On partition of a Boolean lattice into chains of equal sizes

Muktar Elzobi and Zbigniew Lonc
Department of Mathematics and Information Sciences
Warsaw University of Technology
00-661 Warsaw, Poland

ABSTRACT. In this paper we show that for every sufficiently large integer n and every positive integer $c \leq \left\lfloor \frac{1}{6} (\log \log n)^{\frac{1}{2}} \right\rfloor$, a Boolean lattice with n atoms can be partitioned into chains of cardinality c, except for at most c-1 elements which also form a chain.

1 Introduction

In 1985 Sands [7] gave a conjecture that for n sufficiently large given k, there exists a partition of a Boolean lattice with n atoms \mathbf{B}_n into chains of cardinality 2^k . The conjecture of Sands holds for k = 1. The required partition is $\{\{A, A \cup \{n\}\}: A \subseteq [n-1]\}$. For k = 2 it was settled by Griggs et al. [4] who proved that \mathbf{B}_n can be partitioned into chains of cardinality 4 if and only if $n \geq 9$. Griggs [3] posed a stronger conjecture proved by Lonc [6].

There exists an integer $n_0 = n_0(c)$ such that for $n \ge n_0$ the Boolean lattice \mathbf{B}_n can be partitioned into chains of size c except for at most c-1 elements which also form a chain.

Notice that if there is a partition of \mathbf{B}_n into chains of size c except for at most c-1 elements which also form a chain then by Dilworth's Theorem [1] the number of chains in this partition is not smaller than the maximum size of an antichain in \mathbf{B}_n . Hence by Sperner's Theorem [8]

$$\left\lceil \frac{2^n}{c} \right\rceil \geq \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}.$$

Using Stirling's formula

$$c \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} = \sqrt{\frac{\pi}{2}} \sqrt{n} (1 + o(1)),$$

where o(1) is a function of n tending to 0 as n approaches ∞ .

Füredi [2] conjectured that there exists a partition of \mathbf{B}_n into chains of size $c = \sqrt{\frac{\pi}{2}} \sqrt{n} (1 + o(1))$, except for at most c-1 elements which also form a chain.

The purpose of this paper is to examine the method of Lonc [6] of partitioning of \mathbf{B}_n into chains. He assumed in his reasoning that c is a constant with respect to n. In this paper we shall assume that c is an increasing function of n and check what we can prove using the method of Lonc [6]. Our main result says that if n is sufficiently large then \mathbf{B}_n can be partitioned into chains of size $c = \left\lfloor \frac{1}{6} (\log \log n)^{\frac{1}{2}} \right\rfloor$, except for possibly c-1 elements which also form a chain. It is still far from $c = \sqrt{\frac{\pi}{2}} \sqrt{n} (1 + o(1))$ expected by Füredi but improves the original result of Lonc [6].

Since the method of partitioning B_n into chains is described in Lonc [6], we skip proofs which can be found there. Many of our proofs are similar to the proofs given in [6], however we must give them here to demonstrate how we can use them to show stronger results.

In this paper we denote by $\mathcal{L} = \{L_0, L_1, \ldots, L_n\}$ (resp. by $\mathcal{C} = \{C_1, C_2, \ldots, C_\ell\}$, where $\ell = \binom{n}{\lfloor \frac{n}{2} \rfloor}$) a partition of \mathbf{B}_n into levels (resp. into symmetric chains).

Let us sketch the idea of the reasoning. A central role is played by a notion of so called pseudofence. This is a relatively large subset of \mathbf{B}_n which can be partitioned into chains of size c except for at most c-1 elements which also form a chain (Lemma 2.2). For n sufficiently large it is proved (Lemma 2.6) that \mathbf{B}_n contains a pseudofence $PF \subseteq L_p \cup L_{p+1} \cup \cdots \cup L_s$, where p and s, $p < s < \left\lfloor \frac{n}{2} \right\rfloor$, are some integers "asymptotically" close to $\frac{n}{2}$. Then, each chain $\left(C_i \cap \bigcup_{j=p}^n L_j\right) - PF$ is partitioned into chains of size c except for at most c-1 elements which form a chain C_i^* such that its minimum element is a member of $\bigcup_{j=s+1}^{\lfloor \frac{n}{2} \rfloor} L_j$. Denote by \mathcal{F}_1 the set of chains of size c obtained this way. Each chain C_i^* is completed to a chain of size c using some elements of $\bigcup_{i=0}^{p-1} L_i$. Denote the set of these c-element chains by \mathcal{F}_2 . It turns out that the set obtained from \mathbf{B}_n by deleting the chains of \mathcal{F}_1 and \mathcal{F}_2 is a pseudofence PF' containing PF. It completes the reasoning because the pseudofence has the required partition into chains.

