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Abstract

We explore the maximum possible toughness among graphs with
n vertices and m edges in the cases in which [37"-] < m < 2n. In these
ca.ses, it is shown that the maximum toughness lies i m the interval
[3,3]. Moreover, if [32]+2 < m < 2n, then the value 3 is achieved.
However, if m € {[3"] [22] + 1}, then the maximum toughness can
be strictly less than % This provides an infinite family of graphs
for which the maximum toughness is not half of the maximum con-
nectivity. The values of maximum toughness are computed for all
1 < n <12, and some open problems are presented.

1 Introduction

In this paper, we adopt and freely use the notation and terminology from
[4]. A K, 3 subgraph is an induced subgraph that is isomorphic to K} 3. Its
degree 3 vertex is called a K, 3 center. The toughness of a non-complete
graph G is

7(G) = min{ (CI:'IS) :SCVandw(G-S)>1},

while 7(K,) = %5*. Among all (n, m)-graphs, the maximum toughness is
denoted by T,,(m). An (n,m)-graph G is said to be maximally tough if
7(G) = Tp(m). A graph on n vertices is said to be sesqui-cubic if n — 1
of the vertices have degree 3 and the remaining vertex has degree 3 or 4.
That is, the graph is as close to cubic as possible given the parity of 3n.

Chvétal [2] gives an important upper bound for toughness in terms of
connectivity.

Theorem 1.1 ([2]). 7(G) < =&,
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A connection between 7 and & that is stronger than Theorem 1.1 is
given by Matthews and Sumner.

Theorem 1.2 ([7]). If G is K1 3-free, then 7(G) = ﬂgl

Theorem 1.2 will be used heavily to show that the graphs we construct
are maximally tough.

2 Computing T,(m) for [£] <m < 2n

The task of computing Tn(m) for [3*] < m < 2n was started and partially
completed by Chvétal.

Theorem 2.1 ([2]). For n even, Tn(32) = 2 if and only if either n = 4
orn = 0mod 6.

Jackson and Katerinis further showed that the converse of Theorem 1.2
3

holds when m = 3.
Theorem 2.2 ([6]). A cubic graph is 3-tough if and only if it is 3-connect-
ed and K 3-free.

2.1 Restrictions on maximally tough sesqui-cubic graphs

In light of Theorem 2.2, the most natural place to look for maximally tough
(n,m)-graphs with [32] < m < 2n is among 3-connected K 3-free graphs.
Such graphs only exist under certain conditions. Our proof of the following
theorem is a generalization of Chvital’s proof of the necessity of n = 0
mod 6 in Theorem 2.1.

Theorem 2.3. If a sesqui-cubic graph G on n vertices is 3-connected and
K 3-free, thenn =4 or n =0 or 5mod 6.

Proof. Let w be the degree 4 vertex in the case that n is odd. Let a, b, c,
and d be the neighbors of w. Since w is not a K, 3 center, we may assume
that {a, b} is an edge. We claim that, if n > 5, then {c, d} is the only other
edge in the graph induced by the neighbors of w. This will then imply that
the graph induced by {w,a,b, ¢, d} must be as pictured in Figure 1.
Suppose toward a contradiction that {b,c} is an edge. If {a,c} were
also an edge, then w would be a cut point, contradicting the fact that G
is 3-connected. Since w is not a K, 3 center, we may assume that {a,d}
is an edge. If n = 5, then the maximally tough graph pictured in Figure
2 is obtained. If n > 5, then ¢ and d would form a cut set, contradicting
the fact that G is 3-connected. We conclude that {b,c} is not an edge. By
symmetry, none of {a,c}, {a,d}, or {b,d} can be edges either. Since w is
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a d

Figure 1: Around the degree 4 vertex

Figure 2: The maximally tough (5, 8)-graph showing T5(8) = 3

not a K 3 center, {c,d} must be the only other edge in N(w) whenn > 5
as claimed. ‘

Since G is K 3-free, each degree 3 vertex must be adjacent to a triangle.
We have already observed that w is adjacent to exactly two triangles, and
they meet only at the vertex w. We claim that, besides those two triangles,
all others are disjoint.

Certainly, any two triangles not containing w cannot meet only at a
vertex, since that would yield a second degree 4 vertex. Consequently, two
such meeting triangles must share an edge. Figure 3 pictures this situation,
where the four vertices involved have been labeled u, v, z, and y. If n =4,

v

x

Figure 3: Triangles sharing an edge.

then the maximally tough graph G = Ky is obtained. If n > 4, then u and
y would form a cut set, contradicting the fact that G is 3-connected.

