Trajectories in the 3z + 1 Problem
Charles Cadogan

Abstract

This paper presents a new approach in the quest for a solution to the
3z +1 problem. The method relies on the convergence of the trajectories of
the odd positive integers by exploiting the role of the positive integers of the
form 1 + 4n, where n is a non-negative integer.
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1. Introduction

Research on the 3z + 1 problem has produced a wealth of papers and
the references at [4,5,6] present a comprehensive bibliography of the liter-
ature resulting from such research. Yet, hitherto, no formal proof of the
conjecture associated with the problem has been achieved. This paper uses
a selection of the results appearing in the literature to lay the foundation
for an alternative approach in the quest for a solution.

To fix our ideas we include the following basic definitions, descriptions
and terminology which will be used. Our discussion is confined to non-
negative integers.

Let N= {1,2,3,....} denote the set of positive integers and let O be the
subset of odd integers in N. Let No = N U {0} = {0,1,2,....}.

For any z € N, let the function f : N — N be given by,

_ | 143z, ifzisodd,
f(z) = { 2 if z is even. (1.1)

The 3z + 1 conjecture asserts that in the sequence of iterates z, f(z),
f3(z), f(z),... foranyz € N, 3k € No, such that f*(z) = 1.

By convention f°(z) = z, ¥V « € N, and the least value of k satisfying
f*(z) =1 is what is being sought.

In (3] an alternative formulation of the conjecture was provided by
means of the function h : O — O given by:

h(z) = 3488, z € O, (1.2)
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where 2™(*) is the maximum power of 2 dividing 1 + 3z. The conjecture
then reduces to showing that for each odd integer z there is an integer &
such that h*(z) = 1.

Definition 1.1. The trajectory, under f, of z € N is the set L(z) =
{z, f(z), f2(z), Fx),.}.

Definition 1.2. The trajectory, under h, of z € O is the set T(z) =
{z, h(z), hZ(x), h3(;p),}

The trajectory T'(z) of any z € O is obtained from L(z) by selecting
the odd integers in L(z).

Definition 1.3.  Two trajectories are said to coalesce if they have a
common element.

2. Previous Results

For the establishment of formal results we use the function f. Since
even integers in N are reduced to odd integers by direct application of f
we concentrate our attention on O. First we determine a partition of O.

Now,

{1+2n:n € Ny}

{1+2(2n") :n' € No} U {1+2(1 +2n') : n’ € Np}
{1+4n’':n’' € No} U {3 +4n': n' € No}

Rl Uﬁl, with Rl n-R] =@,

o
hn

i

where Ry = {1+4n’:n' € No}, Ry ={3+4n':n' € No}; that is, B; and
R; form a partition of O.
Also,

Ry {3+4n’ : n’ € No}
{3+4(2n") : n € No} U {3 + 4(1 + 2n") : n” € N}
{3+8n" :n" € No} U {7 +8n" : n” € No}

RyU R3 U Ry, with RyNR;URy; =0,

where Ry = {34 8n" : n” € No},Ri UR, = {7+ 8n" : n” € Ny}, so that
R1, Ry and Ry U Ry form a more refined partition of O.
Repeated application of this procedure gives
O=RiUR;UR3U..., (2.1)
with R; N R; = 0 for i,j € N, ¢ # j, leading to the partition of O
represented in a grid, a section of which is displayed in Table 1 below.
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The subsets R; in (2.1) can also be characterised as follows:

Ri={z€0:z=2"-1(mod 2:*+!)} (2.2)
with the R;,i € N, forming the rows in Table 1. The columns are
Cj,j € No.

Table 1

[ p O3 4 (73 Cg Ccy Cg Cg  Cp  Cn
R 1 5 9 13 17 21 25 29 33 a7 41 45
Ry 3 11 19 27 35 43 51 59 67 75 83 91
R3 7 23 39 55 71 87 103 119 135 151 167 183
Ry 15 a7 79 111 143 175 207 239 271 303 335 367
Rg 31 95 159 223 287 351 415 479 543 607 671 735
Re 63 191 319 447 575 703 831 959 1087 1215 1343 1471

Ry 127 383 G639 895 1151 1407 1663 1919 2175 2431 2687 2943

The element z € O in row 4 and column j, that is, in position R;,C; of
Table 1, is 2¢+15 + 28 — 1 = 2¢(25 + 1) — 1.

Given a positive integer z € O, the first task would therefore be to
determine its position in the grid in Table 1. In [2] the procedure for
locating the appropriate “cell” for z € O in Table 1 was given and can be
obtained by means of the following algorithm.