Let us define a generalization of the Newton coefficient. For any real

number x and a nonnegative integer k, let

$$\binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k!}.$$

One can easily check that for every positive integer m there exists a unique $x \ge k$ such that $m = {x \choose k}$.

In our considerations we shall use the following weaker version of the famous Kruskal-Katona Theorem due to Lovasz. We shall call it the KKL-theorem.

Theorem (KKL). Let \mathcal{A} be a family of k-element sets and $|\mathcal{A}| = {x \choose k}$, $x \geq k$. Then for any $s \leq k$ the sets of \mathcal{A} contain at least ${x \choose s}$ different s-element sets.

Let, for $a \in B_n$, C(a) (resp. L(a)) denote the element of C (resp. L) containing a. For an ordered set P, let $\max P$ (resp. $\min P$) be the greatest (resp. the least) element of P, if it exists. For a graph G and a set G of vertices in G, we mean by $\Gamma_G(G)$ the set of neighbors of vertices in G. Let $\deg_G(G)$ denote the degree of a vertex G in G.

2 Results

We shall use the following technical lemma several times.

Lemma 2.1.

i)
$$\left(\frac{1+\frac{a}{x}}{1-\frac{a}{x}}\right)^x > e^{2a}$$
 for $x > a > 0$

ii)
$$\left(\frac{1+\frac{a}{x}}{1-\frac{a}{x}}\right)^x \le 3^{2a}$$
 for $x \ge 2a > 0$.

Proof: The proof of this lemma follows by the observation that the function $f(x) = \left(\frac{1+\frac{a}{x}}{1-\frac{a}{x}}\right)^x$ is decreasing in the interval (a, ∞) .

Definition. Let $A_1, \ldots, A_{\binom{n}{k}}$, $B_1, \ldots, B_{\binom{n}{k}-1}$ be pairwise disjoint chains of size at least c in B_n . By a pseudofence of rank c based on the level L_k we mean the ordered set induced by $A_1 \cup \cdots \cup A_{\binom{n}{k}} \cup B_1 \cup \cdots \cup B_{\binom{n}{k}-1}$ if the following conditions are satisfied

- i) $\max A_i < \min B_i$ and $\max A_{i+1} < \min B_i$, for $i = 1, \ldots, {n \choose k} 1$,
- ii) $\{\max A_1, \ldots, \max A_{\binom{n}{k}}\} = L_k$ and
- iii) $A_i \subseteq C(\max A_i)$ for every i such that $|C(\max A_i) \cap \bigcup_{i=0}^k L_i| \ge c$ (see Figure 1).

Figure 1. A pseudofence of rank 3

Lonc [6] proved the following lemma which plays a central role in the reasoning that follows. Since the proof of the lemma is short and simple we give it beneath.

Lemma 2.2. A pseudofence of rank c based on the level L_k can be partitioned into chains of size c except for at most c-1 elements which also form a chain.

Proof: Denote by $A_1, \ldots, A_{\binom{n}{k}}, B_1, \ldots, B_{\binom{n}{k}-1}$ the chains occurring in the definition of pseudofence PF of rank c based on the level L_k . Construct a sequence σ , whose terms are, in turn, the elements of $A_1, B_1, A_2, B_2, \ldots, A_{\binom{n}{k}-1}, B_{\binom{n}{k}-1}, A_{\binom{n}{k}}$. Since, for $i = 1, \ldots, \binom{n}{k}-1, A_i \cup B_i$ and $B_i \cup A_{i+1}$ are chains, every set of c consecutive terms in σ is a chain. Thus, partitioning σ into subsequences of consecutive elements of length c except for at most one of a shorter length, we get the required chain partition of our pseudofence. \square

Lemma 2.3. There is a constant n_0 such that if $n \ge n_0$ then for every integer k, $1 \le k \le \frac{1}{3} \log n$, and every integer function h(n) such that $\frac{n}{2} - \sqrt{n} \log n + 2^k \le h(n) \le \frac{n}{2}$ the Boolean lattice B_n contains a set of pairwise disjoint chains D_1, D_2, \ldots, D_t of size k, where $t = \binom{n}{h(n)}$, satisfying the conditions

i)
$$\bigcup_{i=1}^t D_i \subseteq \bigcup_{i=0}^{2^k-2} L_{h(n)-i}$$
 and

ii)
$$\bigcup_{i=1}^t \max D_i = L_{h(n)}$$

Proof: Notice that $\sqrt{n} \ge 4 \log n$ for $n \ge 2^{12}$, so by Lemma 2.1 ii)

$$1 \ge \left(\frac{\frac{n}{2} - \sqrt{n}\log n}{\frac{n}{2} + \sqrt{n}\log n}\right)^{\frac{1}{2}n^{1/3}} = \left(\frac{1 - \frac{2\log n}{\sqrt{n}}}{1 + \frac{2\log n}{\sqrt{n}}}\right)^{\sqrt{n} \cdot \frac{1}{2}\frac{1}{n^{1/6}}}$$
$$\ge \left(\frac{1}{3}\right)^{4\log n \cdot \frac{1}{2}n^{-1/6}} = \left(\frac{1}{3}\right)^{\frac{2\log n}{n^{1/6}}}.$$

