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ABSTRACT. In this paper we show that for every sufficiently
large integer n and every positive integer ¢ < I_Tls (log log n)’]IJ ,
a Boolean lattice with n atoms can be partitioned into chains

of cardinality ¢, except for at most ¢ — 1 elements which also
form a chain.

1 Introduction

In 1985 Sands {7] gave a conjecture that for n sufficiently large given k,
there exists a partition of a Boolean lattice with n atoms B, into chains
of cardinality 2%. The conjecture of Sands holds for k = 1. The required
partition is {{A4, AU {n}}: A C [n — 1]}. For k = 2 it was settled by Griggs
et al. [4] who proved that B, can be partitioned into chains of cardinality
4 if and only if n > 9. Griggs [3] posed a stronger conjecture proved by
Lonc [6).

There exists an integer ng = ng(c) such that for n 2 ng the Boolean
lattice By, can be partitioned into chains of size c except for at most ¢ — 1
elements which also form a chain.

Notice that if there is a partition of B,, into chains of size ¢ except for at
most ¢ — 1 elements which also form a chain then by Dilworth’s Theorem
[1] the number of chains in this partition is not smaller than the maximum
size of an antichain in B,. Hence by Sperner’s Theorem [8]

2= (5)
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Using Stirling’s formula

o< (5= J3vAa o),

where o(1) is a function of n tending to 0 as n approaches cc.

Fliredi [2] conjectured that there exists a partition of B,, into chains of
size ¢ = /% +/n(1+0(1)), except for at most c— 1 elements which also form
a chain.

The purpose of this paper is to examine the method of Lonc [6] of parti-
tioning of By, into chains. He assumed in his reasoning that ¢ is a constant
with respect to n. In this paper we shall assume that ¢ is an increasing
function of n and check what we can prove using the method of Lonc [6].
Our main result says that if n is sufficiently large then B,, can be par-

titioned into chains of size ¢ = l%—(log]og n)%J, except for possibly ¢ — 1

elements which also form a chain. It is still far from ¢ = /T v/n(1 + o(1))
expected by Fiiredi but improves the original result of Lonc [6].

Since the method of partitioning By, into chains is described in Lonc [6],
we skip proofs which can be found there. Many of our proofs are similar
to the proofs given in (6], however we must give them here to demonstrate
how we can use them to show stronger results.

In this paper we denote by £ = {Lg, L1, ..., Ln} (resp. by C = {C},C3,
...,C¢}, where £ = (lg J)) a partition of B,, into levels (resp. into sym-

metric chains).

Let us sketch the idea of the reasoning. A central role is played by a
notion of so called pseudofence. This is a relatively large subset of B,, which
can be partitioned into chains of size ¢ except for at most ¢ — 1 elements
which also form a chain (Lemma 2.2). For n sufficiently large it is proved
(Lemma 2.6) that B,, contains a pseudofence PF C L, U Ly 1 U---U Ly,

where p and s, p < s < [%J, are some integers “asymptotically” close to

%. Then, each chain (Ci NUj-p Lj) — PF is partitioned into chains of
size ¢ except for at most ¢ — 1 elements which form a chain C} such that

its minimum element is a member of UJIZ;'H L;. Denote by ¥, the set of
chains of size c obtained this way. Each chain C} is completed to a chain
of size ¢ using some elements of Uf;ol L;. Denote the set of these c-element
chains by F,. It turns out that the set obtained from B,, by deleting the
chains of F, and F3 is a pseudofence PF’ containing PF. It completes the

reasoning because the pseudofence has the required partition into chains.
Let us define a generalization of the Newton coefficient. For any real
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number z and a nonnegative integer k, let

(:z:) gz 1) (@—k+1)

k]~ k! ’

One can easily check that for every positive integer m there exists a unique
x > k such that m = (:)

In our considerations we shall use the following weaker version of the
famous Kruskal-Katona Theorem due to Lovasz. We shall call it the KKL-
theorem.

Theorem (KKL). Let A be a family of k-element sets and |A| = @,
z > k. Then for any s < k the sets of A contain at least (7) different
s-element sets.

Let, for a € Bn, C(a) (resp. L(a)) denote the element of C (resp. L)
containing a. For an ordered set P, let max P (resp. min P) be the greatest
(resp. the least) element of P, if it exists. For a graph G and a set Z of
vertices in G, we mean by ['c(Z) the set of neighbors of vertices in Z. Let
deg () denote the degree of a vertex z in G.

