On the Asymptotics of Colouring
- Plane Multigraphs

P. MARK KAYLL* YonG Zuao!
Department of Mathematical Sciences One Microsoft Way
University of Montana Redmond WA 98052, USA
Missoula MT 59812-0864, USA yongzomicrosoft.com

kayllQcharlo.math.umt.edu

Abstract

For loopless plane multigraphs G, the edge-face chromatic number
and the entire chromatic number are asymptotically their fractional
counterparts (LP relaxations) as these latter invariants tend to infin-
ity. Proofs of these results are based on analogous theorems for the
chromatic index and the total chromatic number, due, respectively,
to Kahn [3] and to the first author [6]. Our two results fill in the
missing pieces of a complete answer to the natural question: which of
the seven invariants associated with colouring the nonempty subsets
of {V, E, F'} exhibit “asymptotically good” behaviour?

This paper is concerned with loopless plane multigraphs G and the
asymptotic behaviour of various colouring invariants associated with such
graphs. We use V, E and F, respectively, to denote the vertex, edge
and face sets of G. Each nonempty subset of {V, E, F} corresponds to
a colouring invariant of G; for example, {E} corresponds to the chromatic
index x, and {V, E} to the total chromatic number x,.

The seven resulting colouring invariants are optimal solutions to integer
programming problems, the linear relaxations of which yield the fractional
versions of these parameters. In [5], the first author essentially asked the
question: which of the seven integral invariants are asymptotic to their frac-
tional counterparts, as the latter invariants tend to infinity? The primary
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motivation for this question was a result of Kahn [3] giving an affirmative
answer for x_; see Theorem 3 below. As observed in [6] (Theorem 4 below),
Kahn [4] also proved a result implying an affirmative answer for X,.- These
two positive results lead one naturally to wonder if this “asymptotically
good” behaviour is enjoyed by any of the other five colouring invariants
presently under consideration.

Heawood’s five-colour theorem (or its famous improvement) quickly
classifies x,, x, and x,, as uninteresting for our question: each is bounded
by a (small) constant; so too is its fractional version. This leaves the edge-
face and the entire chromatic numbers, respectively X, X, as the only
interesting, as yet unaddressed, cases. This paper fills in these missing
pieces to complete the answer to our question with two more positive re-
sults.

A word on definitions

We aim to be brief, and thus point to the references for any omitted ter-
minology: [1] for general graph theory; [2] for colouring invariants and
related history; [9] for LP/IP background; [8] for fractional concepts. All
our graphs are loopless; in particular, when we write multigraph, we mean
loopless multigraph. After seeing the definition of X, the reader will
have no trouble formulating definitions for the other chromatic numbers
introduced above. An entire colouring of a plane multigraph G is a map
0 : VUEUF — § — where S is a set of “colours” — such that o(X) # o(Y)
whenever X, Y are incident or adjacent elements, i.e. a pair of adjacent ver-
tices, a vertex-edge pair with the edge incident on the vertex, an edge-face
pair with the edge on the boundary of the face, etc.; a face touching either
another face or an edge only in a vertex is not considered an adjacency.
The entire chromatic number, X,.,» 18 the least size of an S admitting such
a colouring. For example, if G consists of two copies of K3 joined at a single
common vertex, then x,_(G) = 6.

As noted above, each of the seven colouring invariants under consider-
ation has a fractional analogue, its linear relaxation. We use asterisks to
denote fractional parameters, so, e.g., X: denotes the fractional chromatic
index. In the proof of our first main result (Theorem 1), we need a few
concepts underlying a detailed definition of X:. Writing 90t for the set of
matchings in G, we call an f : M — [0, 1] satisfying

Z f(M)=1 foreach A€ E
AeMem
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a fractional edge colouring of G. Note that an ordinary (integral) edge
colouring arises if we restrict the range of f to {0,1}. Now

X’ (G) = min { Z f(M) : f is a fractional edge colouring of G } 1)
Mem

makes the LP defining x explicit. Likewise we may define X7, but the
analogue of M is more complicated. For & C F, let 8.(®) denote the set
of edges of G on the boundary of some face in ®. An edge-face stable set
of G is a subset of EU F of the form M U &, where M C F is a matching,
® C F is a collection of faces, no two sharing a common boundary edge,
and M NJ.(®) = 2. We write & for the family of edge-face stable sets of
G. An f: 6 — [0, 1] satisfying

Y f(8)=1 foreach A€ EUF
A€ESES

is a fractional edge-face colouring of G. We then have

x.,(G) = min { Z f(8) : f is a fractional edge-face colouring of G} .
se6
2
We often abbreviate the objective functions in (1) and (2) to f(G).

Results

We are ready to state precisely first our results then two precursors that
we need as lemmas.

Theorem 1 For plane multigraphs,

.