Since $\lim_{n\to\infty}\frac{2\log n}{n^{1/6}}=0$, $\lim_{n\to\infty}\left(\frac{1}{3}\right)^{\frac{2\log n}{n^{1/6}}}=1$ and consequently

 $\lim_{n\to\infty} \left(\frac{\frac{n}{2}-\sqrt{n}\log n}{\frac{n}{2}+\sqrt{n}\log n}\right)^{\frac{1}{2}n^{1/3}} = 1. \text{ Let } n_0 \text{ be the smallest integer } n \text{ such that}$

$$n \ge 2^{12} \text{ and } \left(\frac{\frac{n}{2} - \sqrt{n} \log n}{\frac{n}{2} + \sqrt{n} \log n}\right)^{\frac{1}{2}n^{1/3}} \ge \frac{1}{2}.$$

We shall show the lemma by induction on k. (We shall write h instead of h(n) to shorten notation.)

For k = 1 the lemma holds trivially.

Suppose we have already proved the lemma for integers smaller than k. We shall show it for $k \geq 2$.

Notice that $h-2^{k-1} \geq \frac{n}{2} - \sqrt{n} \log n + 2^{k-1} \geq 0$, for $n \geq n_0$. Let G = (X,Y;E) be a bipartite graph such that $X = L_h$, $Y = L_{h-1} \cup L_{h-2^{k-1}}$ and a pair UV, $U \in X$, $V \in Y$ be an edge in G if $V \leq U$ in B_n . We show that G contains a matching covering all vertices of X. To this end we apply Hall's theorem.

Let $Z \subseteq X$ and $|Z| = {x \choose h}$, where $h \le x \le n$. Applying the KKL-theorem we get

$$|\Gamma_G(Z)| \ge \binom{x}{h-1} + \binom{x}{h-2^{k-1}} \tag{2.1}$$

If $\frac{1}{2}(x+1) \le h$ then $\binom{x}{h-1} \ge \binom{x}{h}$ so $|\Gamma_{\mathcal{G}}(Z)| \ge |Z|$. Otherwise, if $\frac{1}{2}(x+1) > h$ then $\binom{x}{h} > \binom{x}{h-1} \ge \binom{x}{h-2^{k-1}}$ and by (2.1)

$$\begin{split} \frac{|\Gamma_G(Z)|}{|Z|} &\geq \frac{2\binom{x}{h-2^{k-1}}}{\binom{x}{h}} = 2\frac{(h-2^{k-1}+1)(h-2^{k-1}+2)\cdots h}{(x-h+1)(x-h+2)\cdots (x-h+2^{k-1})} \\ &\geq 2\frac{(h-2^{k-1}+1)(h-2^{k-1}+2)\cdots h}{(n-h+1)(n-h+2)\cdots (n-h+2^{k-1})} \\ &\geq 2\left(\frac{h-2^{k-1}}{n-h+2^{k-1}}\right)^{2^{k-1}}. \end{split}$$

Since the function $f(h) = \frac{h-A}{B-h}$ is increasing for $0 \le h < B$ and all constants $A, B, A \le B$ and since $2^{k-1} \le \frac{1}{2}n^{1/3}$, we get for $n \ge n_0$

$$\begin{split} \frac{|\Gamma_G(Z)|}{|Z|} &\geq 2 \left(\frac{\frac{n}{2} - \sqrt{n} \log n + 2^k - 2^{k-1}}{\frac{n}{2} + \sqrt{n} \log n - 2^k + 2^{k-1}} \right)^{2^{k-1}} \\ &\geq 2 \left(\frac{\frac{n}{2} - \sqrt{n} \log n}{\frac{n}{2} + \sqrt{n} \log n} \right)^{2^{k-1}} \geq 2 \left(\frac{\frac{n}{2} - \sqrt{n} \log n}{\frac{n}{2} + \sqrt{n} \log n} \right)^{\frac{1}{2}n^{1/3}} \\ &\geq 2 \cdot \frac{1}{2} = 1. \end{split}$$

Hence $|\Gamma_G(Z)| \geq |Z|$.