We conclude that, besided the two triangles in Figure 1, all other tri-
angles are disjoint. If n is even, then w does not exist and the vertex set
can be partitioned into a bunch of triangles. In that case, n = 0 mod 6.
If n is odd, then the vertex set can be partitioned into a bunch of triangles
plus the 5 vertices in Figure 1. In that case,n =5 mod 6. a

Since K 3-free graphs are not always available, the next natural place
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to look for maximally tough (n,m)-graphs with [32] < m < 2n is among
graphs with as few K3 centers as possible. In [5], Goddard noted that
the proof of Theorem 1.2 glven in [7] can be extended to show that a 3-
connected cubic graph is —-tough if there is at most one K 3 center and
2-tough if there are at most two K 3 centers. We further extend a version
of this idea to sesqui-cubic graphs.

Theorem 2.4. If G is sesqui-cubic, 3-connected, K, 4-free, and has either
(i) at most one K, 3 center, or
(i) two adjacent K, 3 centers,

then G is 3-tough.

Proof. Our proof closely follows the proof of Theorem 1.2 given in [7].
However, the necessary adaptations to allow an odd number of vertices
warrant a complete proof being given here.

Suppose that S is a set of vertices for which 7(G) = WJGﬁ—LSS’ and denote
the components of G — S by C,,...,C,. Since G is 3-connected, for each
i # j, u € C;, and v € C}, there are at least 3 internally disjoint paths from
u to v. Since each such path must go through S, there must be at least 3
edges from each Cj to distinct vertices in S. Summing over all ¢ shows that
there are at least 3w edges from G — S to S, such that each C; is adjacent
to at least 3 vertices of S.

Each non-K 3 center is adjacent to at most 2 components of G — S.
Since G is K 4-free, a K, 3 center could be adjacent to at most 3 compo-
nents of G — S. If there are two adjacent K 3 centers (and both are in S),
then each can be adjacent to at most 2 components of G — S. Thus, if we
count at most one edge from each C; to any particular vertex in S, then
there are at most 2(|S| — 1) + 3 = 2|S| + 1 edges from G — S to S.

We conclude that 3w < 2|S| + 1, and hence 3 — & < lgl fw=2,
then 5l = 7(G) < ﬁﬂ . Since k(G) = 3, this implies that |S| = 3 and
hence‘r(G)—E > g. Ifw23,then’r(G) L-l >i-L>3-1=4 O

2w = 2

The restrictions on n given in Theorem 2.1 can be reduced to allow the
possibilities of sesqui-cubic graphs on an odd number of vertices.

Theorem 2.5. If T,,([32]) = &, then
(i) n=4, or
(i) n =0 or5 mod 6.
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Our proof of Theorem 2.5 is an extended version of the proof of Theorem
2.1 given by Chvétal. Chvétal’s proof uses Brooks’ theorem [1] to guarantee
a 3-coloring of a cubic graph. Consequently, we need the following result
of Dirac on graph colorings of non-regular graphs and its corollary.

Theorem 2.6 ([3]). Let G be a graph on n vertices such that n — 1 of the
vertices have degree 3 and one vertex has degree d > 3. If G is 2-connected
and 4-colorable but not 3-colorable, then n < 3d - 5.

Corollary 2.7. All 3-connected sesqui-cubic graphs (ezcept K,) are 3-
colorable.

Proof. Let G be a sesqui-cubic graph on n vertices. It suffices to consider
the case in which G has one vertex of degree d = 4, and hence Theorem
2.6 tells us that n < 7. All graphs on 7 or fewer vertices are pictured in [8]
where they are grouped according to their degree sequence. There are only
four sesqui-cubic graphs on 7 vertices and only the one pictured in Figure 4
is not 3-colorable. However, that graph is not 3-connected. The two cubic

Figure 4: The unique non-complete 4-chromatic sesqui-cubic graph

graphs on 6 vertices and the unique sesqui-cubic graph on 5 vertices are
easily seen to be 3-colorable. Of course, K, is not 3-colorable. O

The proof of Theorem 2.5. Certainly, T4(6) = 7(K,) = % Hence, it suf-
fices to assume that n > 4 and to let G be a 3-tough (n, [32])-graph. By
Theorem 1.1, G must be 3-connected. So G has n — 1 vertices of degree
3 and one vertex of degree 3 or 4. Let w denote the degree 4 vertex if it
exists.