X, ~ X, 6s x:‘l — 0. 3)

That is, for each € > 0 there exists D = D(e) such that every plane
multigraph G with x7,(G) > D satisfies

(1+e)‘1<;c,‘,;—§2<1+e. (4)

Theorem 2 For plane multigraphs,

* »
Xw! ~ X"I as Xw, — 00.
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Thus, both of x_, x,,, are asymptotically good invariants.

The analogous statement for x, — true for general (not just plane)
multigraphs — was proved by Kahn [3]:

Theorem 3 For multigraphs,

X, ~X. as X. = oo.
The convergence here is in the same sense as that in (3), but we again
spell out the quantifiers for reference in the proof of Theorem 1: for each

7 > 0 there exists B = B() such that every multigraph G with x*(G) > B
satisfies x_(G) < (1+7)x*(G).

That x, is also asymptotically good — again for general multigraphs
— was observed by the first author in [6):

Theorem 4 For multigraphs,
X, ~X. as x. —oo.
Proof of Theorem 1

In addition to Theorem 3, we need the following elementary inequalities
connecting the edge-face chromatic numbers with the chromatic indices (in
(6) and (7), C is a small constant, say 4 or 5):

X, < X, (5)
X, < x.+C; (6)
X, £ x.+C; (7)
X. < X (8)

Proof of (5). The left side is the optimal value of the linear relaxation of
the IP defining the right. |

Proof of (6). We may obtain a fractional colouring k of EU F by fraction-
ally x?*-colouring E and (integrally) colouring F' with a set C of additional
colours. Depending on how hard we wish to hit, we may take C :=|C| =5
(using Heawood’s five-colour theorem) or C' = 4 (using Appel and Haken’s
four-colour theorem). Since h(G) = x* + C, (6) now follows. |

164



Proof of (7). An optimal edge colouring can be expanded to an edge-face
colouring using at most C € {4,5} additional colours for the faces. n

Proof of (8). From an optimal fractional edge-face colouring f : & — [0,1],
we may obtain a fractional edge colouring h : 9t — [0,1] by shifting the
weight f(S) from each edge-face stable set § = M U @ to the matching M
in the natural way. This yields an h with A(G) = f(G) = x,(G), and (8)
follows since x*(G) < A(G). ]

We are now equipped to complete the proof of Theorem 1. Since we
already have (5), it remains only to establish the right-hand inequality in
(4) for arbitrary € > 0 and sufficiently large x7,. Given ¢ >0, let vy =¢/2,
and choose B so large (according to Theorem 3) that

x' > B implies x, <(1+7)x;. 9)

Let C be asin (6), (7). If x, > D := max{B + C,2Ce~" + C}, then, since
X: 2 x%, — C (by (6)), we see that x; exceeds both B and 2C/e = C/~.
Thus, as long as x7, > D, we have

X, Sx, +C <+ +7x. =1+ < +e)x;

(justifying the inequalities, respectively, by: (7); the preceding sentence
and (9); and (8)), as desired. |

Proof of Theorem 2

Since the proof mirrors that of Theorem 1, we simply sketch it. The fol-
lowing inequalities are analogous to (5)—(8) and may be proved similarly:

X5, < X (10)
Xy £ X.+G (11)
Xoy S X..*GCi (12)
X, < X (13)

To prove Theorem 2, one may now use the proof of Theorem 1 with the fol-
lowing replacements: (xd, X.s X1 X Theorem 3, (8)=(8)) = (X1 Xour X0y
X_., Theorem 4, (10)-(13)).
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Remarks

On plane duality
Let G* denote the dual of a plane multigraph G. Of course,

x,(G*) = x,(G), (14)

and vice versa, perhaps leading one to guess that analogous relationships
exist between X, and x . If so, then one could obtain alternately Theo-
rem 1 from Theorem 4 via duality; however, simple examples reveal this
guess to be incorrect, therefore suggesting that such a proof strategy may
be fruitless.

Consider the cycle C,, with n edges. Since its dual C}; contains a vertex
of degree n, evidently x_(C};) > n. On the other hand, one easily checks
that x _(Cn) = 4ifn > 4. This example shows emphatically that in general,
x,,(G*) # x,.(G), hence dashing any hope that the analogue of (14), with
edges included, might hold. It illustrates, moreover, that Theorem 1 can
be relevant for G* (here x,(C;) = 0o as n = o0) without implying the
relevance of Theorem 4 for G (since x, (Cr) is constant). The intuition
that duality might yield a quick route from one theorem to the other proves
specious at best.

On list-colouring

A natural question is whether the list-colouring analogues of Theorems 1-4
also hold. For example, can X,, in Theorem 1 be replaced by the edge-face
choice number? For list-colouring edges, Kahn [4] gave an affirmative an-
swer in 1995, though the article appeared in published form only recently.
Positive answers for total, edge-face, and entire list-colouring were estab-
lished by the first author in (7], a follow-up to the present paper.
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