Algorithm Initialisation : seti=0

Input : z€0

Step 1 : setz=2zx

Step 2 : setq=’;1,i=i+1

Step 3 : ifg=0mod 2, set j =gq/2,
print z,1, j
end

Step 4 : elsesetz=gq

repeat step 2.

*/comment - z occurs in R;, C;.

Example. The row and column can easily be read from the binary
representation of any number in Table 1. Consider the rightmost zero of
the binary representation. (Add on a zero at the left if the representation
consists of all ones, in which case the chosen number in Table 1 is in Cop.)
The number of ones to the right of this zero gives the row, while the binary
number to the left of this zero gives the column. For example, the binary
representation of 479 is 111011111, with 5 ones to the right of the zero and
the binary number 111, or decimal 7, to the left of the zero; hence 479 is in
row 5 and column 7 of Table 1.

Theorem 2.1. (Cadogan [1]). Foranyi > 2, >0,z € R; = f%(z) €
R;,_;.
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Proof: In Table 1, z € R;,C; = z = 2! — 1 4 5.2¢+1
= f(z) = 1+3.2" — 3435.20+1 =3.2i _ 2} 35,0041
= f2(z) = 3271 — 1 +345.2 = 21 — 1 4 (35 + 1)2,
so that , f2(z)) € R;_;. [ |

Corollary 2.2. Foranyi > 2,5 >0,z € R;, C; = f?(z) is the
element in position R;_1,C3;41 of Table 1. |

Corollary 2.3. Foranyi > 2,j >0,z € R;,C; = f¥i-U(z) =
2.3*"1(2j +1) — 1 and is in position Ry, Cn of Table 1, where, n = 3-1,j +
. i=1 .
2:;% 3r = 3 !2_;4-1!—1. H
Remark: Corollary 2.3 provides a means of determining, at least, the
initial elements in the trajectory T(z) of any =z € O. For example, z = 23
is in R3, Cy of Table 1, hence h(23) is in Ry, Cy and h%(23) is in Ry, C)3 so
T'(23) starts with the numbers 23, 35,53, |

For each m = $°773 22" in Ry, h(m) = 1,andm € {1,5,21,85,341,---}
C R;.

In Table 1, let z; € R;, Tiy1 € Ry withz;, x4 € Cj, i>0,52>0.
Then, we have,
Lemma 2.4. z;41=1+22;, 7 € N. [ |

Remark: The result of Lemma 2.4. greatly simplifies the construction,
from R;, of the subsets R; € O, 7 > 2. [ |

Lemma 2.5. Let n € N. Then,
(1 +4n)=1+43n,foralln e N,
F3(1 +4n)) = f(n), for all n € O. [ |

A consequence of the result of Lemma 2.5 is the following theorem.

Theorem 2.6. Let z;, z2, z3, ... be a sequence of odd integers such
that z; =1 +42;_1,1 € N,z > 2. Then,

(i) flza) =471 f(z1),

(i) frY(zn) = f(z1),
(iii) f¥x:)=1,k € No = f+2(z,)=1. W
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3. Main Results

Corollary 2.3 provides the basis for the results which follow. It de-
clares that the trajectories L(z;) and T'(x;), of each z; € Ry = Ui>2 R;
contain elements of R; and signifies that R; operates as _a filter for each
L(z;), T(z;). In order, therefore, to complete the telescoping process to-
wards 1, it is essential to show that for each z; € Ry, L{z), or T(z), ends
at 1, in the sense expressed by the main conjecture.

We refer to the tableaux in Appendix 1 which contain values of n € Ny
for 0 < n < 150, the corresponding values of each z € R, where z = 1+4n,
and the values of f3(2) = 1+ 3n = z —n. Our principal approach then
entails showing that for each z € R;,3 2’ € R; such that ' < z, and
L(z), L(z") or T(z),T(z') coalesce.

It follows that if L(x), L(z') coalesce, then so do T'(z), T'(z’).

Definition 3.1. Let ~ be the relation defined on N as follows: for
z,y € N z ~ y iff the trajectories L(z) and L(y) coalesce.

Henceforth, we shall write £ ~ y to mean that the trajectories of
z,y € N coalesce.

The following result is an immediate consequence of Definition 3.1.
Lemma 3.1. ~ is an equivalence relation on N and partitions N into

~-classes. n

Corollary 3.2. Let n € N. Then,

(i) 1+4n~1+3n,
(iil) 1+4n~1+3n~n,ifneO0.

Proof: Results follow from Lemma 2.5 . [ ]

We now commence the process of determining specific patterns of coa-
lescence in the trajectories based on the elements of R;.

