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Abstract

We examine a query posed as a conjecture by Key and Moori [11,
Section 7] concerning the full automorphism groups of designs and
codes arising from primitive permutation representations of finite
simple groups, and based on results for the Janko groups Ji1 and J;
as studied in [11]. Here, following that same method of construc-
tion, we show that counter-examples to the conjecture exist amongst
some representations of some alternating groups, and that the simple
symplectic groups in their natural representation provide an infinite
class of counter-examples.
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1 Introduction

In examining the codes and designs arising from the primitive represen-
tations of the first two Janko groups, Key and Moori [11] suggested in
Section 7 of that paper that the computations made for these Janko groups
could lead to the following conjecture: “any design D obtained from a
primitive permutation representation of a simple group G will have the
automorphism group Aut(G) as its full automorphism group, unless the
design is isomorphic to another one constructed in the same way, in which
case the automorphism group of the design will be a proper subgroup of
Aut(G) containing G”. (Here G is naturally a subgroup of Aut(D), and
also of Aut(G), since it is simple and hence isomorphic to the (normal)
subgroup of inner automorphisms. How outer automorphisms of G would
define elements of Aut(D) is not clear but it did occur for those Janko
groups, and in fact for most of the primitive representations; certainly the
normalizer of G in Aut(D) will be a subgroup of Aut(G).)

While the conjecture is true for the Janko groups J; and J», and some
other simple groups, we show here that it is not always true: we found
examples of finite simple groups G' with a primitive representation giving
a design D (as described in Section 3) such that the automorphism group
of G does not contain the automorphism group of D. Furthermore, there
are finite simple groups that have automorphisms that do not preserve the
design. Specifically, we considered computationally all the primitive per-
mutation representations of G where G is the alternating group Ag or A,.
Using Magma [2], we constructed designs that have the group G acting
primitively on points and blocks, and, for each prime dividing |G|, we con-
structed the codes of the designs over that prime field. Contradicting the
conjecture in [11], we found for G = Ag of degree 15, two isomorphic de-
signs such that the automorphism group of the design is neither the group
Aut(Ag) nor a proper subgroup of Aut(Ag) containing Ag. In fact if D
denotes one of these designs then Aut(Ag) £ Aut(D). Similarly for G = Ay
we found that the orbits of length 56 and 63 respectively for Ag of degree
120 produce designs with the property that the automorphism group is not
Aut(Ay), nor is it a proper subgroup of Aut(Ay) containing Ag. Also, if D is
either of these designs, then A = Aut(D) is the orthogonal group OF (2) : 2
and Aut(A4g) £ A.

In addition to these counter-examples, the simple symplectic groups
PSpn(g), for n even and at least 4, in their natural primitive rank-3 action
on the points of projective (n — 1)-space over the finite field F,, provide an
infinite set of groups that do not satisfy the conjecture, by taking the action
on the symmetric design of points and hyperplanes of the (n — 1)-space,
or of its complementary design. For ¢ odd or for g even and n > 4, we
have the automorphism group of the group a proper subgroup of that of



the design, while for ¢ = 2! and ¢ > 2, and n = 4, there are automorphisms
of the group that are not automorphisms of the design.

We found other alternating groups that countered the conjecture, viz.
Ajp of degree 2520 using an orbit of length 144, and A;; of degree 462 using
an orbit of length 200, and of degree 2520 using orbits of length 495 and
1584, respectively. None of these are rank-3 representations, although all
the counter-examples we give in this paper are. We should point out that
most the simple groups we tried did in fact satisfy the conjecture, i.e. all
their primitive representations did satisfy the conjecture. These counter-
examples are relatively rare, and interesting.

Aside from this issue of the conjecture made in [11], we should point
out that the motivation for this study, and that in [11], is partially to find
designs with good codes that have large automorphism groups. It is hoped
that obtaining such codes can be of practical use in that the groups can
assist in decoding. In particular, permutation decoding might be used as
it is likely that PD-sets will exist for large transitive groups for at least
some of the codes. With this in mind, we discuss permutation decoding
in Section 2, and give an example of a PD-set for one of the codes arising
from Ag in Section 5. We also found PD-sets for some of the other codes
obtained from the primitive representations of Ay, and we refer to these in
Section 7.

We outline our notation in Section 2, and describe the construction in
Section 3. The description of the symplectic groups as counter-examples is
given in Section 4. Computations for Ag are given in Section 5 and those for
Ay in Section 6. The appendices have a full list of computational results,
and Section 7 has some observations on some of the more interesting codes
obtained from the computations for Ag.