2 Results
We shall use the following technical lemma several times.

Lemma 2.1.
a\Z .
i) (%{—) >e®forz>a>0

a T
ii) (-“—i) <32 for z > 2a > 0.

=

Proof: The proof of this lemma follows by the observation that the function
a x
flz)= G—f—i) is decreasing in the interval (a, o). O

Definition. Let Ay, ...,A(:), B,...,B ™1 be pairwise disjoint chains
of size at least ¢ in B,. By a pseudofence of rank c based on the level Ly
we mean the ordered set induced by A U---U A(:) UBU---U B(:)_1 if

the following conditions are satisfied
i) max A; < min B; and max A;;1 <minB;, fori=1,...,(}) -1,
ii) {max A,,...,max A(:)} = Ly and
iii) A; C C(max A;) for every 4 such that |C(max A;) N Uf:o Li| > ¢

(see Figure 1).
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Ay A3
Al A4

Figure 1. A pseudofence of rank 3

Lonc [6] proved the following lemma which plays a central role in the
reasoning that follows. Since the proof of the lemma is short and simple
we give it beneath.

Lemma 2.2. A pseudofence of rank c based on the level Ly can be par-
titioned into chains of size ¢ except for at most ¢ — 1 elements which also
form a chain.

Proof: Denote by Ay,..., A Y B,... ’B(E)-l the chains occurring in the
definition of pseudofence P F of rank c based on the level L,. Construct a se-
quence o, whose terms are, in turn, the elements of Ay, By, Ag, By, ..., A(:)_l,
B(;)—v A(:). Since, for:=1,..., (Z) —1, A;UB; and B;UA;. are chains,
every set of ¢ consecutive terms in o is a chain. Thus, partitioning ¢ into

subsequences of consecutive elements of length c except for at most one of
a shorter length, we get the required chain partition of our pseudofence. O

Lemma 2.3. There is a constant ng such that if n > ng then for every
integer k, 1 < k < -%logn, and every integer function h(n) such that
3 —Vnlogn + 2 < h(n) < 7 the Boolean lattice B, contains a set of
pairwise disjoint chains Dy, Dy, . . ., Dy of size k, where t = ( h(’:‘)), satisfying
the conditions

k_
i) Uizy Di € Ug? Liny—: and

ii) Uiz, max D; = L.
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Proof: Notice that \/n > 4logn for n > 212, so by Lemma 2.1 ii)

3 1
1> (% - ﬁlogn)’i‘"m _ (1 - ~75=-2'°n">ﬁim

n 21

% ++/nlogn 14 2
S 1 4log‘n--§-‘n"l,e 1 2':;' T
O™

2]

Since limp 00 2’+‘,’§,ﬂ =0, limp—oo (-3’-)—»‘_7‘_" =1 and consequently
1,1/3
limy,— 00 (%) 2 = 1. Let ng be the smallest integer n such that
1 ,nl/3
n > 2'% and (%%—:g::)§ >

We shall show the lemma by induction on k. (We shall write h instead
of h(n) to shorten notation.)

For k = 1 the lemma holds trivially.

Suppose we have already proved the lemma for integers smaller than k.
We shall show it for k > 2.

Notice that h — 25=! > 2 — \/nlogn + 257! > 0, for n > no. Let
G = (X, Y; E) be a bipartite graph such that X = Ly, Y = Lp_1ULj_ok-
and a pair UV, U € X,V €Y be an edge in G if V < U in B,,. We show
that G contains a matching covering all vertices of X. To this end we apply
Hall’s theorem.

Let Z C X and |Z| = (F), where h < z < n. Applying the KKL-theorem
we get

.

DNl

ICa(Z)| > (hf 1) + (h __:;k—1> (2.1)

If {(z+1) < hthen (,%,) 2 (}) so [Te(Z)| > |Z|. Otherwise, if 3(z+1) >
k then () > (,%,) = (,,_ax-1) and by (2.1)

Co(2)] o 2a-ge-t) _p  (h=2"'+1)(A=2""1+2). -k

1zl = () z—h+1)(z—h+2) - (z—h+25T)
59 (h=2F"141)h—26"142)...h
“"n-h+1)(n-—h+2)---(n—h+2k1)

_ ok—1 2k—1
> 92 _h-2"
T \n—-h+2+1
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Since the function f(h) = %=4 is increasing for 0 < h < B and all
constants A, B, A < B and since 257! < 1n1/3, we get for n > ny

re(2) ., (— — Vnlogn + 2* —2*'-‘)

2‘:—1

|Z| %+ Vnlogn — 2k 4 2k-1

>2 (% - \/ﬁlogn)f_l >2 (% - mogn)%""“

5+ nlogn 5+ nlogn
1

>2.-—=1.

