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Abstract

If L is a list assignment function and k is a multiplicity function on the vertices
of a graph G, a certain condition on (G, L, k), known as Hall’s multicoloring
condition, is obviously necessary for the existence of a multicoloring of the vertices
of G. A graph G is said to be in the class M HC if it has a multicoloring for any
functions L and « such that (G, L, k) satisfies Hall’s multicoloring condition. It
is known that if G is in M HC then each block of G is a clique and each cutpoint
lies in precisely two blocks. We conjecture that the converse is true as well. It
is also known that if G is a graph consisting of two cliques joined at a point then
Gisin MHC. We present a new proof of this result which uses common partial
systems of distinct representatives, the relationship between matching number
and vertex covering number for 3-partite hypergraphs, and Menger’s Theorem.

1. Introduction

A vertex list assignment to a finite simple graph G is a function L from
V(G) to the power set P(C) of C where C is a finite set of colors. Let x be
a function from V(G) to the natural numbers. An (L, k)-multicoloring of
G is a function ¢ : V(G) — P(C) such that

(i) ¢(v) C L(v) for each v € V(G).
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(ii) lo(v)| = k(v) for each v € V(G).
(iii) if vertices u and v are adjacent in G then p(u) N p(v) = ¢.

If k(v) =1 for all v € V(G) then the function ¢ is called an L-coloring of
G.

If H is an induced subgraph of G with list assignment L and o is a
color in C, we let ay, (o) denote the maximum size of an independent
set of vertices in H each of which has o in its list. Since ag,L(0) is the
maximum number of occurrences of the color ¢ in any (L, k)-multicoloring
of H, the following condition, known as Hall’s multicoloring condition, is
obviously necessary for the existence of an (L, )-multicoloring of G.

Hall’s multicoloring condition

zaﬁ,L(a)Z Z k(v) (1)

oeC veV(H)

for each induced subgraph H of a graph G with list assignment L and
multiplicity function .

In the special case when x(v) = 1 for all v € V(G), (1) reduces to
what is known as Hall’s condition, first defined in [5], which is obviously
necessary for the existence of an L-coloring of G:

Hall’s condition

> an(o) > [V(H)|

ogec

for each induced subgraph H of a graph G with list assignment L.

Let HC be the set of all graphs such that Hall’s condition is sufficient
for the existence of an L-coloring of G for each list assignment L, and
let MHC be the set of all graphs such that Hall’s multicoloring condition
is sufficient for an (L, )-multicoloring of G for each list assignment L and
multiplicity function x. Trivially M HC is a subset of HC. That complete
graphs are in HC is just a restatement of Hall’s well-known theorem for
the existence of a system of distinct representatives (SDR) for a set system
(for example, see [2]), and that they are in M HC is a slight generalization
of Hall’'s Theorem. The set HC is just a bit larger:

Theorem 1. (Hilton and Johnson [5]) G is in HC if and only if each
block of G is a clique.
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So the graph K3 (a central vertex adjacent to three vertices of degree
one) is in HC. But as discovered by Cropper, it is not in MHC, as
can be seen by considering the following list assignment L and multiplicity
function k. Let v be the central vertex and z, y, z be the pendant vertices;
let L(v) = {1,2,3}, L(z) = {1,2}, L(y) = {1,3}, L(2) = {2,3}; and let
k(v) = 2 and k(z) = (y) = k(2) = 1. It is easy to check that G with L and
k satisfies' Hall’s multicoloring condition, but that no (L, )-multicoloring
exists. Any graph containing K 3 as an induced subgraph is not in M HC
(use the same L and k on the Kj 3 and long lists at all other vertices).
So if G is in M HC then each block of G is a clique and each cutpoint
is in precisely two blocks (As pointed out by Doug West this is precisely
the class of graphs which are line graphs of a forest). In [3] the authors
“suspect, perhaps wishfully” that the converse is also true. We state that
as a conjecture.

Conjecture. G is in M HC if and only if each block of G is a clique and
each cutpoint lies in precisely two blocks.