2 Terminology and notation

For the structure of groups and their maximal subgroups we follow the
notation of the ATILAS [5]. The groups G.H, G : H, and G - H denote a
general extension, a split extension and a non-split extension respectively.
Also, A.B or AB denotes any group having a normal subgroup of structure
A, for which the corresponding quotient has structure B. For a prime p,
p" denotes the elementary abelian group of order p™. We also denote the
particular cases of an extraspecial group by p!+27, pi*2" or pl+2n,

Our notation for designs and codes will be standard and as in {1]. An
incidence structure D = (P, B,I), with point set P, block set B and inci-
dence Z is a t-(v, k, ) design, if |P| = v, every block B € B is incident with
precisely k points, and every t distinct points are together incident with
precisely A blocks. A design is trivial if every k-set of points is incident



with a block of the design. The dual structure of D is D* = (B,P,T).
Thus the transpose of an incidence matrix for D is an incidence matrix for
D'. We will say that the design is symmetric if it has the same number
of points and blocks, and self-dual if it is isomorphic to its dual.

The code Cr of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F. We take F to be a prime field
F3, in which case we write also C}, for Cp, and refer to the dimension of C,
as the p-rank of D. If the point set of D is denoted by P and the block set
by B, and if Q is any subset of P, then we will denote the incidence vector
of Q by v9. Thus Cr = (v®|B € B), and is a subspace of FP, the full
vector space of functions from P to F.

All our codes here will be linear codes, i.e. subspaces of the ambient
vector space. If a code C over a field of order ¢ is of length n, dimension k,
and minimum weight d, then we write [n, k,d], to show this information.
A generator matrix matrix for the code is a k x n matrix made up of
a basis for C. The dual or orthogonal code C* is the orthogonal under
the standard inner product, i.e. C+ = {v € F*|(v,c) =0forallc€ C}. A
check matrix or parity-check matrix for C is a generator matrix for C+;
the syndrome of a vector y € F™ is HyT. A code C is self-orthogonal
if C C C* and is self-dual if C = C. The hull of a design’s code over
some field is the intersection CNC*. If ¢ is a codeword then the support
of c is the set of non-zero coordinate positions of c. A constant vector
is one for which all the coordinate entries are either 0 or 1. The all-one
vector will be denoted by 3, and is the constant vector of weight the length
of the code. Two linear codes of the same length and over the same field
are equivalent if each can be obtained from the other by permuting the
coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one
another by permuting the coordinate positions. Any code is isomorphic
to a code with generator matrix in so-called standard form, i.c. the form
[I1. | A]; a check matrix then is given by [—AT | I,_x]. The first k coordinates
are the information symbols and the last n—k coordinates are the check
symbols. An automorphism of a code C is an isomorphism from C to C.
The automorphism group will be denoted by Aut(C). Any automorphism
clearly preserves each weight class of C.

Permutation decoding uses so-called PD-sets: a PD-set for a code
is a set S of automorphisms of the code which is such that, if the code can
correct t errors, then every possible error vector of weight ¢ or less can be
moved by some member of S out of the information positions. That such
a set will fully use the error-correction potential of the code follows from a
result quoted in [9, Theorem 8.1]. There is a also a bound on the minimum
size that the set S may have, due to Gordon [8):



Result 1 If S is a PD-set for a t-error-correcting [n,k,d},code C, and

r=n-—k, then
nln-1 n—t+1
> |- .
1512 {r[r-l[ [r-—t+1] 111

The algorithm for permutation decoding then is as follows: we have a
t-error-correcting [n, k, d), code C with check matrix H in standard form.
Thus the generator matrix G for C that is used for encoding has I as the
first k columns, and hence the first k coordinate positions correspond to
the information symbols. Any k-tuple v is encoded as vG. Suppose = is
sent and y is received and at most ¢ errors occur. Let S = {g1,-.. ,9s}
be the PD-set. Compute the syndromes H(yg;)T for i = 1,... ,s until an
i is found such that the weight of this vector is ¢ or less. Now look at
the information symbols in this vector, and obtain the codeword ¢ that
has these information symbols. Now decode y as cg;” !, Note that this is
valid since permutations of the coordinate positions correspond to linear
transformations of F™, so that if y = x +e, where z € C, then yg = zg+eg
for any g € Sy, and if g € Aut(C), then zg € C.