First, we use the elements of R; as markers to partition the values of n
in the tableaux in Appendix 1 into intervals, each interval containing three
elements between markers. For example, between the two markers n = 1
and n = 5 are the three values n = 2,3,4, and between markers n = 5
and n = 9 are three values n = 6,7,8; and so on. We now consider the
total collection of markers noting that in each interval the integers n can be
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characterised as (i) n = 1 + 4k (the markers), (ii) n = 4k, (iii) n = 2 + 4k
and (iv) n = 3 + 4k, k € Np, with the corresponding values of z = 1 + 4n
given respectively by 5 + 16k,1 + 16k,9 + 16k and 13 + 16k. Thus, we
have the following results which are a consequence of Corollary 3.2. for all
k € Np.

Lemma 3.3. 5+ 16k ~ 1+ 4k
Lemma 3.4. 1+ 16k~ 1+ 12k

Lemma 3.5. 9+ 16k~ 7+ 12k

Lemma 3.6. 13+ 16k ~ 3+ 4k

Remark: In Lemmas 3.3 and 3.4, each z ~ n with n < 2 and z,n € R;.
Also in Lemma 3.5, 7+ 12k =3 +4(1 + 3k), k € Ny, so that for each z in
Lemma 3.5, 3 2’ in Lemma. 3.6 such that z ~ 2/. |

Corollary 3.7. By Lemma 2.5, .
1+4(l+3 )€R1 k even
4 2 — ) )
FA(13+16k) = f2(3+4k) =5+6k = { 3+4( )E R kodd m
Lemma 3.8. Letz; € R,',.’B,'.H S R—,'.H,Z € N, with z;, Ti41 € Cj,j € No.
Then,

A (z) € 0=i+j€0.
Proof: From Corollary 2.3, f%+!(z;) = 23125+ 1) =1 =1 + 4n
i=1 :
is in Ry,C, with n = u%, so that, by Lemma 2.5, f%+!(z;) =
3 (25+1)—1
2 .
Thus, f%*!(z;) € O = n = 0(mod 2)
imlyn;
= ¥ G- = g(mod 2),
= 371(25 + 1) = 1(mod 4).
Now, i — 1 is odd = 3(25 + 1) = 1(mod 4) = j = 1(mod 2),
and i — 1 is even = 2j + 1 = 1(mod 4) = j = 0(mod 2),
hence, i + j € O in each case. | |

We turn our attention now to the major result of this Section.

Main Theorem 3.9. Let,. z; € Ry,zip1 € Rijq,i € N, with z;,2;47 €
C;,J € N, of Table 1. If f%+1(z;) € O, then, z; ~ ;4.

Proof: From Corollary 2.3., z; = 2y~ 1,2;41 = 2ty -1,y = (25 +1) €
O, so that,
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z; =2y —1~271(3y) -1~ 272(32y) -1 ~ - -- ~ Biy — 1,

Tip1 =2y — 1~ 28y — 1~ 27132y — 1~ oo iy
where, a ~ b is derived by applying f2 to each term a to produce b. Also,
iy — 1 = f2i(z;), 3y — 1= f2+2(g, ),

and since 3**'y — 1 and 3y — 1 are both even for i € N,
FEHy—1) =Xl e N, f(3iy - 1) = =L e N,

Further, 1+ 2(3% - 2i7%Fy — 1) = 8% . 2i7k+ly _ 1, V0 < k < 4, 50
that, 32y — 1 =1+ 2(3iy — 1) = 1+4(£2t1), that is, f3(3 -2y —1) =
143 (3a,,2_1) _ 3"+‘2!'“,Hence, §_y2;l €cO=f (3_12—u) =1+3 (3_’.!12‘_1> =

i1 . . .
3= that is, f242(z;) = f%+3(2i41), so that z; ~ ziy1. n

Example. In Table1, 27,55 € C3 with 27 € Ry and 55 € R3, 55 = 1+2-
27. L(55) and L(27) coalesce at the number 94, with f7(27) = f8(55) = 94.
Table 1 provides further examples.