All of the above ideas are also discussed in [3], where it is proved that
paths, two cliques joined at a point, and two specific graphs of order 5
are in MHC. The proof for two cliques joined at a point is surprizingly
long and has many technical details. The purpose of this paper is to
present another proof of this result, which we state as Theorem 2, using
common partial systems of distinct representatives, matching and vertex
covering number for 3-uniform hypergraphs, and Menger’s Theorem. The
relationships among these concepts illuminated by the proof may well yield
a proof of the above conjecture and turn out to be useful for other list-
coloring problems as well.

Theorem 2. (Cropper, et al. [3])
If G is any graph consisting of two cliques joined at a point then G is
in MHC.

2. Simplifying assumptions

Let G be a graph with list assignment function L and multiplicity func-
tion k. We form a new graph G’ by replacing each v € V(G) with a clique
of size k(v). Vertices z and y in V(G’) in cliques replacing » and v in G
are adjacent in G’ if and only if u and v are adjacent in G. We define a
list assignment L’ on G’ by L'(z) = L(u) for each vertex z in the clique
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replacing u. We call the pair (G’, L) the explosion of the triple (G, L, ).
Clearly, (G’, L’) satisfies Hall’s condition if and only if (G, L, k) satisfies
Hall’s multicoloring condition and G’ has an L’-coloring if and only if G
has an (L, x)-multicoloring.

We remark that it is possible that G is in M HC, G has an (L, k)-multi-
coloring, yet G’ is not in HC. By Theorem 1, if G’ has a block which is not
a clique, then it is not in HC. For example, if G is the path with 3 vertices
then G is in M HC (it is a path and it is also two cliques joined at a point).
If k = 2 at the joining vertex and k = 1 at the other two vertices then for
any list assignment L to G the explosion (G, L) of (G, L, k) will be a cycle
wzyz plus the chord [z, 2] with L'(z) = L'(z). If (G',L') satisfies Hall’s
condition then G’ will have an L’-coloring. But by Theorem 1, G’ is not
in HC. If L"(w) = {1,2}, L"(z) = {1}, L"(y) = {1,3}, L"(2) = {2,3},
then (G’, L") satisfies Hall’s condition, but G’ has no L”-coloring (of course
L"(z) # L"(2)).

A graph G(A, K, B) is called a “three linked cliques graph” if V(G) can
be partitioned into three non-empty sets A, K, B such that any two vertices
of G are adjacent except if one is in A and the other is in B. If H is a
graph consisting of two cliques joined at the vertex v, with list assignment L
and multiplicity function & then the explosion of (H, L, ) is a three linked
cliques graph G(A, K, B) with |K| = «(v) and list assignment L’ such that
L'(z) = L(v) for each z in K.

Let G(A, K, B) be a three linked cliques graph with list assignment L.
If some color o in C appears in the list of some vertex in A, the list of some
vertex in B, but not in the common central list, replace all occurrences of
o in lists in B by the new color ¢’. If some color T appears in the list of
some vertex in A, but not in the list of any vertex in B or K, add a new
vertex to B with list {7} and add 7 to the common central list. Add a
vertex to A in a similar way if 7 appears in the list of some vertex in B, but
not in the list of any vertex in A or K. Repeat these operations until a
(uniquely determined) graph G’ with list assignment L’ is obtained where
the common central list is the set of all colors. It is not hard to see that
(G’, L') satisfies Hall’s condition if and only if (G, L) does, and G’ has an
L’-coloring if and only if G has an L-coloring. So Theorem 2 is equivalent
to the following.

Theorem 2. Let G(A, K, B) be a three linked cliques graph with list

assignment L from a set of colors C such that L(v) =C for each v in K. If
(G, L) satisfies Hall’s condition then G has an L-coloring.
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3. Common partial systems of distinct representa-
tives

Let A;, Az, ..., As and By, Bs,...By be subsets of a set C. A common
partial system of distinct representatives (CPSDR) for the set systems A =
{A4,...,Ag} and B = {By, B,,...Bp} is a subset T of C such that T' is a
partial system of distinct representatives (PSDR) for both A and B, i.e., T
is an SDR for some subset of A and some subset of B. We will need the
following elementary result about completing PSDR’s.

Lemma 1. Let A be a set system of subsets of a set S with ¢ the maximum
size of a PSDR. If P is any PSDR for A then there exists a PSDR @ for
A of size t such that P C Q.

