# On the [24, 12, 8] Self-Dual Quaternary Codes \*

Vassil Yorgov <sup>†</sup>
Department of Mathematical Sciences
Michigan Technological University
Houghton, MI 49931

and

Radka Russeva

Department of Mathematics and Computer Science Shoumen University, Shoumen 9712, Bulgaria

#### Abstract

We construct all self-dual [24, 12, 8] quaternary codes with a monomial automorphism of prime order r > 3 and obtain a unique code for r = 23 (which has automorphisms of orders 5, 7, and 11 too), two inequivalent codes for r = 11, 6 inequivalent codes for r = 7, and 12 inequivalent codes for r = 5. The obtained codes are with 12 different weight spectra.

<sup>\*</sup>This work was partially supported by the Bulgarian national Science Fund under Contract No MM-503/1995 and was partially presented at the Spring Conference of the Union of Bulgarian Mathematicians, Pleven 1998.

<sup>&</sup>lt;sup>†</sup>On leave from Department of Mathematics and Computer Science, Shoumen University, Shoumen 9712, Bulgaria

#### 1 Introduction

In [2] and [9], all self-dual codes over the field of four elements,  $F_4$ , of length at most 16 are enumerated. It is reasonable for higher lengths n to investigate only those of the largest minimum weight  $d = 2\lfloor n/6 \rfloor + 2$ . These codes are called extremal. The extremal self-dual codes of lengths 18 and 20 are classified in [7]. All inequivalent extremal self-dual codes of lengths 22, 26, and 28 which have a nontrivial odd order automorphism are known [5, 6]. In [8], it is shown that there does not exist a [24, 12, 10] self-dual code over  $F_4$ . It is known that any [24, 12, 8] self-dual quaternary code has a weight enumerator of the form:

$$W(y) = 1 + A_8 y^8 + (18216 - 8A_8) y^{10} + (156492 + 28A_8) y^{12} + (1147608 - 56A_8) y^{14} + (3736557 + 70A_8) y^{16} + (6248088 - 56A_8) y^{18} + (4399164 + 28A_8) y^{20} + (1038312 - 8A_8) y^{22} + (32778 + A_8) y^{24}$$
(1)

where  $A_8$  is the number of weight 8 vectors.

In this paper, we examine [24, 12, 8] self-dual codes over  $F_4$  possessing a monomial automorphism of prime order r > 3. We obtain all such codes up to equivalence. All these codes have weight enumerators (1) with  $A_8 = 2277$ , 1242, 1197, 1089, 837, 792, 756, 702, 657, 630, 522, or 513. We use a general method for constructing self-dual codes via an automorphism of odd prime order developed in [4, 5, 10, 11].

## 2 Description of the method and notations

We describe first the method for constructing quaternary self-dual codes, C, possessing a permutation automorphism of odd prime order  $r \geq 5$ . By Theorem 2 of [3], if C has a monomial automorphism of order  $r \geq 5$ , there is a code equivalent to C with a permutation automorphism  $\sigma$  of order r with the same cycle

structure. Let C be an [n, k] code over  $F_4$  with a permutation automorphism  $\sigma$  of odd prime order r which has c r-cycles and f fixed points. We can assume that

$$\sigma = (1, 2, \dots, r)(r+1, r+2, \dots, 2r) \dots ((c-1)r+1, \dots, cr).$$
 (2)