- 2

Hence [T (2)| > |Z].

By Hall’s theorem the required matching exists, equivalently, there are
2-element chains E,, Eo, ..., E; such that U:.=1 E;CLyLULp ULy _ g
and U:=1 max F; = Ly. Denote by z; and y;, y; < z;, the elements of E;,
fori=1,2,...,t. Let I={ity; € Ly} and J = {i:y; € Lj,_ge-1}. By
the induction hypothesis (since h — 1 > § — \/nlogn + 2k-1) for n > nyo,
there exists a set {D: ¢ € I} of pairwise disjoint (k—1)-element chains such

k=1
that | J;c, D; C U?=0 —2 Lp_1-; and max D] = y; for every ¢ € I. Similarly
(since h — 2571 > 2 — /nlogn + 2% — 2k-1 = 2 — \/nlogn + 25-1), for
n > ny, thereis a set {D; : i € J} of pairwise disjoint (k—1)-element chains
” k—1_ L 2]
such that Uc; D; € UrLy 2 Ln—ge-1—: = U321 La—i and max D] =y,
for every i € J.

The chains D; = E; U D, fori € I and D; = E;U D; for i € J are
pairwise disjoint and satisfy the conditions (i) and (ii). Hence the lemma
follows by the principle of mathematical induction. O

To construct a pseudofence in B, Lonc [6] constructed a sequence Cy, i =
(a1,a9,..., a(:)) which is a permutation of the set of all k-element subsets
of the set [n] and such that the union of every two consecutive terms in the
sequence Cy, x is a (k + 1)-element set.

Let b} = a;Ua;1, fori = 1,2,..., (}) -1 and denote by C,,  the sequence
(67,05, ..., b’(,.)_ ) of (k+1)-element subsets of [n]. Denote by Sk(!) the set

k
of (k + 1)-element subsets of [n] occurring exactly ! times in the sequence
Cr k-
The following lemma was shown in [6].
Lemma 2.4.

(1.—1“3) + (";172) for2<i<k-2

k-t
2in-1-2) for2<l=k-1
Sk = =
15l 1 forl=k
0 forl > k.
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The next lemma follows from the KKL-theorem and was shown in [6]
too.

Lemma 2.5. Let Lo, L1,...,L, be the levels in B,. Let T C Ly and
|T| = (,%,), where z > n —k is a real number. If m > k then the number
of elements w € L,, such that v < w for some v € T is at least (nfm). O

We shall use the following notation in the sequel:

p= [———(c+l)\/_ g2e=1 4 2J,
q= l_—2-—(c+1 \/EJ,

Moreover, denote Sk = |J¥_, S(1).
The following lemma is a strengthening of a similar lemma proved in [6].

Lemma 2.6. For n sufficiently large and 2 < ¢ < élogn there is a

pseudofence of rank c based on the level L, of B, contained in U'_p

Proof: Denote by a; (resp. b) the i-th term of the sequence Cy .q (resp.
Cy.q)- Let n be sufficiently large to satisfy the inequality p > 0. Define
G=G, = (X,Y; F) to be a bipartite graph such that X = {i: b, € S3},
Y =Ujog2 Lj and F = {(i,b) € X xY': b < b}. We shall prove existence
of a matchlng in G covering all vertices of X, for n sufficiently large and
c< i § logn. We shall check Hall’s condition

|Z| € |Tc(Z)] for every Z C X. (2.2)

Proceeding exactly like in the proof of Lemma 6 in [6] we conclude that in
order to prove (2.2) it suffices to show that the following inequality

4n|(n — 27')7"“""2 +(n—2r +1)®(z,) + <I>2(a:2)]
(n—gq—1}{n—-r)—e-1

(2.3)
holds for n sufficiently large and ¢ < % logn.
In the above inequality
N

and z, = fora=1,2.