Note that G' cannot be 2-colored, since that would imply that G is
bipartite and 7(G) < 1. By Corollary 2.7, G is 3-colorable. Let A, B, and
C be the color classes of a 3-coloring such that |A] < |B| < |C| and |4]
is chosen as small as possible. Further, if |A| = |B|, then we choose that
w¢ A

Observe that each vertex a € A is adjacent to some b € B. Otherwise,
a 3-coloring could be chosen with color classes A’ = A—{a}, B' = BU{a},
and C' = C. The fact that |[A’| < |A] would contradict our choices of A,
B, and C. Similarly, each a € A is adjacent to some c € C.
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Define subsets Ag and A¢ of A by a € Ap if a is adjacent to exactly
one vertex in B and a € Ac if a is adjacent to exactly one vertex in C.
This accounts for all of the vertices of A except possibly w. In any case,
note that the subgraph induced by BUAp has exactly |B| components and
the subgraph induced by C U A¢ has exactly |C| components. Also, note
that |C| > |B| > 2. Otherwise |AU B| < 2 would contradict the fact that
each vertex of C is adjacent to at least 3 vertices of AU B.

Case 1: AgU A¢ # A.

This implies that w € A, and hence |A| < |B| and n is odd. Note that

w(G - (CU Ac U {w})) = |B| and w(G - (BU Ap U {w})) =|C|.

Since G is 2-tough, [C U Ac U {w}| > 3|B| and |[BU Ap U {w}| > 4|C|.

Adding these inequalities together gives |A| +|B|+|C|+12> (|B| + |C|)

Hence, |A| +1 > 2(|B| + |C|) > |B| > |A|. This forces |B| = |A| + 1. The

equality |A| + 1 = $(|A| + 1 + |C|) then gives that |C| = |A] + 1. Hence,

n=|A|+|B| +|C| —3|A|+2_2 mod 3. Since n is odd, n = 5 mod 6.
Case 2: AU A = A.

In this case,

w(G - (CU Ac)) = |B| and w(G — (BU 4g)) = [C].

Since G is 3-tough, |C U Ac| > 3|B| and |B U Ap| > 3|C|. Adding
these inequalities together gives |A| +|B| + [C] > 3(|B| + |C|). Hence,
|A| > L(1B] +|C). Since |4] < |B| < |C], it follows that |A| = |B| = |C|.
Therefore n = 0 mod 3. Moreover, we now have

3 3
ICU Ac| = 51B| = 3|C| = |BU A
and therefore |Ac| = |Ag|. Hence, n is even and n =0 mod 6. O

2.2 Constructing maximally tough sesqui-cubic graphs

For each n > 4, we construct a sesqui-cubic graph SC(n) on n vertices. In
some cases, SC(n) is 3-tough and hence maximally tough. In other cases,
one or two edges are added to form new graphs which are 3-tough. The
definition of SC(n) depends on the congruence class of n modulo 6. How-
ever, the majority of the construction is common for all n and is presented
first.

Let the vertex set of SC(n) be given by V = {0,1,...,n—-1}. The edge
set E is most easily described as a disjoint union E = E, U E, U Ej3. First,
let By = { {i,i+1} :0 < i< n—1}. We are taking addition modulo n.
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So SC(n) contains the n-cycle C,,. Let

E = {{3i+2,3i+4}:OSiSI_n_ﬁmj}U

{({n-1,1}}U{{3i+3,n-3i -3} :0<i< ["‘6101}.

{{n-3-2,n-3i—4} :0<i<|

The set F3 depends on the value of n modulo 6. If n = 0 mod 6, then
n, n n
E3 = { {01'2'}’{5—]-:5"'1} }
If n =1 mod 6, then
n n n n
By = { {0,151} {0 [51L {151 - LI51+1} }
If n = 2 mod 6, then
n, n n n n
E; = { {0,—2'},{5—1,54'1},{5 —2,5 +2} }
If n = 3 mod 6, then
n n n n n, .n
By = {{0,13] - 1 {0,131 + 114151 - 2, (3L {151 151+ 2} )

If n =4 mod 6, then n
E3 = { {0, -2'} }
If n = 5 mod 6, then

o= {{0,15]}, {0,151} }.

The graphs SC(n) for 5 < n < 22 are pictured in Figures 5 through 10,
where vertex 0 is always the topmost vertex.