By Hall's theorem the required matching exists, equivalently, there are 2-element chains E_1, E_2, \ldots, E_t such that $\bigcup_{i=1}^t E_i \subseteq L_h \cup L_{h-1} \cup L_{h-2^{k-1}}$ and $\bigcup_{i=1}^t \max E_i = L_h$. Denote by x_i and $y_i, y_i \leq x_i$, the elements of E_i , for $i=1,2,\ldots,t$. Let $I=\{i\colon y_i\in L_{h-1}\}$ and $J=\{i\colon y_i\in L_{h-2^{k-1}}\}$. By the induction hypothesis (since $h-1\geq \frac{n}{2}-\sqrt{n}\log n+2^{k-1}$), for $n\geq n_0$, there exists a set $\{D_i'\colon i\in I\}$ of pairwise disjoint (k-1)-element chains such that $\bigcup_{i\in I} D_i'\subseteq \bigcup_{i=0}^{2^{k-1}-2} L_{h-1-i}$ and $\max D_i'=y_i$ for every $i\in I$. Similarly (since $h-2^{k-1}\geq \frac{n}{2}-\sqrt{n}\log n+2^k-1$), for $n\geq n_0$, there is a set $\{D_i''\colon i\in J\}$ of pairwise disjoint (k-1)-element chains such that $\bigcup_{i\in J} D_i''\subseteq \bigcup_{i=0}^{2^{k-1}-2} L_{h-2^{k-1}-i}=\bigcup_{i=2^{k-1}}^{2^k-2} L_{h-i}$ and $\max D_i''=y_i$ for every $i\in J$.

The chains $D_i = E_i \cup D_i'$ for $i \in I$ and $D_i = E_i \cup D_i''$ for $i \in J$ are pairwise disjoint and satisfy the conditions (i) and (ii). Hence the lemma follows by the principle of mathematical induction.

To construct a pseudofence in B_n Lonc [6] constructed a sequence $C_{n,k} = (a_1, a_2, \ldots, a_{\binom{n}{k}})$ which is a permutation of the set of all k-element subsets of the set [n] and such that the union of every two consecutive terms in the sequence $C_{n,k}$ is a (k+1)-element set.

Let $b'_i = a_i \cup a_{i+1}$, for $i = 1, 2, ..., \binom{n}{k} - 1$ and denote by $C'_{n,k}$ the sequence $(b'_1, b'_2, ..., b'_{\binom{n}{k} - 1})$ of (k+1)-element subsets of [n]. Denote by $S_n^k(l)$ the set of (k+1)-element subsets of [n] occurring exactly l times in the sequence $C'_{n,k}$.

The following lemma was shown in [6].

Lemma 2.4.

$$|S_n^k(l)| = \begin{cases} \binom{n-l-3}{k-l} + \binom{n-l-2}{k-l} & \text{for } 2 \le l \le k-2 \\ 2(n-l-2) & \text{for } 2 \le l = k-1 \\ 1 & \text{for } l = k \\ 0 & \text{for } l > k. \end{cases}$$

The next lemma follows from the KKL-theorem and was shown in [6] too.

Lemma 2.5. Let L_0, L_1, \ldots, L_n be the levels in \mathbf{B}_n . Let $T \subseteq L_k$ and $|T| = \binom{x}{n-k}$, where $x \ge n-k$ is a real number. If $m \ge k$ then the number of elements $w \in L_m$ such that $v \le w$ for some $v \in T$ is at least $\binom{x}{n-m}$. \square

We shall use the following notation in the sequel:

$$\begin{split} p &= \left\lfloor \frac{n}{2} - (c+1)\sqrt{n} - 2^{2c-1} + 2 \right\rfloor, \\ q &= \left\lfloor \frac{n}{2} - (c+1)\sqrt{n} \right\rfloor, \\ r &= \left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor \text{ and } \\ s &= \left\lfloor \frac{n}{2} - c \right\rfloor. \end{split}$$

Moreover, denote $S_n^k = \bigcup_{l=2}^k S_n^k(l)$.

The following lemma is a strengthening of a similar lemma proved in [6].

Lemma 2.6. For n sufficiently large and $2 \le c \le \frac{1}{6} \log n$ there is a pseudofence of rank c based on the level L_q of B_n contained in $\bigcup_{i=n}^s L_i$.

Proof: Denote by a_i (resp. b_i') the *i*-th term of the sequence $C_{n,q}$ (resp. $C'_{n,q}$). Let n be sufficiently large to satisfy the inequality p > 0. Define $G = G_n = (X, Y; F)$ to be a bipartite graph such that $X = \{i : b_i' \in S_n^q\}$, $Y = \bigcup_{j=q+2}^r L_j$ and $F = \{(i, b) \in X \times Y : b_i' \leq b\}$. We shall prove existence of a matching in G covering all vertices of X, for n sufficiently large and $c \leq \frac{1}{6} \log n$. We shall check Hall's condition

$$|Z| \le |\Gamma_G(Z)|$$
 for every $Z \subseteq X$. (2.2)

Proceeding exactly like in the proof of Lemma 6 in [6] we conclude that in order to prove (2.2) it suffices to show that the following inequality

$$\frac{4n[(n-2r)r^{r-q-2} + (n-2r+1)\Phi_1(x_1) + \Phi_2(x_2)]}{(n-q-1)(n-r)^{r-q-1}} \le 1$$
 (2.3)

holds for n sufficiently large and $c \leq \frac{1}{6} \log n$.