TTeTTa
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Notice that
r—q—2
T T
@1(1‘1) = e (T‘ - )

g-1 r—q-—1
r 1 r—q—2
=2
r—qg-1 ( r—q-— 1)
1 r—q—1
< T—q-— 11'
and
2 r—q-2
2 2
o= (29 (29
r—g rT—g
— 41-2 T,r—q—2 (1 2 )7“7‘2
(r—q)? r—q
4ar —a—
NGEr "~
Hence
I dnf(n — 2r)r""972 4 (n — 2r + 1)@ (z1) + P2(z2))

(=g = Dn—ry
4n
NCETENCEDE

[(n —2r)r 12 (- 2r + l)r—l—rr""'1 + Ar r'“q_l]

-g-1 (r—q)?
_ 4n rr—a-1 n—-2r n-2r+1 4r
_'n.—q—l(’rz.—r)"“l‘1 T r—qg-—1 (r—q)2]"

Clearly, r = |3 ~cy/n] > |3 — tlogny/n| > %, for sufficiently large n.

Hence
n-—2r
<1.

T
Moreover, for sufficiently large n

r,—q—1=l%—c nJ—l%—(c-’-l)\/ﬁJ—l
22 -evi-1-(5—(c+1Vr) -1=vn-2,
2r=2[g-cﬁj zz(g-gcﬁ)+1=n-3cﬁ+1
and

3vn < 4y/n -8.
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Consequently

n—2r+1<n—2r+1<n—(n—3c\/_) 3ey/n < e,
r—q—-1~ m-2 ~ N vrR—2°
Further,

4r 4 (% —cyn) 2n
= WA WA

for sufficiently large n.
Finally,

because

n—q—lzn—(g—(c+l)\/ﬁ)—l=g+(c+l)\/——12

Hence

r r—q—1 r r—gq—1
I<8( ) [1+4c+3]=32(c+1)( ) .
n-—r n—r7

Notice that r — ¢ = |2 —cvn] — |3 —(c+1)vr| = n— g —
(—-—(c+l)\/_—e‘2) Vn—e1+e2=+/n+e, whereel,ezandearereal
numbers such that 0 < e; <1,0< e <land -1 <e=¢e3—€; <1. Thus

req— 2 _ o/ Vite-1
(=) - (k)

n_, Vnte—1 n_, Jrte—1
(FiZa) -5

1_27% Vnte—1 1_2_.\/6_ vn 1_% e—1

n n n

=(1+2c) <1+2c) (1+2c> .
vn n n

By Lemma 2.1 i) and the inequality

03
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Therefore
I <32(c+1)e™ <1 forc>2.
So (2.3) holds and so does (2.2).

By Hall’s theorem there exists a matching in G covering all vertices of
X. Denote by b; the vertex in Y matched with i, for each ¢ € X. Moreover,
let b; = b} € S%(1) for every i € {1,2,..., (2) — 1} = X. By the definition
of the sequences Cy g, C7, ; and the graph G, a; < b < b;, azp1 < < b
and b; € U1, L; forz—l2 MUESE

Fori=1,. (q) ~1, define B; = C(b; )ﬁU Ltﬂ(, —gy and L, = L(b;).
Notice that the sets B; are c-element pairwise disjoint chains such that

,(:)1 'Bic U“C;ffl D9 [,; and min B; = b; for i = 1,...,(2) — 1. Since
cr-—(c—-l)q=clg—c nJ—(c—l)[%—(c+1)\/ﬁJ
Sc(ﬁ—c\/f_z)—(c—l)(z—(c+l)\/ﬁ—l)
—\/—+c—l<———logn+c—l

2
20+c~1—g—c—1<[§— J—s,

wl:wlz

we get, US;)I B; < U] e L

Let J be the set of those i’s for which |C(a;) NUj_o L;| > ¢. Define,
for each i € J, A; = C(a;) ﬂUJ —q—ct1Lj. By Lemma 2.3, applied for
k=2-1<2- él?gn 1<ilognand} > h(n)=q= |3 - (c+1)y/n| >
2 — nlogn+n3 > % — /nlogn+ 2%, forn sufficiently large, there is a
set of pairwise disjoint (2¢ — 1)-element chains D;, i€ J = {1,..., (;‘)} -J,
such that (J;c; D: C Uﬁc -2 Lq_; and max D; = a;. Define, for every

ieJ, Av=Di-UIZL c+,L,

The posets induced by U A U U( Bi is a pseudofence of rank c
based on the level L, contamed in U;, O
The following lemma was shown in Lonc [5]
Lemma 2.7. Let G be a bipartite graph with vertex classes X and Y such
that deggv =z for every v € X and deggv <y for every v€ Y. Then G

has a factor whose every component is a star with either [g] or [ ] leaves
and with the center in a vertex of Y.

In fact Lemma 2.7 was formulated in Lonc (5] with an assumption y > z
but the proof given there works without this assumption too.