One of the important properties of the graphs SC(n) is that they are
3-connected. This is proven in Appendix A by using a characterization of
3-connected graphs due to Tutte [9]. Here, the 3-connectivity of SC(n) is
used in the proof of the following theorem.

Theorem 2.8. Letn > 4.
(a) Ifn=0o0r5 mod 6, then To([3]) = 7(SC(n)) = 1.
(b) If n=1,2,3,0r4 mod 6, then To([3¢]) > 7(SC(n)) = 3
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Figure 5: SC(n) forn =0 mod 6

T 4

Figure 6: SC(n) forn =1 mod 6

Figure 7: SC(n) forn =2 mod 6

Remark 2.9. Theorems 2.5 and 2.8 together give that, if n > 4 eand n =
1,2,3,0r4 mod 6, then 3 < To([3}]) < 3.

Remark 2.10. In the case that n = 0 mod 6, our proof of Theorem 2.8
provides an alternative proof to the one given by Chvdtal [2] for the corre-
sponding result in Theorem 2.1. Chvdtal’s proof uses the notion of graph
inflations.

The proof of Theorem 2.8. Since Theorem A.3 tells us that the sesqui-cubic
graph SC(n) is 3-connected, our proof is a simple application of Theorems
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Figure 8: SC(n) for n =3 mod 6

Figure 9: SC(n) for n =4 mod 6

W G B

Figure 10: SC(n) for n =5 mod 6

1.2 and 2.4. It is straightforward to check that SC(n) is K 4-free and to
count the number of K 3 centers for each congruence class of n mod 6. If
= 0 or 5 mod 6, then SC(n) is K 3-free and hence %-tough. For n =
1,2,3,0r 4 mod 6, we also give a disconnecting set S which demonstrates
that 7(SC(n)) < Wf‘%k——ﬁ = £. If n = 3 mod 6, then SC(n) has one
K3 center at v = 0, and we choose S = {0, 2| —3,[%],[3]1+2}. fn=4
mod 6, then SC(n) has one K 3 center at v = 2, and we choose § = {§ —
4,%-2,%,5+3}. If n =1 mod 6, then the two K 3 centers v’ = 2] — 1
and v" = [%]+1 are adjacent, and we choose S = {0, | 2] -2, |%],[3]+1}.
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If n = 2 mod 6, then the two K3 centers v' = 2 — 2 and v" = } + 2 are
adjacent, and we then choose S = {0,% —2,% +1,% +3}. g

Theorem 2.8 tells us that not all of the graphs SC(n) are 3-tough.
Hence, for n = 1,2,3,0r 4 mod 6, we aim to increase the toughness of
SC(n) by adding an edge €' and thereby defining a new graph SC'(n).
If n = 1 mod 6, then define ¢’ = {|5] —2,[3]}. If » = 2 mod 6, then
e ={2-2,2+1}. If n =3 mod 6, then ¢’ = {| 5| —1,[5] +1}. Finally,
ifn=4mod 6, thene' = {§ -1,% +1}.

Theorem 2.11. Let n > 4.
(a) If n =3 or4 mod 6, then T,([32] + 1) = 7(SC'(n)) = £.
(b) If n=10r2 mod 6, then To([3}] + 1) > 7(SC'(n)) = 3

Proof. This proof follows that same basic argument as that of Theorem
2.8. Clearly, SC'(n) is 3-connected. If n = 3 or 4 mod 6, then SC'(n) is
K 3-free, and Theorem 1.2 applies. If n = 1 or 2 mod 6, then the same
disconnecting set S used in the proof of Theorem 2.8 demonstrates that
7(SC'(n)) < 3. Of course, 7(SC'(n)) > 7(SC(n)) = 1. O

Remark 2.12. Ifn =1 or2 mod 6, then SC’'(n) has one K, 3 center (at
v=[3]+1ifn=1mod6 andatv=13—2in=1mod6).

Conjecture 2.13. The graphs SC(n) and SC'(n) are mazimally tough.

Theorem 2.11 tells us that even the graphs SC'(n) are not all 3-tough.
Hence, for » = 1 or 2 mod 6, we add an edge €” to SC'(n) to define a
new graph SC"(n). If n =1 mod 6, then e” = {[3],[3]+2}. Ifn=2
mod 6, then " = {3 — 1,2 +2}.