3 Methods and preliminary results

Our computations for the designs and codes are based on Result 2 from
[11, Proposition 1] and Result 3 from [11, Lemma 2], and quoted below.

Result 2 Let G be a finite primitive permutation group acting on the set
Q of size n. Let a € , and let A # {a} be an orbit of the stabilizer G of
a. If

B={A9: g€G},

then B forms a self-dual 1-(n,|A|,|Al) design with n blocks, with G acting
as an automorphism group on this structure, primitive on the points and
blocks of the design.

Note that if we form any union of orbits of the stabilizer of a point,
including the orbit consisting of the single point, and orbit this under the
full group, we will still get a self-dual symmetric 1-design with the group
operating. Thus the orbits of the stabilizer can be regarded as building
blocks. Because of the maximality of the point stabilizer, there is only one
orbit of length 1: see [11]. In fact this will give us all possible designs on
which the group acts primitively on points and blocks:

Result 3 If the group G acts primitively on the points and the blocks of a
symmetric 1-design D, then the design can be obtained by orbiting a union
of orbits of a point-stabilizer, as described in Result 2.



It is clear that, if D is any design obtained from the construction in the
manner described above, then the automorphism group of D will contain
G. Further, if C is the code of D over a field F, then the automorphism
group of D is contained in the automorphism group of C.

In this paper, in a manner similar to the study in [11], we examine the
designs and codes from all the primitive representations of Ag and Ay, the
alternatmg groups of degree 6 and 9, respectively. Note that Aut(4g) =
As : 22, Ag being the only alternating group whose full automorphism
group is not the symmetric group; Aut(4g) = Sg. We looked first at
Ag, of order 360, and its maximal subgroups and primitive permutation
representations via the coset action on these subgroups: see [5]. There are
five distinct primitive permutation representations of degrees 6, 6, 10, 15
and 15, respectively, and only the representations of degree 15 gave non-
trivial designs. We then considered Ay, of order 181440, which has eight
primitive permutation representations of degrees 9, 36, 84, 120, 120, 126,
280 and 840 respectively. For each of these groups, using Magma (2], we
found the corresponding designs as described in Result 2, and computed the
full automorphism group of the design. We also constructed each design’s
associated code for the primes p that divide the order of the simple group.
The computations list the p-rank of the design and the dimension of the
hull in each case. Where possible we have also computed the automorphism
group of the code.

4 Symplectic groups

The simple symplectic group PSp,(g), where n is even and at least 4, and
q is any prime power, acts as a primitive rank-3 group of degree L 1— on
the points of the projective (n — 1)-space PGp—1(F,): see, for example,
Huppert[10, p. 221]. The orbits of the stabilizer of a point P consist of {P}
and one of length 9—_1 — 1 and the other of length ¢"~!. The point P

together with the pomts of the orbit of length ”% 1 form a hyperplane,
which is, in fact, the image of the absolute point P under the symplectic
polarity. The symmetric 1-(L == =1 L gn1, g™ 1) design D formed following the
method of Result 2 by orbltmg the orbit of length ¢g"~! is the complement
of the design of points and hyperplanes obtained by taking the union of
the other two orblts This latter design is of course a symmetric 2-design,
ie a2- ("q ‘11, g q—l— LY "” — 1) design and hence the complement D is also
a 2-design, with parameters 2- (9—1,qn“,q - q"7?).

The automorphism group of the design of points and planes, and hence
also of its complementary design, is the full projective semi-linear group
PI'L,(q), by the fundamental theorem of projective geometry (see, for

n-—1



example, [1, Chapter 3]). The automorphism group of PSp,(q) for n > 2
is discussed in Dieudonné [7, Chapter 4], but completely determined for
the case where n = 4 and q is even, by Steinberg [13]: see also Carter [4]
for a description. Essentially, the automorphism group is PI'Spn(g) except
when n = 4 and g > 2 is even, in which case it is this group extended by
an involution o that is not in PI"L4(¢). Thus the automorphism group of
the simple group is a proper subgroup of that of the design in the case of
odd q or the case of n > 4; for n = 4 and ¢ > 2 even, it is not a subgroup
of the automorphism group of the design. Either way, we have an infinite
class of counter-examples to the conjecture in [11].
The above discussion has thus proved the following proposition:

Proposition 1 Let G be the simple symplectic group PSp,(q), wheren > 4
and even, and q is any prime power, acting as a primitive rank-3 group of
degree %, and let D be the 1-(5’;—_'11,q"‘1,q"‘1) design formed from the
longer orbit of a point-stebilizer. Then D is a symmetric 2-design with
automorphism group PI'L,(q) which properly contains the automorphism
group of PSp,(q) unless n = 4 and ¢ = 2! where t > 2. For all cases,

Aut(D) £ Aut(G).