Denote the r-cycles of  $\sigma$  by  $\Omega_1, \Omega_2, \ldots, \Omega_c$  and the fixed points by  $\Omega_{c+1}, \dots, \Omega_{c+f}$ . Consider the factor-ring  $R = F_4[X]/\langle X^r + 1 \rangle$ , where X is indeterminate. Suppose  $X^r + 1 = \prod_{j=0}^g m_j(X)$ , where  $m_i(X)$  is irreducible over  $F_4$  with  $m_0(X) = X + 1$ . Denote by  $I_j$ the minimal ideal in R generated by  $(X^r + 1)/(m_i(X))$  for  $0 \le$  $j \leq g$ . Each  $I_i$  is an extension field of  $F_4$  and  $R = I_0 \oplus I_1 \oplus \cdots \oplus I_g$ . If  $\mathbf{x} \in F_4^n$ , let  $\mathbf{x} | \Omega_i$  be the restriction of  $\mathbf{x}$  on  $\Omega_i$ . For  $1 \leq 1$  $i \leq c$ , the restriction  $\mathbf{x}|\Omega_i$  can be viewed as an element  $a_0$  +  $a_1X\cdots + a_{r-1}X^{r-1}$  from R. Let  $C(\sigma) = \{\mathbf{x} \in C : \mathbf{x}\sigma = \mathbf{x}\}.$ For  $1 \leq j \leq c$ , let  $E_j(\sigma) = \{ \mathbf{x} \in C : \mathbf{x} | \Omega_i \in I_j \text{ for } 1 \leq i \leq c \}$ and  $\mathbf{x}|\Omega_i = 0$  for  $c+1 \leq j \leq c+f$ . It is known that C = $C(\sigma) \oplus E_1(\sigma) \oplus \cdots \oplus E_g(\sigma)$  [5]. Let  $E_j(\sigma)^*$  be  $E_j(\sigma)$  punctured on the fixed points. The codewords of  $E_j(\sigma)^*$  are c-tuples from  $I_i^c$ . Define the map  $\Phi: C(\sigma) \to F_4^{c+f}$ , where  $\mathbf{v}\Phi$  is the vector obtained from  $\mathbf{v} \in C(\sigma)$ , by choosing one coordinate from each cycle  $\Omega_i$ ,  $1 \leq i \leq c+f$ . This way, we obtain the code  $C(\sigma)\Phi$ over  $F_4$ . The inner product  $\langle \cdot, \cdot \rangle$  in  $F_4^n$  has the form:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i^2, \tag{3}$$

where  $\mathbf{u}, \mathbf{v} \in F_4^n$  and  $\mathbf{u} = (u_1, \dots, u_n), \mathbf{v} = (v_1, \dots, v_n).$ 

We let s=0 or 1 and t be a nonnegative integer. Choose an integer u such that  $2^s 4^t u \equiv -1 \pmod{r}$ . Define a form  $(\cdot, \cdot)$  on  $R^c$  by

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{c} x_i y_i^{2^s 4^t}, \tag{4}$$

where  $\mathbf{x}, \mathbf{y} \in R^c, \mathbf{x} = (x_1, ..., x_c), \mathbf{y} = (y_1, ..., y_c)$ 

Consider the ring automorphism  $\tau_{2^a,u}(\sum_{i=0}^{r-1}a_iX^i)=\sum_{i=0}^{r-1}a_i^{2^a}X^{ui}$ , where a is an integer  $0\leq a\leq 1$  and u is defined above. The map  $\tau_{2^a,u}$  preserves  $I_0$  and permutes the fields  $I_1,\ldots,I_g$  [5]. Let us define the permutation  $\lambda$  on  $1,\ldots,g$  with  $\tau_{2^a,u}(I_i)=I_{\lambda(i)}$ . Denote by  $\Lambda_1,\ldots,\Lambda_l$  the orbits of  $\lambda$ .

The next theorem can be found in [5].

**Theorem 1** Let s, t be nonnegative integers, where  $s \leq 1$ . Choose an integer u such that  $2^s 4^t u \equiv -1 \pmod{r}$ . A quaternary [n, n/2, d] code C over  $F_4$  with a permutation automorphism  $\sigma$  in the form (2) is self-dual under inner product (3) iff the following conditions hold:

(i)  $C(\sigma)\Phi$  is self-dual [c+f,(c+f)/2] under (3); (ii) For  $1 \leq i \leq g$   $E_{\lambda(i)}(\sigma)^*$  is dual of  $\tau_{2^{\alpha},u}E_i(\sigma)^*$  under (4).

Some useful restrictions of the cycle structure of  $\sigma$  are given in the following theorem.

**Theorem 2** [2, 5] Let C be [n,n/2,d] code over  $F_4$  with a permutation automorphism  $\sigma$  of prime order  $r \geq 3$  with c r-cycles and f fixed points. We have:

- (i) if  $f \leq d-1$ , then  $c \geq f$ ;
- (ii) if  $f \geq d$ , then  $c + f \geq 2d 2$ ;
- (iii) if  $|\Lambda_j|$  is odd for some j,  $1 \le j \le l$ , then c is even.