In the above inequality

$$\Phi_{\alpha}(x) = x^{\alpha}(r-x)^{r-q-2}$$

and $x_{\alpha} = \frac{\alpha r}{r - a - 2 + \alpha}$, for $\alpha = 1, 2$.

Notice that

$$\Phi_{1}(x_{1}) = \frac{r}{r - q - 1} \left(r - \frac{r}{r - q - 1} \right)^{r - q - 2}$$

$$= \frac{r}{r - q - 1} r^{r - q - 2} \left(1 - \frac{1}{r - q - 1} \right)^{r - q - 2}$$

$$< \frac{1}{r - q - 1} r^{r - q - 1}$$

and

$$\Phi_2(x_2) = \left(\frac{2r}{r-q}\right)^2 \left(r - \frac{2r}{r-q}\right)^{r-q-2}$$

$$= \frac{4r^2}{(r-q)^2} r^{r-q-2} \left(1 - \frac{2}{r-q}\right)^{r-q-2}$$

$$< \frac{4r}{(r-q)^2} r^{r-q-1}$$

Hence

$$I = \frac{4n[(n-2r)r^{r-q-2} + (n-2r+1)\Phi_1(x_1) + \Phi_2(x_2)]}{(n-q-1)(n-r)^{r-q-1}}$$

$$< \frac{4n}{(n-q-1)(n-r)^{r-q-1}}$$

$$\left[(n-2r)r^{r-q-2} + (n-2r+1)\frac{1}{r-q-1}r^{r-q-1} + \frac{4r}{(r-q)^2}r^{r-q-1} \right]$$

$$= \frac{4n}{n-q-1}\frac{r^{r-q-1}}{(n-r)^{r-q-1}} \left[\frac{n-2r}{r} + \frac{n-2r+1}{r-q-1} + \frac{4r}{(r-q)^2} \right].$$

Clearly, $r=\left\lfloor\frac{n}{2}-c\sqrt{n}\right\rfloor\geq \left\lfloor\frac{n}{2}-\frac{1}{6}\log n\sqrt{n}\right\rfloor>\frac{n}{3},$ for sufficiently large n. Hence $\frac{n-2r}{r}<1.$

Moreover, for sufficiently large n

$$r - q - 1 = \left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor - \left\lfloor \frac{n}{2} - (c+1)\sqrt{n} \right\rfloor - 1$$

$$\geq \frac{n}{2} - c\sqrt{n} - 1 - \left(\frac{n}{2} - (c+1)\sqrt{n} \right) - 1 = \sqrt{n} - 2,$$

$$2r = 2\left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor \geq 2\left(\frac{n}{2} - \frac{3}{2}c\sqrt{n} \right) + 1 = n - 3c\sqrt{n} + 1$$

and

$$3\sqrt{n} < 4\sqrt{n} - 8.$$

Consequently

$$\frac{n-2r+1}{r-q-1} \le \frac{n-2r+1}{\sqrt{n}-2} \le \frac{n-(n-3c\sqrt{n})}{\sqrt{n}-2} = \frac{3c\sqrt{n}}{\sqrt{n}-2} \le 4c.$$

Further.

$$\frac{4r}{(r-q)^2} \le \frac{4\left(\frac{n}{2} - c\sqrt{n}\right)}{\left(\sqrt{n} - 1\right)^2} < \frac{2n}{\left(\sqrt{n} - 1\right)^2} \le 3$$

for sufficiently large n.

Finally,

$$\frac{4n}{n-q-1} \le \frac{4n}{\frac{n}{2}} = 8$$

because

$$n-q-1 \ge n-\left(\frac{n}{2}-(c+1)\sqrt{n}\right)-1 = \frac{n}{2}+(c+1)\sqrt{n}-1 \ge \frac{n}{2}.$$

Hence

$$I < 8\left(\frac{r}{n-r}\right)^{r-q-1} \left[1 + 4c + 3\right] = 32(c+1)\left(\frac{r}{n-r}\right)^{r-q-1}.$$