Corollary 3.10. If f%+!(z,) is even, then z;_; ~ x;, when ¢ > 1, and
Ty NJ .
Proof: f2+1(z;) is even = %—'—1 is even = 3—-123’;1 € O withz;_) = j

when i = 1, hence by Theorem 3.9 z;_; ~ z;,if ¢ > 1, and z; ~ j by
Corollary 2.3 and Lemma 2.5. |

From Theorem 3.9 and Corollary 3.10 we obtain,

3i+1y__] 3‘:1}—1 3i-ly_]
Sy ($20) i (140 (21052,

Now, let £2¥=1 = D € O in Corollary 3.10. Then, by Theorem 2.6
and Corollary 3.2,

(i) Ti—1 ~ D,
(iil) z;~144D~143D~ D,

From (i) and (ii) above, z;—1 ~ z; since D € O = f(D) = 1+ 3D.
But D € O = 1+ 3D is even, so that z; ~ x4, cannot be derived by

183



a straightforward application of f. Nevertheless, it has been verified that
L(1+3D) and L(1 + 3(1 + 3D)) coalesce for D € O, D < 10° — 1 and this
leads to the following conjecture.

Conjecture 3.11. D€ O=1+3(1+3D)~14+4(1+3D)~1+3D. W

4. Conclusion

It has been shown in the literature [1, 4, 5, 6] that the analysis of the
trajectories of the integers in R; of Table 1 is critical to the solution of the
original conjecture. The results in Section 3 from Lemma 3.1 to Corollary
3.10 have laid the foundation for further work on the problem.

The establishment of Conjecture 3.11 would extend the results obtained
in Corollary 3.2, and would provide a means of proving that each element
in the first row of Table 1 ‘hits’ another element in that row closer to the
integer 1. In this way, the result of the original conjecture would be formally
established.

The research is continuing.

Acknowledgements

The author wishes to thank all those who contributed to the success
of this research, in particular, Professors Larry Cummings and William
Gilbert of the Department of Pure Mathematics at the University of Wa-
terloo in Canada.

184



REFERENCES

[1] Cadogan, C.C., A Note On The 3z 4 1 Problem, Caribb. J. Math.
3, (2) (1984) 67-72.

[2] Cadogan, C.C., Exploring the 3z + 1 Problem 1, Caribb. J Math.
Comput. Sci. 6 (1 & 2) (1996) 1-9.

[3] Crandall, R.E., On the “3z +1” Problem, Math. Comput., Vol. 32,
Oct. (1978), 1281-1292, MR. 58 # 494.

[4 ] Lagarias, J.C., The 3z + 1 Problem and Its Generalisations, Amer.
Math. Monthly, Vol 92, No. 1 (1985), 3-23.

[5] Lagarias, J.C., 3z + 1 Problem Annotated Bibliography, September
22, 1997.

[6 ] Wirsching, G.J., The Dynamical System Generated by the 3n + 1
Function, Springer, Lecture Notes in Mathematics 1681, (1998).

Department of Computer Science, Mathematics & Physics
University of the West Indies

Cave Hill Campus

Barbados, West Indies

e-mail: cadogan@uwichill.edu.bb

185



APPENDIX 1

Tables forn € N, 2 € Ry and f3(z) =z —n

—
N

6

7

8

9110

11

12

13

ol =4

©

1311721

25

29

33

37 | 41

45

49

53

10|13 | 16

19

22

25

28 1 31

34

37

40

14

15

16 | 17

18

19

20

21122123

24

25

26

57

61

65 | 69

73

77

81

85189 |93

97

101

105

43

46

49 | 52

55

58

61

64 | 67 | 70

73

76

79

27

28| 29

30

31

32

33

34

35

36

37

109

113 | 117

121

125

129

133

137

141

145

149

82

85 | 88

91

94

97

100

103

106

109

112

38

39 [ 40

41

42

43

44

45

46

47

48

153

157 | 161

165

169

173

177

181

185

189

193

115

118 | 121

124

127

130

133

136

139

142

145

49

50| 51

52

53

54

55

56

57

58

59

197

201

205

209

213

217

221

255

229

233

237

148

151

154

157

160

163

166

169

172

175

178

60

61

62

63

64

65

66

67

68

69

70

241

345

249

253

257

261

265

269

273

277

281

181

184

187

190

193

196

199

202

205

208

211

71

72

73

74

75

76

77

78

79

80

81

285

289

293

297

301

305

309

313

317

321

325

214

217 | 220

223

226

229

232

235

238

241

244

82

83| 84

85

86

87

88

89

90

91

92

329

333 [ 337

341

345

349

353

357

361

365

369

247

250 | 253

256

259

262

265

268

271

274

277

93

94

95

96

97

98

99

100

101

102

103

373

377 | 381

385

389

393

397

401

405

409

413

280

283 | 286

289

292

295

298

301

304

307

310

104

105

106

107

108

109

110

111

112

113

114

417

421

425

429

433

437

441

445

449

453

457

313

316 | 319

322

325

328

331

334

337

340

343
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