Two linear quaternary codes C and C' of length n are said to be equivalent whenever  $C' = CM\tau$ , where M is a monomial  $n \times n$  matrix over  $F_4$  and  $\tau \in Gal(F_4)$ .

#### 3 Results

Let C be a [24, 12, 8] self-dual quaternary code with a monomial automorphism M of odd prime order  $r \geq 5$ . Then the automorphism can be assumed to be a permutation automorphism  $\sigma$  of

order r with the same cycle structure as M [3]. Let  $\sigma$  have c r-cycles, f fixed points and decomposition (2). Applying theorem 2 and using 8 as the minimum distance of C, we obtain the next theorem.

**Theorem 3** The only possibilities for r, c, f are as follows: 1) r=23, c=1, f=1, 2) r=11, c=2, f=2, 3) r=7, c=3, f=3, 4) r=5, c=4, f=4, 5) r=3, c=6, f=6, 6) r=3, c=8, f=0.

We consider the cases for  $r \neq 3$ . In all of this cases  $R = I_0 \oplus I_1 \oplus I_2$  and  $C = C(\sigma) \oplus E_1(\sigma) \oplus E_2(\sigma)$ . Generators of  $I_j^* = I_j \setminus \{0\}$  for j = 1, 2 will be denoted  $\alpha$  and  $\beta$  respectively. The elements of  $F_4$  will be denoted 0, 1,  $\omega$  and  $\bar{\omega} = \omega^2$ . It holds that  $1 + \omega = \omega^2$ .

We use the following transformations which produce equivalent codes possessing the automorphism  $\sigma$  given in (2):

- a) permutation of the last f coordinates of C;
- b) permutation of the r c-cycles of C;
- c) multiplication of each cycle  $\Omega_i$ ,  $1 \le i \le c$ , and each fixed coordinate of C by a nonzero constant from  $F_4$ ;
- d) substitution  $f_t: X \to X^t$  in each r-cycle of  $\sigma$ , where t is an integer  $1 \le t \le r 1$ ;
  - e) cycle shifts of the entries of the r-cycles separately.

Denote the groups consisting of transformations of type a), b), c), d), and e) by  $S_f$ ,  $S_c$ , D, F and W, respectively.

The next two theorems are particular cases of results provided in [5].

**Theorem 4** Let C and C' have the same monomial automorphism of order r=23, 11, 7 or 5 (which we may assume to be a permutation  $\sigma$ ). Then C and C' are equivalent if and only if  $C'=CM\tau$ , for some  $M\in WS_fS_cDF$  and  $\tau\in Gal(F_4)$ . Denote the actions of  $T\in WS_fS_cDFGal(F_4)$  on  $C(\sigma)\Phi$  and  $E_i(\sigma)^*$  by  $\hat{T}$ .

**Theorem 5** Let C and C' have the same automorphism  $\sigma$ . Suppose  $C = C(\sigma) \oplus E_1(\sigma) \oplus E_2(\sigma)$  and  $C' = C'(\sigma) \oplus E'_1(\sigma) \oplus E'_2(\sigma)$ .

(i) If CT = C' where  $T \in WS_fS_cDFGal(F_4)$ , then  $C(\sigma)T = C'(\sigma)$  and  $E_i(\sigma)T = E_j(\sigma)$ , where  $i, j \in \{1, 2\}$ .

(ii) Suppose  $C(\sigma) = C'(\sigma)$  and CT = C', where  $T \in S_f S_c DGal(F_4)$ . Then  $\hat{T}$  is an automorphism of  $C(\sigma)\Phi$ .

We define the group  $\hat{G} = \{\hat{T} | T \in S_f S_c D\} Gal(F_4) \cap Aut(C(\sigma) \Phi).$ 