Theorem 2.14. Ifn =1 or2 mod 6, then T, ([32]+2) = 7(SC"(n)) = 3.
Proof. Since SC"'(n) is 3-connected and K; 3-free, Theorem 1.2 applies. O

3 Computing T,(m) for small n

The results in [4] give all of the values of T,,(m) for n < 6 and most of the
values for 7 < n < 12. The values of T,(m) for [37"] < m < 2n were left
open in [4] and are handled here.

Theorem 3.1. T7(11) = %.

Proof. Remark 2.9 tells us that 3 < T7(11) < 2. Since there are no possible
fractions a—;(JGS—_l?) strictly between % and % when there are only 7 vertices,
it must be that T7(11) = 3. D
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Remark 3.2. A much less satisfying proof of Theorem 3.1 was given in
l4]. ‘
Theorem 3.3. T3(12) = T5(13) = %.

Proof. By Theorem 2.8, T3(12) > 3. Hence, it suffices to show that
Ty(13) < %. That is, any (8,13)-graph G has 7(G) < 3.

Case 1: G has 7 vertices of degree 3 and one vertex of degree 5.
Let v be the vertex of degree 5. So, H = G — {v} is a (7, 8)-graph with
degree sequence 2,2,2,2,2,3,3. There are 7 such H as pictured in [8]. In
each case, it is easy to see that v is an element of a disconnecting set S for
G such that 7(G) < -ty < 4.

Case 2: G has 6 vertices of degree 3 and 2 vertices of degree 4.
Let v be one of the degree 4 vertices. So, H = G —{v} is a (7,9)-graph, and
H either has degree sequence 2,2,2,2,3,3,4 or 2,2,2,3,3,3,3 (depending
on the adjacency of v with the other degree 4 vertex of G). There are 24
such H as pictured in [8]. In each case, it is easy to see that v is an element

of a disconnecting set S for G such that 7(G) < —Ple < 4. O

Remark 3.4. We can also see that T3(12) = % < 3 by using Theorem
2.1. First, SC(8) is a §-tough (8,12)-graph. Second, there are no possible

fractions ——li_‘_— strictly between % and 3 when there are only 8 vertices.
w(G-3) Y 3 2

Theorem 3.5. Tp(14) = 3.

Proof. By Theorem 2.8, Ty(14) > %. It suffices to show that, if G is any
(9,14)-graph, then 7(G) < %.

The graph G must have 8 vertices of degree 3 and one vertex, say v, of
degree 4. The graph H = G—{v} has degree sequence 2,2,2,2,3,3,3,3. Let
w be one of the degree 3 vertices in H. So, K = H — {w} is a (7, 7)-graph.

Case 1: x(K) =0.

In this case, w(G — {v,w}) > 2. Hence, 7(G) < EZJG'{%{%HW <L

Case 2: k(K)=1.

There are 32 such graphs K as pictured in [8]. In each case, it is easy to
see that the set {v,w} is a subset of a disconnecting set S for G such that
(@) < fgi_‘T) <3

Case 3: s(K) > 2.

The only possibility is that K = C7, the 7-cycle. Moreover, the graph G
must then be as pictured in Figure 11. It is now easy to see that the vertices
labelled z and y give a disconnecting set such that

o)l
(e ey Rk
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Figure 11: The unique G for which K(K) > 2.

Theorem 3.6. Tio(15) = 3.

Proof. Remark 2.9 tells us that 3 < Ty9(15) < 2. There are no possible

fractions WJC%T) strictly between § and 2 when there are only 10 verticeéi

Remark 3.7. The Petersen graph is an example of a (10, 15)-graph that
is 3-tough [2] and hence mazimally tough.

The values of T;,(m) for 7 < n < 12 and [32] < m < 2n are listed in
Tables 1, 2, and 3. Note that Tables 1 and 2 display values of maximum
toughness which are strictly less than half the maximum connectivity.

m ||n=7 Thm " |m ||n=8 Thm
11 3 3.1 12-13 || % 3.3
12 -13 % 2.11 14 -15 % 2.14

Table 1: Maximum Toughness Values for 7 < n < 8

m n=9 |Thm || [m n=10 | Thm
14 3 3.5 15 3 3.6
15-17| 3 | 211 16 — 19 3 2.11

Table 2: Maximum Toughness Values for 9 < n < 10

11 [ Thm || | m n=12 | Thm |

| m | n =
28 || [18-23] & [ 21|

[ 17-21 |

otes|| 1

Table 3: Maximum Toughness Values for 11 <n < 12
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A 3-connectivity

In this appendix, the graphs SC(n) defined in Subsection 2.2 are shown to
be 3-connected. The main tool used in our proof is the characterization of
3-connected graphs given by Tutte [9]. For our purposes, Tutte’s result is
given in the following form.