Notice that $r-q=\left\lfloor\frac{n}{2}-c\sqrt{n}\right\rfloor-\left\lfloor\frac{n}{2}-(c+1)\sqrt{n}\right\rfloor=\frac{n}{2}-c\sqrt{n}-\varepsilon_1-\left(\frac{n}{2}-(c+1)\sqrt{n}-\varepsilon_2\right)=\sqrt{n}-\varepsilon_1+\varepsilon_2=\sqrt{n}+\varepsilon$, where ε_1 , ε_2 and ε are real numbers such that $0\leq \varepsilon_1<1,\ 0\leq \varepsilon_2<1$ and $-1<\varepsilon=\varepsilon_2-\varepsilon_1<1$. Thus

$$\left(\frac{r}{n-r}\right)^{r-q-1} = \left(\frac{\left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor}{n - \left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor}\right)^{\sqrt{n}+\epsilon-1} \\
\leq \left(\frac{\frac{n}{2} - c\sqrt{n}}{n - \left(\frac{n}{2} - c\sqrt{n}\right)}\right)^{\sqrt{n}+\epsilon-1} = \left(\frac{\frac{n}{2} - c\sqrt{n}}{\frac{n}{2} + c\sqrt{n}}\right)^{\sqrt{n}+\epsilon-1} \\
= \left(\frac{1 - \frac{2c}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{n}}}\right)^{\sqrt{n}+\epsilon-1} = \left(\frac{1 - \frac{2c}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{n}}}\right)^{\sqrt{n}} \left(\frac{1 - \frac{2c}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{n}}}\right)^{\epsilon-1}.$$

By Lemma 2.1 i) and the inequality $\frac{2c}{\sqrt{n}} \le \frac{1}{3} \frac{\log n}{\sqrt{n}} \le \frac{1}{3}$ we get

$$\begin{split} \left(\frac{r}{n-r}\right)^{r-q-1} &< \frac{1}{e^{4c}} \left(\frac{1-\frac{2c}{\sqrt{n}}}{1+\frac{2c}{\sqrt{n}}}\right)^{e-1} = e^{-4c} \left(\frac{1+\frac{2c}{\sqrt{n}}}{1-\frac{2c}{\sqrt{n}}}\right)^{1-e} \\ &< e^{-4c} \left(\frac{1+\frac{2c}{\sqrt{n}}}{1-\frac{2c}{\sqrt{n}}}\right)^2 \leq e^{-4c} \left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right)^2 = 4e^{-4c}. \end{split}$$

Therefore

$$I < 32(c+1)4e^{-4c} < 1$$
 for $c \ge 2$.

So (2.3) holds and so does (2.2).

By Hall's theorem there exists a matching in G covering all vertices of X. Denote by b_i the vertex in Y matched with i, for each $i \in X$. Moreover, let $b_i = b_i' \in S_n^q(1)$ for every $i \in \{1, 2, \ldots, \binom{n}{q} - 1\} - X$. By the definition of the sequences $C_{n,q}$, $C'_{n,q}$ and the graph G, $a_i \leq b'_i \leq b_i$, $a_{i+1} \leq b'_i \leq b_i$ and $b_i \in \bigcup_{j=q+1}^r L_j$ for $i = 1, 2, \ldots, \binom{n}{q} - 1$.

For $i=1,\ldots,\binom{n}{q}-1$, define $B_i=C(b_i)\cap\bigcup_{j=0}^{c-1}L_{t+j(r-q)}$ and $L_t=L(b_i)$. Notice that the sets B_i are c-element pairwise disjoint chains such that $\bigcup_{i=1}^{\binom{n}{q}-1}B_i\subseteq\bigcup_{j=q+1}^{cr-(c-1)q}L_j$ and $\min B_i=b_i$ for $i=1,\ldots,\binom{n}{q}-1$. Since

$$cr - (c-1)q = c \left\lfloor \frac{n}{2} - c\sqrt{n} \right\rfloor - (c-1) \left\lfloor \frac{n}{2} - (c+1)\sqrt{n} \right\rfloor$$

$$\leq c \left(\frac{n}{2} - c\sqrt{n} \right) - (c-1) \left(\frac{n}{2} - (c+1)\sqrt{n} - 1 \right)$$

$$= \frac{n}{2} - \sqrt{n} + c - 1 \leq \frac{n}{2} - \frac{1}{3} \log n + c - 1$$

$$\leq \frac{n}{2} - 2c + c - 1 = \frac{n}{2} - c - 1 \leq \left\lfloor \frac{n}{2} - c \right\rfloor = s,$$

we get, $\bigcup_{i=1}^{\binom{n}{q}-1} B_i \leq \bigcup_{j=q+1}^s L_j$.

Let J be the set of those i's for which $|C(a_i) \cap \bigcup_{j=0}^q L_j| \geq c$. Define, for each $i \in J$, $A_i = C(a_i) \cap \bigcup_{j=q-c+1}^q L_j$. By Lemma 2.3, applied for $k = 2c-1 \leq 2 \cdot \frac{1}{6} \log n - 1 \leq \frac{1}{3} \log n$ and $\frac{n}{2} \geq h(n) = q = \lfloor \frac{n}{2} - (c+1)\sqrt{n} \rfloor \geq \frac{n}{2} - \sqrt{n} \log n + n^{\frac{1}{3}} \geq \frac{n}{2} - \sqrt{n} \log n + 2^k$, for n sufficiently large, there is a set of pairwise disjoint (2c-1)-element chains D_i , $i \in \bar{J} = \{1, \ldots, \binom{n}{q}\} - J$, such that $\bigcup_{i \in J} D_i \subseteq \bigcup_{i=0}^{2^{2c-1}-2} L_{q-i}$ and $\max D_i = a_i$. Define, for every $i \in \bar{J}$, $A_i = D_i - \bigcup_{j=q-c+1}^{q-1} L_j$.