#### 3.1 The case r=23, c=1, f=1.

Now  $R = F_4[X]/\langle X^{23}+1\rangle = I_0 \oplus I_1 \oplus I_2$ , where  $I_1$  and  $I_2$  are fields with  $4^{11}$  elements,  $\tau_{2^{1-s},u} = \tau_{1,-1}$  and  $\tau_{1,-1}(\alpha) = \beta$ . The code  $C(\sigma)\Phi$  is a [2,1] self-dual code over  $F_4$ . Therefore,  $C(\sigma)\Phi = C_2$ . The form (4) in  $R^1$  is  $(x,y) = xy^{2\cdot 4^5}$  and  $E_2(\sigma)^* = \tau_{1,-1}(E_1(\sigma)^*)$ . Then  $E_1(\sigma)^* \oplus E_2(\sigma)^*$  is an [1,1] code over  $I_1$  or  $I_2$ . Thus, up to equivalence,  $E_1(\sigma)^* \oplus E_2(\sigma)^* = I_1$ . We use the unit  $e_1(X) = 1 + X + X^2 + X^3 + X^4 + X^6 + X^8 + X^9 + X^{12} + X^{13} + X^{16} + X^{18}$  of  $I_1$  to obtain a generator matrix of C of the form

$$G = \left(\begin{array}{cc} 11 \dots 1 & 1 \\ G_1 & 0 \end{array}\right).$$

The first row of  $G_1$  is 11111010110011001010000 and it is an  $11 \times 23$  circulant type matrix. The matrix G generates over GF(2) the extended [24, 12, 8] Golay code. A computer check shows that over GF(4), it generates a [24, 12, 8] code with 2277 vectors of weight 8. Denote the obtained code by  $C_{(23)}^1$ . Thus, we prove the following theorem:

**Theorem 6** There exists a unique self-dual [24, 12, 8] quaternary code with a monomial automorphism of order 23.

#### 3.2 The case r=7, c=3, f=3

In this case,  $R = F_4[X]/\langle X^7 + 1 \rangle = I_0 \oplus I_1 \oplus I_2$ , where  $I_1$  and  $I_2$  are fields with  $4^3$  elements.  $C(\sigma)\Phi$  is a self-dual [6, 3] code over  $F_4$ . Then, it is either  $C_2 \oplus C_2 \oplus C_2$  or  $E_6$  [2]. Now,  $\tau_{2^{1-s},u} = \tau_{1,-1}$  and  $\tau_{1,-1}(\alpha) = \beta$ , where  $\alpha = 1 + \omega^2 X + \omega^2 X^2 + \omega X^3 + X^5 + \omega X^6$  and  $\beta = 1 + \omega X + X^2 + \omega X^4 + \omega^2 X^5 + \omega^2 X^6$ . The form (4) in

 $R^3$  now is given by  $(x,y) = \sum_{i=1}^3 x_i y_i^8$ . As  $E_2(\sigma)^*$  is the dual of  $\tau_{1,-1}E_1(\sigma)^*$  under it,  $\dim_{I_1}E_1(\sigma)^* + \dim_{I_2}E_2(\sigma)^* = 3$ . The group  $W = \langle f_3 \rangle$  and  $f_3^3(\alpha) = \beta$ . Hence,  $f_3^3$  interchanges  $E_1(\sigma)^*$  and  $E_2(\sigma)^*$ . So we may assume that  $1 \leq \dim_{I_1}E_1(\sigma)^* \leq \dim_{I_2}E_1(\sigma)^*$ . Since the minimal distance of C is 8, we obtain that  $E_1(\sigma)^*$  is a [3, 1, 3] code over  $I_1$ . As a consequence of the form of the inner product in  $R^3$ , we obtain the following lemma.

**Lemma 1** The code  $E_1(\sigma)^*$  determines the whole  $E_1(\sigma)^* \oplus E_2(\sigma)^*$ . If the generator matrix of  $E_1(\sigma)^*$  has the form  $(\alpha^0, \alpha^i, \alpha^j)$ ,  $0 \le i \le 4^3 - 1$ , then  $E_2(\sigma)^*$  is generated by

$$\left(\begin{array}{ccc} \beta^{8i} & \beta^0 & 0 \\ \beta^{8j} & 0 & \beta^0 \end{array}\right).$$