Theorem A.1 ([9]). If a graph G is 3-connected and a new graph G' is
obtained from G in one of the following two ways:

(a) a new edge is added, or

(b) a vertez v of G with dege(v) > 4 is replaced by two new
adjacent vertices v' and v", and each neighbor of v in G is joined
by an edge to ezactly one of v’ or v" in G' so that deggr (v') > 3
and degg: (v") > 3,

then G’ is 3-connected.

The second type of operation in Theorem A.1 is referred to as splitting
a vertex. The actual workhorse used in the proof of our result is a corollary
of Theorem A.l. Before stating that result, we need some notation.

Given a graph G = (V, E) and two edges e; = {u1,v1} and e; = {uz,v2}
in E, we define a new graph G(e;,e2) = (V', E'). Let V! = V U {wy, w2},
where w; and wy are two new vertices that are not in V. Let

E' = (E - {e1,e2}) U{ {u1, w1}, {v1, w1}, {uz, w2}, {v2, w2}, {w1,w2} }.

It is possible that e; and e; share vertex. However, a picture of this con-
struction in the case that e; and e» do not meet is given in Figure 12.

Uy U2
Ui U2
elI Iez ~ w wa
(4] VU2
G " eler,er)

Figure 12: Constructing G(e;, ez) from G

Corollary A.2. Let G be a graph, and let e; and es be two distinct edges
in G. If G is 3-connected, then G(e1,ez) is also 3-connected.
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Proof. Say e; = {u1,v1} and e; = {us,v2}. We may assume that vy # vs.
The key to our proof is the fact that G(e;, ez) can be constructed from G in
three stages, each of which is covered by Theorem A.1. The first step is to
form a graph G’ from G by adding the edge {v1,v2}. Since G is 3-connected,
we must have degg(v1) > 3 and dege(v2) > 3. Hence, deggr(v1) > 4 and
degg(v2) > 4. In the second step, G is formed from G’ by splitting the
vertex v;. Specifically, the neighbors u; and vy of v, are joined to v by
edges, and all other neighbors of v; are joined to v by edges. Note that
degg(vi) = 3 and deggr(v2) > 4. Since deggr(v1) > 4, it follows that
degg(v{) > 3. A picture of the construction of G” from G’ is given in
Figure 13. In the third and final step, G(e1,e2) is obtained from G" by

Uux U
u1 U
el‘ l e ~ V]
(%1 U2
vy v
led 1 el 2

Figure 13: Splitting v; in G’ to form G".

splitting vs. Specifically, the neighbors u; and vj of vy are joined to vy by
edges, and all other neighbors of vs are joined to v} by edges. It is clear
that this last splitting forms G(ey, e2). o

The main result of this appendix can now be proven.
Theorem A.3. For each n > 4, the graph SC(n) is 3-connected.

Proof. Our proof is by induction on n. It is easy to verify (by computer)
that the graphs SC(n) for 5 < n < 10 are 3-connected. Suppose that n > 4,
SC(n) is 3-connected, and its vertex set is given by V = {vg,v1,...,vn-1}.
We construct SC(n + 6) in three stages, each of which is covered by Corol-
lary A.2. Note that our construction is independent of the congruence class
of n mod 6.

Let e; = {vn—2,Un—1} and ez = {v1,v2} be edges in G = SC(n). Define
G' = G(e1, e2), and denote the new vertex between v,_2 and v,_1 by wn4s
and the new vertex between v; and v; by ws.

Let ¢f = {v1,ws} and e = {ws,v2} be edges in G'. Now we define
G" = G'(e},e,), and denote the new vertex between v; and ws by ws and
the new vertex between ws and v, by wy. The graph G” is pictured in
Figure 14.

Let ef = {wn+3,Vn—1} and e§ = {v,—2,wny3} be edges in G". Define
G" = G"(e,e4), and denote the new vertex between wn43 and v,—; by
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Figure 14: Building SC(n + 6) from SC(n)

wn4 and the new vertex between v,—2 and wn43 by wp42. Finally, rename
the vertices of G'"' by wp = vo, W1 = V1, W45 = Yn—1, and, for2 <i < n-2,
wirs = v;. On the vertex set W = {wo,w1,...,Wnys}, it is now easy to
see that SC(n + 6) = G" is also 3-connected.
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