Proof. Construct the related bipartite graph G with V(G) = SU A and
E(G) = {[z,A]|z € S, A€ A, and z € A}. There is an obvious correspon-
dence between maximum size PSDR’s of A and maximum matchings of G.
At each step in the well-known alternating chain algorithm for finding a
maximum matching in G (for example, see [2]), the size of the matching
increases by one, and one vertex is added to the set of vertices in S and the
set of vertices in A which meet the matching. [J

If G(A, K, B) is a three linked cliques graph with list assignment L,
then we associate with G the pair of set systems .A and B where A consists
of the lists of vertices in A and B consists of the lists of vertices in B.

Lemma 2. Let G(4, K, B) be a three linked clique graph of order n with
list assignment L from a set C of m colors such that L(v) = C for each
v € K. Let A and B be the associated set systems, let ¢ be the maximum
size of a CPSDR for A and B, and assume both A and B have SDR’s. Then
G has an L-coloring if and only if m +1t > n.

Proof. If ¢ is an L-coloring of G, let p be the number of colors which
are used twice, and g be the number of colors which are used once. Since
p+q <mandp <t we have

n=2p+q={P+qg+p<m+t.

Conversely, suppose m +t > n, let Q be a CPSDR of size ¢ for A and
B, and let the cardinalities of A, B, and K be a, b, and k respectively. By
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Lemma 1, Q can be extended to get SDR’s for A and B. The associated
coloring of A and B uses a + b — ¢ colors. This leaves

m—a—b+t=m—-(n—k)+t=k+m+t—-n>k.
colors to use on vertices in K. O

Lemma 2 shows that the maximum size ¢ of a CPSDR for A and B is the
determining factor as to whether or not G has an L-coloring. But whether
or not Hall’s condition is satisfied depends on the sum of the independence
numbers for the colors, and this depends on the number r of colors which
occur in both A and B (and in both subsets of A and subsets of B). Trivially
t < 7, but clearly equality need not hold in general. We will define a 3-
uniform hypergraph to reveal more about the relationship between ¢ and
7.

4. Hypergraphs and the Konig Property

Recall that a hypergraph H is a set of vertices (or points) V(H) together
with a collection E(H) of subsets of V(H) called edges (or lines). A
hypergraph is r-uniform if each line has size r and is r-partite if there is
a partition Vj, V2, ..., V;. of V(H) such that each edge of H is of the form
(z1,2,...,z,) where z; € V; for each i. A set of disjoint lines in E(H)
is called a matching. The matching number m(H) of H is the maximum
number of lines in a matching. A subset of V(H) is called a vertex cover
if it meets every line.

The minimum size 7(H) of a vertex cover is called the vertex covering
number of H. Obviously,

m(H) < 7(H). )

If H is a bipartite graph, then Ko6nig’s Theorem (for example, see [2])
says that equality holds in (2), but of course equality need not hold for a
general hypergraph.

Example 1. The 3-partite hypergraph H with V(H) = {1,2,3,4,5,6}
and E(H) = {(1,3,5),(1,3,6),(2,3,5),(1,4,5)} has matching number

equal to 1 and vertex covering number equal to 2.

No complete solution of the hypergraph matching problem is known,
and the problem is NP-complete even for 3-uniform hypergraphs [4] .
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Following Lovasz and Plummer [6], we will say that a hypergraph H
has the Kénig Property if equality holds in (2). Berge and Las Vergnas [1]
found a class of hypergraphs, called balanced hypergraphs, a generalization
of bipartite graphs in that they do not contain a certain type of generalized
odd circuit, which do have the Konig Property.

Theorem 3. Let A= {A,,...A,} and B = {B,,...By} be set systems with
ground set C. Then the associated 3-partite hypergraph H = H(A, B,C)
with V(H) = AUBUC and E(H) = {(Ai,Bj,0) : A; € A, B; € B, and
o € (A; N B;) has the Konig Property.