The posets induced by $\bigcup_{i=1}^{\binom{n}{q}} A_i \cup \bigcup_{i=1}^{\binom{n}{q}-1} B_i$ is a pseudofence of rank c based on the level L_q contained in $\bigcup_{i=p}^{s} L_i$.

The following lemma was shown in Lonc [5].

Lemma 2.7. Let G be a bipartite graph with vertex classes X and Y such that $\deg_G v = x$ for every $v \in X$ and $\deg_G v \leq y$ for every $v \in Y$. Then G has a factor whose every component is a star with either $\left\lfloor \frac{y}{x} \right\rfloor$ or $\left\lceil \frac{y}{x} \right\rceil$ leaves and with the center in a vertex of Y.

In fact Lemma 2.7 was formulated in Lonc [5] with an assumption y > x but the proof given there works without this assumption too.

The following theorem is our main result of this paper.

Theorem 2.8. There exists an integer n_0 such that for $n \ge n_0$ and $c \le \frac{1}{6} (\log \log n)^{\frac{1}{2}}$ the Boolean lattice \mathbf{B}_n can be partitioned into chains of size c except for at most c-1 elements which also form a chain.

Proof: Since the theorem is trivial for c=1, we assume that $c\geq 2$. Denote by PF the pseudofence whose existence is guaranteed by Lemma 2.6 for n sufficiently large. Let $D=\bigcup_{i=p}^n L_i-PF$. Notice that each chain $C_i\cap D$, $C_i\in \mathcal{C}$, can be partitioned into a certain number of chains of size c and a chain C_i^* of size at most c-1 such that $\min C_i^*\in\bigcup_{j=s+1}^{\lfloor\frac{n}{2}\rfloor}L_j$, for each $C_i^*\neq\emptyset$. Denote by \mathcal{F}_1 the set of all chains of size c obtained this way.

For $j=s+1,s+2,\ldots, \left\lfloor \frac{n}{2} \right\rfloor$ define $Q_j=\{C_i^*: \min C_i^* \in L_j\}$. Let G_j be a bipartite graph $(Q_j,L_{p-1};E)$, where $C_i^*a \in E$ if $a \leq \min C_i^*$. The degree of every vertex in Q_j is $\binom{j}{p-1}$ while the degrees of the vertices in L_{p-1} are not greater than $\binom{n-p+1}{j-p+1}$. By Lemma 2.7, there is a factor F_j in G_j such that $\deg_{F_j}C_i^*=1$ for every $C_i^*\in Q_j$ and

$$\deg_{F_j} a \le \left\lceil \binom{n-p+1}{j-p+1} \middle/ \binom{j}{p-1} \right\rceil$$

$$= \left\lceil \frac{(n-j+1)(n-j+2)\cdots(n-p+1)}{p(p+1)\cdots j} \right\rceil$$

$$\le \left\lceil \left(\frac{n-p+1}{p}\right)^{j-p+1} \right\rceil \le \left\lceil \left(\frac{n-p+1}{p}\right)^{n/2-p+1} \right\rceil$$

for every $a \in L_{p-1}$.

Notice that $2c-1 \le 2 \log \log n$ so, for n sufficiently large,

$$2^{2c-1} \le 2^{2\log\log n} = \left(2^{\log\log n}\right)^2 = \left(\log n\right)^2 < (c-1)\sqrt{n}. \tag{2.4}$$

Hence

$$\begin{split} \left(\frac{n-p+1}{p}\right)^{\frac{n}{2}-p+1} &\leq \left(\frac{n-\left(\frac{n}{2}-(c+1)\sqrt{n}-2^{2c-1}+1\right)+1}{\frac{n}{2}-(c+1)\sqrt{n}-2^{2c-1}}\right)^{\frac{n}{2}-p+1} \\ &\leq \left(\frac{\frac{n}{2}+(c+1)\sqrt{n}+2^{2c-1}}{\frac{n}{2}-(c+1)\sqrt{n}-2^{2c-1}}\right)^{(c+1)\sqrt{n}+2^{2c-1}} \\ &< \left(\frac{\frac{n}{2}+2c\sqrt{n}}{\frac{n}{2}-2c\sqrt{n}}\right)^{2c\sqrt{n}} = \left(\frac{n+4c\sqrt{n}}{n-4c\sqrt{n}}\right)^{2c\sqrt{n}} \\ &= \left[\left(\frac{1+\frac{4c}{\sqrt{n}}}{1-\frac{4c}{\sqrt{n}}}\right)^{\sqrt{n}}\right]^{2c} \end{split}.$$