Note: 1. The case PSp4(2) is somewhat different and does not fit into the
above class: see the results for Ag below.

2. The codes of the designs in Proposition 1 are well known and are p-ary
subcodes of the projective generalized Reed-Muller codes: see [1, Chap-
ter 5].

5 Computations for Ag

Of the five primitive permutation representations of Ag, only the represen-
tations of degree 15 give non-trivial designs. The representations and orbit
lengths are shown in Table 1: the first column gives the ordering of the
primitive representations as given by Magma (or the ATLAS [5]) and as
used in our computations (see the appendix); the second gives the maximal
subgroups; the third gives the degree (the number of cosets of the point sta-
bilizer); the fourth gives the number of orbits, and the remaining columns
give the size of the non-trivial orbits of the point-stabilizer.

The first three representations give trivial designs. We used Magma to
construct the permutation group and form the orbits of the stabilizer of
a point for each of the representations of degree 15. For each of the non-
trivial orbits, we formed the symmetric 1-design as described in Result 2.
We found that the designs obtained with the same parameters for these two
representations were isomorphic. Thus in all there are four non-isomorphic



[ No. | Max. sub. | Deg. ]| # [ length |
1 As 6 2 5
2 As 6 2 5
3 3°:4 10 2 9
4 Sy 15 3 6 8
5 Sy 15 J 6 8

Table 1: Orbits of the point-stabilizer of Ag

symmetric designs for A¢ formed using single orbits. Note that none of
the designs has Ag acting as the full automorphism group, and neither was
there a design whose automorphism group was Aut(Ag) = Ag : 22, since
the trivial designs have the symmetric group of degree 6 or 10, respectively,
as automorphism group, and those on 15 points have either Ag or the
symmetric group Sg: see Section 8.2.

Considering either of the representations of degree 15, an orbit of length
8 produces a 1-(15,8,8) design with automorphism group of order 20160.
This representation is similar to that described for the symplectic groups,
since Ag = Sp4(2)’, the derived group of Sps(2). We have a rank-3 group
acting on points of the projective 3-space PG3(F3).

Proposition 2 For G = Ag of degree 15, the automorphism group A of
the design D with parameters 1-(15,8,8) is PGL4(2) = Ag and does not
contain Aut(G).

Proof: Since A4 is a subgroup of Sps(2), this action is that on the points
of PG3(F3) and the 1-(15,8,8) design is actually a symmetric 2-(15, 8,4)
design, and the complement of the 2-(15,7,3) design of points and planes.
Its automorphism group A is thus PGL4(2), by the fundamental theorem
of projective geometry. That this is isomorphic to Ag can be found in
Dickson [6].

Since Aut(Ag) = Ag : 22 and since Ag has no subgroup of index 14
(see [5]), we deduce that Aut(Ag) is not a subgroup of Ag. In addition,
computation of the normalizer N4(G) showed that it has order 720, and is
thus Se. Furthermore, since |Ag| > |Ag : 22|, As cannot be a subgroup of
Aut(As) = Ag: 22, O

Example 1 As an illustration of permutation decoding, we obtained a PD-
set for the binary code of the 2-(15,8,4) design: the code is the simplex
code of length 15, i.e. a [15, 4, 8] code, dual to the binary Hamming code of
length 15. A generator matrix in standard form is

10



]
]
]

SRR
OO RO
o= OO
- O O O
O O K
i
-0
= O RO
RO O =
- OO
O
O = » O
-2 O
O O K =
O = = =

]

The group PGL4(2) contains Singer cycles, and hence the code is cyclic.
According to the bound mentioned in Result 1, at least five permuta-
tions are needed for a PD-set. In addition, according to the analysis in
MacWilliams [12], a PD-set might be found in a Singer group. We found
the following seven elements that form a PD-set for this code in a Singer
group in PGL4(2):

Id,

(1, 13, 10, 9, 8)(2, 5, 14, 7, 6)(3, 11, 15, 12, 4),
(i, 15, 2, 13, 12, 5, 10, 4, 14, 9, 3, 7, 8, 11, 6),
(4, 2, 12, 10, 14, 3, 8, 6, 15, 13, 5, 4, 9, 7, 11),
(1, 11, 7, 9, 4, 5, 13, 15, 6, 8, 3, 14, 10, 12, 2),
1, 8, 9, 10, 13)(2, 6, 7, 14, 5)(3, 4, 12, 15, 11),
(1, 6, 11, 8, 7, 3, 9, 14, 4, 10, 5, 12, 13, 2, 15).