Let  $C(\sigma)\Phi$  be  $C_2\oplus C_2\oplus C_2$ . We can fix the generator matrix in the form

$$\left(\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right),$$

with cycle coordinates on the left. The group  $\hat{G}$  contains the transformations  $S_3^2$  ( $S_3$  is the symmetric group of degree 3),  $\tau$ ,  $diag < \omega$ ,  $1, 1, \omega$ , 1, 1 >,  $diag < 1, \omega$ ,  $1, 1, \omega$ , 1 >, and  $diag < 1, 1, \omega$ ,  $1, 1, \omega >$ . Applying theorem 5, we obtain three classes of [24, 12, 8] self-dual codes with representatives for the generator matrix of  $E_1(\sigma)^*$  in the form  $(\alpha^0, \alpha^0, \alpha^0)$ ,  $(\alpha^0, \alpha^0, \alpha^1)$ ,  $(\alpha^0, \alpha^1, \alpha^2)$ . Denote these codes by  $C_{(7)}^1$ ,  $C_{(7)}^2$  and  $C_{(7)}^3$  respectively. A computer check shows that the number of weight 8 vectors,  $A_8$ , is 2277 for  $C_{(7)}^1$  and 513 for  $C_{(7)}^2$  and  $C_{(7)}^3$ . The matrices  $(\alpha^0, \alpha^0, \alpha^1)$  and  $(\alpha^0, \alpha^1, \alpha^2)$  generate over GF(4) two [21, 3] codes with different spectra. Hence, from theorem S(i) we obtain that  $C_{(7)}^2$  and  $C_{(7)}^3$  are inequivalent.

Let  $C(\sigma)\Phi$  be  $E_6$ . We fix a generator matrix in the form

$$G_6 = \left( egin{array}{cccccc} 1 & 0 & 0 & 1 & \omega & \omega \ 0 & 1 & 0 & \omega & 1 & \omega \ 0 & 0 & 1 & \omega & \omega & 1 \end{array} 
ight),$$

with cycle coordinates on the left. The group  $\hat{G}_6$  contains the transformations  $S_3^2$ ,  $diag < \omega, \ldots, \omega >$ ,  $(4,5)diag < 1, 1, \omega, \bar{\omega}, \bar{\omega}, \omega >$   $\tau$ ,  $(4,6)diag < 1, \omega, 1, \bar{\omega}, \omega, \bar{\omega} > \tau$ , and  $(5,6)diag < \omega, 1, 1, \omega, \bar{\omega}, \bar{\omega} >$   $\tau$ , where  $\tau$  is the generator of the Galois group  $Gal(F_4)$ . For example, the transformation  $(4,5)diag < 1, 1, \omega, \bar{\omega}, \bar{\omega}, \omega > \tau$  results in transposing the fourth and fifth columns of the matrix  $G_6$ , then multiplying the third and the sixth columns by  $\omega$  and the fourth and fifth columns by  $\bar{\omega}$ , and raising of all entries to the second power. This way, the matrix  $G_6$  is transformed to the matrix

$$\left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & \omega & \omega \\ 0 & 1 & 0 & \omega & 1 & \omega \\ 0 & 0 & \bar{\omega} & 1 & 1 & \bar{\omega} \end{array}\right),$$

which generates the same code  $E_6$ .

Using the group  $\hat{G}_6$ , we obtain again three inequivalent classes, with the same representatives for the generator matrix of  $E_1(\sigma)^*$ . Denote these codes by  $C_{(7)}^4$ ,  $C_{(7)}^5$  and  $C_{(7)}^6$ . A computer check finds the number of weight 8 vectors in these three codes. Thus, we obtain the following table and theorem.

| $i \text{ for } C_{(7)}^i$ | $C(\sigma)\Phi$             | $genE_1(\sigma)^*$           | $A_8$ |
|----------------------------|-----------------------------|------------------------------|-------|
| 1                          | $C_2 \oplus C_2 \oplus C_2$ | $\alpha^0 \alpha^0 \alpha^0$ | 2277  |
| 2                          | $C_2 \oplus C_2 \oplus C_2$ | $\alpha^0 \alpha^0 \alpha$   | 513   |
| 3                          | $C_2 \oplus C_2 \oplus C_2$ | $lpha^0  lpha^0  lpha^2$     | 513   |
| 4                          | $E_6$                       | $\alpha^0 \alpha^0 \alpha^0$ | 1197  |
| 5                          | $E_6$                       | $lpha^0  lpha^0  lpha$       | 630   |
| 6                          | $E_6$                       | $\alpha^0 \alpha^0 \alpha^2$ | 756   |

**Theorem 7** The inequivalent codes  $C^1_{(7)}$ ,  $C^2_{(7)}$ ,  $C^3_{(7)}$ ,  $C^5_{(7)}$ , and  $C^6_{(7)}$  are up to equivalence the only [24, 12, 8] codes over  $F_4$  with a monomial automorphism of order 7.