By Lemma 2.1 ii) (since $\sqrt{n} \ge 2 \cdot 4c$)

$$\deg_{F_i} a \le \left(3^{8c}\right)^{2c} = 3^{16c^2}.$$

Let F be the union of the graphs F_j , $j = s + 1, s + 2, \ldots, \lfloor \frac{n}{2} \rfloor$. Clearly, $\deg_F a \leq c \cdot 3^{16c^2}$ for every $a \in L_{p-1}$ and $\deg_F C_i^* = 1$ for every $C_i^* \in Q = \bigcup_{j=s+1}^{\lfloor \frac{n}{2} \rfloor} Q_j$.

Let $k = c(c-1)3^{16c^2}$. Notice that

$$k = c(c-1)3^{16c^2} \le \frac{1}{36} \log \log n \cdot 3^{\frac{16}{36} \log \log n} = \frac{1}{36} \log \log n \cdot 2^{\frac{16}{36} \log_2 3 \log \log n}$$
$$= \frac{1}{36} \log \log n (\log n)^{\frac{16}{36} \log_2 3} \le \frac{1}{36} \log \log n (\log n)^{\frac{3}{4}} \le \frac{1}{3} \log n,$$

for n sufficiently large. Moreover, define h(n) = p - 1. Then by (2.4)

$$\begin{split} \frac{n}{2} & \geq h(n) = p - 1 \geq \frac{n}{2} - (c + 1)\sqrt{n} - 2^{2c - 1} \geq \frac{n}{2} - 2c\sqrt{n} \\ & \geq \frac{n}{2} - 2 \cdot \frac{1}{6}(\log\log n)^{\frac{1}{2}}\sqrt{n} \geq \frac{n}{2} - \sqrt{n}\log n + n^{\frac{1}{3}} \\ & = \frac{n}{2} - \sqrt{n}\log n + 2^{\frac{1}{3}\log n} \geq \frac{n}{2} - \sqrt{n}\log n + 2^{k}, \end{split}$$

for n sufficiently large. By Lemma 2.3, for n sufficiently large, there is a set $\{D_a\colon a\in L_{p-1}\}$ of pairwise disjoint chains of size $k=c(c-1)3^{16c^2}$ such that $\bigcup_{a\in L_{p-1}}D_a\subseteq\bigcup_{i=0}^{2^k-2}L_{p-1-i}$ and $\bigcup_{a\in L_{p-1}}\max D_a=L_{p-1}$. The set $\{\Gamma_F(a)\colon a\in L_{p-1}\}$ is a partition of Q (we allow empty classes in this partition). It is clear by the definition of F that for each $a\in L_{p-1}$ the chains C_i^* in $\Gamma_F(a)$ can be completed to pairwise disjoint c-element chains by adjoining some elements of D_a . Denote the set of all these c-element chains by \mathcal{F}_2 .

Consider the pseudofence PF. Let $A_1, \ldots, A_{\binom{n}{q}}, B_1, \ldots, B_{\binom{n}{q}-1}$ be the chains inducing PF. Replace each chain $A_i \subseteq C(\max A_i)$ in PF by a chain $A_i' = A_i \cup \left[C(\max A_i) \cap \left(\bigcup_{i=0}^{p-1} L_i - \bigcup \mathcal{F}_2\right)\right]$ and denote the resulting ordered set by PF'. Notice that PF' is still a pseudofence of rank c based on the level L_q . Moreover, B_n is a disjoint union of $\bigcup \mathcal{F}_1, \bigcup \mathcal{F}_2$ and PF'. By Lemma 2.2 the theorem follows.

Note. We have learned recently that Hsu, Logan, Shahriari, and Towse made a significant progress toward proving Füredi's conjecture by showing that a Boolean lattice B_n can be partitioned into chains such that the size of the shortest of them is approximately $\frac{1}{2}\sqrt{n}$.

References

- [1] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
- [2] Z. Füredi, Problem Session, meeting on "Kombinatorik geordneter Mengen" (Oberwolfach, Federal Republic of Germany, January 1985).
- [3] J.R. Griggs, Problems on chain partitions, Discrete Math. 72 (1988), 157-162.
- [4] J.R. Griggs, R.K.C. Yeh and C.M. Grinstead, Partitioning Boolean lattices into chains of subsets, *Order* 4 (1987), 65-67.
- [5] Z. Lonc, Partitions of large Boolean lattices, *Discrete Math.* 131 (1993), 173-181.
- [6] Z. Lonc, Proof of a conjecture on partition of a Boolean lattice, Order 8 (1991), 17-27.
- [7] B. Sands, Problem Session, Colloquium on Ordered Sets (Szeged, Hungary, August 1985).
- [8] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.