The following theorem is our main result of this paper.
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Theorem 2.8.l There exists an integer ng such that for n > ng and
c< %(log logn)z the Boolean lattice B, can be partitioned into chains of
size c except for at most ¢ — 1 elements which also form a chain.

Proof: Since the theorem is trivial for ¢ = 1, we assume that ¢ > 2. Denote
by PF the pseudofence whose exist;ence is guaranteed by Lemma 2.6 for n
sufficiently large. Let D = U — PF. Notice that each chain C; N D,
C; € C, can be partitioned 1nt,o a certaln number of chains of size ¢ and

a chain C} of size at most ¢ — 1 such that minC{ € Ulfsjﬂ L;, for each

Ct#0. Denote by F, the set of all chains of size ¢ obtamed this way.

Forj s+1,5+2,...,|3] define Q; = {C;: minC} € L;}. Let G; be
a bipartite graph (QJ, p_l, E) where Cfa € E if a < minC}. The degree
of every vertex in Qj is ( 7 ) while the degrees of the vertices in Lp_; are

not greater than (;‘ ”: +1) By Lemma 2.7, there is a factor Fj in G; such
that degp C? = 1Tor every C} € Q; and

degp, a < (’?_zﬂ) /(p—lﬂ

(n—j+1)(n—7+2)-- (n—p+l)]
plp+1)--

s Jj-p+1 _ n/2-p+1
< (n p+ l) < (n p+ 1)
Y4 p

for every a € L,,_;.
Notice that 2¢ — 1 < 2loglogn so, for n sufficiently large,

92¢c-1 < 92 loglogn _ (2Ioglog'n)2 = (logn)2 < (C _ 1)\/7—1 (24)

Hence
n-p+1 3= P+1 n-— —(c+l)ﬁ_22c-|+l)+l Pa—
g 2 _(c+1)y/n— 221
< 2+ (c+ 1)v/n+2%! (c+1)y/m+22"1
3 (c+ 1)yn— 221
< 3+2C\/_ 26f= M 2¢cy/n
'2'—2c\/_ p—

2¢

By Lemma 2.1 ii) (since /n > 2 -4c)
degp, a < (38°)2° = 316¢*
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Let F be the union of the graphs Fj, j=s+1,s+2,...,[2]. Clearly,
degrpa < c- 318 for every a € L,_; and degpCF =1 forevery Ct € Q =

J"LLI Qj-

Let k = c{c — 1)316¢’_ Notice that

k=clc— 1)316c2 < % loglogn - 333 loglogn _ % loglogn - 233 logz 3loglogn

1 ]B] 3 1 3 1
= — 36 108 < — < =
3% loglog n(logn) 2% < 36 loglog n(logn)s < 3logn,

for n sufficiently large. Moreover, define A(n) =p — 1. Then by (2.4)

n
2

v
&

(M=p-12F - (c+)Va-22" 22 -2V

S

> 5 2. %(loglogn)%\/ﬁ > g —Vnlogn +n3

= 5~ Vnlogn+2¥1%" > 2 _ \/mlogn + 2%,

for n sufficiently large. By Lemma 2.3, for n sufficiently large, there izs
aset {Da:a€ Lp_1} of pairwise disjoint chains of size k = c¢(¢c — 1)3'6¢
2k-2

such that UaeL,,_x D, C U;—p" Lp-1-i and UaeL,,_; max Dy = L,_;. The
set {T'r(a): a € Lp_1} is a partition of Q (we allow empty classes in this
partition). It is clear by the definition of F' that for each a € L,_; the
chains C} in I'r(a) can be completed to pairwise disjoint c-element chains
by adjoining some elements of D,. Denote the set of all these c-element
chains by 7.

Consider the pseudofence PF. Let Al,...,A(n), B, .. .,B(,.)_1 be the

q Qq

chains inducing PF. Replace each chain A; C C(max A;) in PF by a
chain A} = A;U [C(max AN ( f;ol L - .7-"2)] and denote the resulting
ordered set by PF’. Notice that PF” is still a pseudofence of rank ¢ based
on the level L,. Moreover, B, is a disjoint union of | J F1, | J F2.and PF'.
By Lemma 2.2 the theorem follows. O

Note. We have learned recently that Hsu, Logan, Shahriari, and Towse
made a significant progress toward proving Fiiredi’s conjecture by showing
that a Boolean lattice B,, can be partitioned into chains such that the size
of the shortest of them is approximately /7.
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