This gives an algorithm for correcting three errors.

6 Computations for Ag

From the eight primitive permutation representations, we obtained in all
25 non-isomorphic symmetric designs formed using Result 2 from single
orbits, on which Ag acts primitively. The full list of designs and codes is
given in Section 8.2. From the list of designs and codes produced by our
computations we have singled out for discussion a case where the automor-
phism groups of both design and code were distinct from Ag or Aut(Ay).
This arose for Ag of degree 120 where the orbits of length 56 and 63 yield
designs and codes with the orthogonal group O (2) : 2 as automorphism
group.

Table 2 gives the same information for Ag as Table 1 gives for Ag. The
numbers appearing in parenthesis represent the number of orbits of the
point stabilizer in case there is more than one of that length.

Writing G = Ao, there are precisely 25 non-isomorphic self-dual 1-
designs obtained by taking all the images under G of single non-trivial
orbits of the point stabilizer in any of G’s primitive representations, and on
which G acts primitively on points and blocks. Our computations show that
the full automorphism groups of the designs are either Ag, So = Aut(Ao)
or the orthogonal group OF (2) : 2.

11



[ No. | Max. sub. | Deg. | # [ len. | [
1 As 9 2 8
2 S7 36 3 14 21
3 | (Aex3):2 | 84| 4| 18] 204
1| L.(8):3 | 120 3] 56| 63
5 I.(8):3 120 || 3| 56| 63
6 | (AsxAs) 2| 126 5| 5| 2040 60
7 3%: 5, 280 5| 27 36 | 54 | 162
8 37 244 840 || 12 | 8| 24(2) | 27 | 36 | 72(d) | 216(2)

Table 2: Orbits of the point-stabilizer of Aqg

6.1 The 1-(120, 56, 56) design

Our results for Ag show that for Ag of degree 120, the fourth or fifth rank-3
representation, an orbit of length 56 gives a 1-(120, 56, 56) design. Since the
representation is of rank 3, the orbits also define strongly regular graphs on
120 vertices, of valency 56 and 63 respectively: these graphs are well-known
and appear in the list of Brouwer(3, page 675]. This design yields a [120, 8],
self-orthogonal doubly-even code.

Proposition 3 For G = Ay of degree 120, the automorphism group of the
design D with parameters 1-(120,56,56) is the orthogonal group OF (2) : 2,
which neither contains nor is contained in Aut(G).

Proof: Let G = Ay and G denote Aut(D) where D is constructed from an
orbit of length 56 for Ag of degree 120. Magma computations show that G
is a non-abelian group of order 348364800 generated by the permutations
which we denote by a,b,c,d,e, f,g and h listed in the appendix (see Sec-
tion 8.1). Computations with Magma, show that there exists a non-abelian
subgroup N of G of order 174182400. Since [G : N] = 2 we have that
N 4G. We claim that N = OF (2). A composition series for G found by
using Magma is G > N > 1g; thlS is in fact a chief series for G. Thus N is
a non-abelian chief factor of G. Since |N| = 174182400 = |OF (2)|, we have
that N = OF (2), as asserted.
It follows that G = OF (2).2. The permutation a =

(1,84)(2,31)(5,62)(8,83) (10,26) (11,113) (12,103) (13,75) (14,38)
(15,67) (17,37) (22,72) (23,102) (24,82) (25,70) (27,52) (29,120)
(41,90) (45,117) (47,59) (48,104) (50,94) (58,89) (63,101) (64,108)
(71,85)(78,97)(87,112)

is in G — N and o(a) = 2. Hence G is a split extension of N by {a).

12



We know that Aut(A4g) = Sy, and since the normalizer Ng(G) = G, we
have Aut(G) £ Aut(D), as asserted. Note however that from the ATLAS
(5] we know that Sy is a maximal subgroup of OF (2):2 of index 960, so G
does contain isomorphic copies of Aut(A4g). O

This provides another counter-example to the conjecture.

6.2 The [120,8,56], code

We found that the 1-(120, 56, 56) design yields a [120, 8], binary code whose
automorphism group has order 348364800. This leads to:

Proposition 4 The orthogonal group OF (2):2 is the automorphism group
of the 120, 8], binary code C derived from the 1-(120, 56, 56) design D. The
code C is self orthogonal and doubly-even, with minimum distance 56. Its
dual is a [120,112, 3], with 1120 words of weight 3.