Proof. For each o in C we define the projection of H onto o to be the
bipartite graph B, with V(B,) = {Ai € A: 0 € A;JU{B; € B:o €
B;} and E(B,) = {[Ai,Bj]:0 € (AinB;)}. The graph B, is clearly
complete bipartite for each ¢ € C. Now we define a tripartite graph
T = T(H) with V(T) = AUBUC and E(T) = {[Ai,0]:0 € A; € A} U
{[Bj,o]: 0 € B; € B}. Finally, we form the graph F(H) from T(H) by
adding vertices z and y, = adjacent to all vertices in A and y adjacent to all
vertices in B. For each edge (A;, Bj,0) in H there is a path z, A;,0, B,y
in F(H). Because B, is complete bipartite, for each path z, A;,0, B;,y in
F(H) there is an edge (A;, Bj,0) in H. If P is any path from z to y in
F(H) (possibly with more than five vertices) then there must be a segment
A;,0,B; in P (a vertex o € C adjacent to a vertex in A and a vertex in B).
We call the path P’ = z, A;,0, B;,y a shortening of P. If we have any set
of m vertex disjoint paths from = to y, then by taking a shortening of each
we obtain a set of m vertex disjoint paths from z to y with five vertices in
each. Hence the matching number for H is equal to the maximum number
of vertex disjoint paths from z to y in F(H). By Merger’s Theorem (for
example see [7]) this is equal to the minimum size of an (z,y)-cutset for
F(H), i.e., the smallest subset of V(T) whose removal disconnects z from
y. But every (z,y)-cutset for F(H) is a vertex cover for H. O

Note that for the hypergraph H in Example 1 the projection of H onto
the color 5 has edge set {[1, 3], [1,4], [2, 3]}, which is not complete bipartite.
That is why there can exist a path z,2, 5,4,y in T(H), but no edge (2, 5,4)
in H, and hence why H does not have the Konig Property.

5. Proof of the main result

Lemma 3. Let A = {A;,As,..., A} and B = {By,By,...,By} be set
systems with ground set C and let ¢ be the maximum size of a CPSDR
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for A and B. Suppose that for each A; € A and B; € B the pairs of set
systems (A — A;), B and A, (B — B;) each have a CPSDR of size t. Then
there are precisely ¢ elements of C which appear in both some set in .4 and
some set in B.

Proof. By Theorem 3 the associated 3-partite hypergraph H = H(A,B,C)
has the Kénig Property. Since the matching number of H is equal to the
maximum size of a CPSDR we have m(H) = 7(H) =t. Let P be a vertex
cover for H of size . P cannot contain an element of .4 or of B, because if
it did then deleting that element leaves a set system with covering number
t — 1, a contradiction. Hence P is a subset of C and every edge (A, B;,0)
of H must have o in P. That means precisely ¢ elements occur in both
some set in A and some set in B. O

We remark that the idea of Lemma 3 can be used to construct a mini-
mum size vertex cover for the hypergraph H(A, B,C). Ift is the maximum
size of a CPSDR for the set systems .A and B and if some element of A or B
can be removed resulting in a pair of set systems with a smaller maximum
size of a CPSDR (it would be t — 1), then remove that element, and repeat
the process until removal of any element of A or B leaves the maximum size
of a CPSDR unchanged. The removed elements of A and B, along with
the elements of C occurring in both remaining set systems, is a minimum
size vertex cover.

We are now ready to prove Theorem 2’ (and hence Theorem 2).

Proof of Theorem 2'. Let A and B be the associated set systems and
t be the maximum size of a CPSDR for A and B. Since (G, L) satisfies
Hall’s condition and cliques are in HC, both A and B have SDR’s. By
Lemma 2, G has an L-coloring if and only if m + ¢ > n where |C| = m and
n is the order of G. It thus suffices to show that if (G, L) satisfies Hall’s
condition then m 4+t > n.

Assume G is minimal order such that there exists a set of colors C and
list assignment L where n > m +t. If deletion of some element of A or
B decreased the maximum size of a CPSDR then G would not be minimal.
Hence, by Lemma 3, precisely ¢ colors occur in both A and B. Thus

Y aci(@)=m+t<n=|V(G),
o€eC

a violation of Hall’s condition. OO
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The conjecture that G is in MHC if and only if each block of G is
a clique and each cutpoint lies in precisely two blocks has recently been
proved by Cropper, Gyérfés, and Lehel.
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