing small items by CFNF and another
is for packing large items by CFNF, if m is odd and packing first item for an
empty bin beyond the center of the bin and then use NF for the rest, if m is even.

. . +4
Theorem 3 The HA has the approximation ratio Z—_i_z' .

Proof For any list L = (py, pa,..., Pr), assume that L contains k large items.
Let a; denote the sum of the small items. For HA packing, there are only two types
of bins. Let S, denote the set of bins containing only large items and let S, be the
set of bins containing only small items. It is clear that every bin in S), except the
last one, must accept at least m + 2 large items. The number of bins in S is no

larger than —= +2 + 1. Every bin in S,, except the last one, must be fully packed. So

the total number of bins in S; is not greater than g, + 1. Therefore the following
inequality holds;
k
HALYS A=+ a, +2

Let ¢ be the number of bins used in an optimal open-ends bin packing of L.

i)if k2 2¢,, let k=2r+ /. Then there are at least / items which are totally inside the
bins of the optimal packing of L. Since the size of a large item is at least m+2 , we

have that a, + — L <t and then

m+2 =

HAL)S a, + 2 +2<t+-2- 2.

ii) if k< 2¢, let k =2t~ I. Since the size of every item in S, is smaller than m—+2 and

there are at most 2¢ items which are partly outside the bins in optimal packing of L,
then we have @, — 4> <t andthen HA(L)<a, + 2L +2<¢+-2-+2.

s m+2 = me2

Both i) and ii) imply the theorem holds.



4 Concluding Remarks

In this article, we proposed the open-ends bin packing problem, which is a
new variant of the classical bin packing problem and also a variant of the one end
open bin packing problem observed in [6]. Offline and online algorithms are
given for the open-ends bin packing problem in this paper.

As for some further research problems, whether the approximation ratio

-:'”-% of HA for the online open-ends bin packing problem can be improved is an

interesting topic. Moreover, it remains open to develop lower bounds that hold
with respect to optimal offline algorithms that must pack a list of items in the
order of arrival.
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