The results for r=11 and 5 are obtained in a similar way.

#### 3.3 The case r=11, c=2, f=2

**Theorem 8** There exist exactly two inequivalent [24, 12, 8] quaternary codes with a monomial automorphism of order 11.

These codes are determined as follows. The code  $C(\sigma)\Phi$  is  $C_2 \oplus C_2$  with a generator matrix fixed in the form  $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ .

Generator matrices for  $E_1(\sigma)^*$  and  $E_2(\sigma)^*$  are given in next table. Denote these two [24, 12, 8] codes by  $C^1_{(11)}$  and  $C^2_{(11)}$ . The number of weight 8 vectors,  $A_8$ , given in the table is determined using a computer. Here we have  $\alpha = 1 + \omega^2 x + x^2 + \omega x^5 + \omega^2 x^6 + \omega x^7 + \omega x^8 + \omega^2 x^9 + x^{10}$  and  $\beta = 1 + \omega x + x^2 + \omega^2 x^5 + \omega x^6 + \omega^2 x^7 + \omega^2 x^8 + \omega x^9 + x^{10}$ .

| $i$ for $C_{(11)}^i$ | $genE_1(\sigma)^*$  | $genE_2(\sigma)^*$             | $A_8$ |
|----------------------|---------------------|--------------------------------|-------|
| 1                    | $\alpha^0 \alpha^0$ | $\beta^0$ $\beta^{31\cdot 11}$ | 2277  |
| 2                    | $\alpha^0 \alpha^0$ | $eta^0 eta^{31\cdot 12}$       | 1089  |

#### 3.4 The case r=5, c=4, f=4

**Theorem 9** There are exactly 12 inequivalent [24, 12, 8] quaternary codes with a monomial automorphism of order 5.

The code  $C(\sigma)\Phi$  is  $E_8$ , see [2], with a generator matrix fixed in the form

In this case, if  $genE_1(\sigma)^* = (\alpha^0, \alpha^i, \alpha^j, \alpha^k)$ , then

$$genE_2(\sigma)^* = \begin{pmatrix} \beta^{4i} & \beta^0 & 0 & 0 \\ \beta^{4j} & 0 & \beta^0 & 0 \\ \beta^{4k} & 0 & 0 & \beta^0 \end{pmatrix},$$

and if

$$genE_1(\sigma)^* = \begin{pmatrix} \alpha^0 & 0 & \alpha^i & \alpha^j \\ 0 & \alpha^0 & \alpha^k & \alpha^s \end{pmatrix},$$

then

$$genE_2(\sigma)^* = \begin{pmatrix} \beta^{4i} & \beta^{4k} & \beta^0 & 0 \\ \beta^{4j} & \beta^{4s} & 0 & \beta^0 \end{pmatrix}.$$

In the next table we give all the necessary information about the generator matrix of  $E_1(\sigma)^*$  for the [24, 12, 8] codes  $C^i_{(5)}$ ,  $i=1,2,\ldots,12$ , with a permutation automorphism of order 5, as well as the number of vectors of weight 8. Now,  $\alpha=1+\omega x+\omega x^3+x^4$  and  $\beta=1+\omega^2 x+\omega^2 x^3+x^4$ .

| $i \text{ for } C_{(5)}^i$ | $genE_1(\sigma)^*$                    | $A_8$ |
|----------------------------|---------------------------------------|-------|
| 1                          | $\alpha^0 \alpha^0 \alpha^0 \alpha^0$ | 657   |
| 2                          | $\alpha^0 \alpha^0 \alpha^0 \alpha^5$ | 792   |
| 3                          | $\alpha^0 \alpha^0 \alpha^5 \alpha^5$ | 837   |
| 4                          | $\alpha^0~0~0~\alpha^0$               | 1242  |
|                            | $0 \alpha^0 \alpha^0 \alpha^0$        |       |
| 5                          | $lpha^0~0~0~lpha^5$                   | 522   |
|                            | $0 \alpha^0 \alpha^5 \alpha^5$        |       |
| 6                          | $\alpha^0 \ 0 \ \alpha^0 \ \alpha^0$  | 657   |
|                            | $0 \alpha^0 \alpha^0 \alpha^3$        |       |
| 7                          | $\alpha^0 \ 0 \ \alpha^0 \ \alpha^0$  | 702   |
|                            | $0 \alpha^0 \alpha \alpha^2$          |       |
| 8                          | $\alpha^0 \ 0 \ \alpha^0 \ \alpha$    | 657   |
|                            | $0 \alpha^0 \alpha \alpha^0$          |       |
| 9                          | $\alpha^0 \ 0 \ \alpha^0 \ \alpha$    | 837   |
|                            | $0 \alpha^0 \alpha \alpha^3$          |       |
| 10                         | $\alpha^0 \ 0 \ \alpha^0 \ \alpha$    | 837   |
|                            | $0 \alpha^0 \alpha \alpha^7$          |       |
| 11                         | $\alpha^0 \ 0 \ \alpha^0 \ \alpha$    | 1197  |
|                            | $0 \alpha^0 \alpha^2 \alpha^8$        |       |
| 12                         | $\alpha^0 \ 0 \ \alpha \ \alpha^2$    | 2277  |
|                            | $0 \alpha^0 \alpha^2 \alpha^{13}$     |       |

**Remark 1.** The code  $C^1_{(23)}$  has a binary generator matrix which generates over  $F_2$  the extended Golay code [24, 12, 8]. It is known that this binary code has automorphisms of orders 5, 7, 11, and 23. Therefore, the quaternary code  $C^1_{(23)}$  has such

automorphisms, too. Only the codes  $C^{12}_{(5)}$ ,  $C^1_{(7)}$ , and  $C^1_{(11)}$  have the same weight enumerators as  $C^1_{(23)}$ . Hence, these four codes are equivalent.

**Remark 2.** The elements  $\alpha$  and  $\beta$  from the tables are taken from [5].

### Acknowledgements

The authors would like to thank to the anonymous referee for the useful suggestions. The first author is grateful to Michigan Technological University for the excellent working conditions provided.

#### References

- [1] J.H.Conway and V.Pless, "On primes dividing the group order of a doubly even (72, 36, 16) code and the group order of a quaternary (24, 12, 10) code", Discrete Math., vol. 38 (1982), 143-156.
- [2] J.H.Conway, V.Pless and N.J.A.Sloane, "Self-dual codes over GF(3) and GF(4) of length not exceeding 16", IEEE Trans. Inform. Theory IT-25 (1979), 312-322.
- [3] J.H.Conway, V.Pless, "Monomials of orders 7 and 11 cannot be in the group of a [24, 12, 10] self-dual quaternary code", IEEE Trans. Inform. Theory IT-29 (1983), 137-140.
- [4] W.C.Huffman, "Automorphisms of codes with applications to extremal doubly even codes of length 48", IEEE Trans. Inform. Theory IT-28 (1982), 511-521.
- [5] W.C.Huffman, "On extremal self-dual quaternary codes of length 18 to 28, I", IEEE Trans. Inform. Theory IT-36 (1990), 651-660.

- [6] W.C.Huffman, "On extremal self-dual quaternary codes of length 18 to 28, II", IEEE Trans. Inform. Theory IT-37 (1991), pp. 1206-1216.
- [7] W.C.Huffman, "Characterization of quaternary exstremal codes of lengths 18 and 20", IEEE Trans. Inform. Theory vol. 43 (1997), 1613-1616.
- [8] C.W.H.Lam and V.Pless, "There is no [24, 12, 10] self-dual quaternary code", IEEE Trans.Inform.Theory vol. 36(1990), 1153-1156.
- [9] F.J.MacWilliams, A.M.Odlyzko,
   N.J.A.Sloane, and H.N.Ward, "Self-dual codes over GF(4)",
   Jour. Combin. Theory A25 (1978), 288-318.
- [10] V.Y.Yorgov, Binary Self-dual Codes with automorphisms of odd order (in Russian), Probl. Pered. Inform. 19 (1983), 11-24.
- [11] V.Y.Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inform. Theory vol.33 (1987), 77-82.