Proof: The automorphism group of the [120, 8], binary code C derived
from the 1-(120, 56, 56) design constructed from Ag of degree 120 contains
G, the automorphism group of the design, and has, by computation, the
same order, and thus is equal to G.

Since the dimension of C equals the dimension of the hull (see Sec-
tion 8.2) it follows that C C C* and so C is self orthogonal. Since the
incidence vectors of the blocks of the design span the code, and the vec-
tors have weight 56, C' is doubly-even. In fact Magma gives the weight
distribution:

<0, 1>, <56, 120>, <64, 135>

That C+ has minimum weight 3 was found using Magma. The full weight
distribution can be obtained. O

7 Observations

The conjecture in [11] does thus not generally hold, although it does hold
for most representations. We looked further at some of the other codes
that arose in the primitive representations of Ay, and found some that had
interesting parameters. In some cases we found PD-sets, and the size of the
sets we found is given below in such cases. The actual codes and PD-sets
can be found at the website:

http://www.ces.clemson.edu/ keyj

13



in the Magma files, under PD-sets. Notice that we have not always been
able to find the automorphism group of the code as this requires longer
computation. However, the original group is an automorphism group, as is
the automorphism group of the design, and we have worked with these.

o The ternary code of the 1-(120, 63, 63) design is a [120, 36,24]; self-
orthogonal code with Of (2) : 2 acting on it.

e The binary code C of the 1-(126, 20, 20) design is a [126, 56, 6} with
dual a [126, 70, 5]» code. For C' the minimum size of a PD-set is 4,
and we found one of size 17; for C*+ the minimum size is 7 and we
found one of size 32.

e The binary code C of the 1-(126, 40, 40) design is a [126, 48, 16]. and
its dual is a [126, 78,5]> code. We found a PD-set of size 43 for C*,
the minimum size being 8.

e The hull of the 1-(126,60,60) design is a [126, 26,32}, doubly-even
self-orthogonal code with automorphism group of order 3628800,
which is isomorphic to Sjo. This is also the automorphism group
of the 1-(126,60,60) design’s code, a [126,74,d]s, where d < 12 and
its dual, a [126, 52, 14]; code. This then provides an example of the
automorphism group of the code being larger than that of the design.
The weight distribution of the hull is as follows:

> WeightDistribution(hull);
[<0,1>,<32,1575>,<36,2520>,<40,630>,<44,119700>,<48,278775>,
<52,2926350>,<56,9239940>,<60,16352280>,<64,17803800>,
<68,13894650>,<72,5005350>,<76,1313172>,<80,114345>,<84,55650>,
<100,126> ]

The words of weight 100 form a 1-(126,100,100) design with S)o as
automorphism group, and with the code of the design the hull found
above. The design can also be formed by orbiting the union of an
orbit of length 40 with one of length 60. The complementary design
is a 1-(126,26,26) whose code is a [126, 27, 26]» that contains the code
of the hull shown above, and is obtained from that code by adding
the all-one vector.

e The binary code of the 1-(280, 36,36) design is a [280,42, 36], self-
orthogonal doubly-even code.

14



8 Appendix
8.1 Generators Prop. 3

a = (1,2)(5,93)(6,89)(7,11) (8,65)
(10,100) (12,63) (13,116) (14,53)

(16,34) (17,40) (18,21) (19,38) (20,30)
(22,111)(24,46) (25,45) (26,115) (27,52)
(28,101) (29,69) (31,43) (32,97) (33,60)
(35,88) (36,50) (37,44) (39,104) (41,99)
(42,81) (47,94) (48,105) (49,95) (51,108)
(54,118) (56,73) (67,120) (58,112) (59,62)
(61,64)(66,113) (67,83) (70,87) (71,79)
(75,102) (76,84) (78,91) (80,103) (82,110)
(85,119) (92,98) (107,114), order 2;

b = (2,3)(5,93)(6,29)(7,60) (8,70)
(10,58) (11,66) (12,30) (13,100) (14,63)
(15,104) (16,21) (17,40) (18,19) (20,98)
(22,111) (24,109) (25,45) (26,115) (27,78)
(28,101) (32,97) (33,113) (34,38) (36,57)
(36,44)(37,85) (41,99) (42,73) (43,74)
(48,52) (50,119) (51,69) (54,118) (66,67)
(59,106) (61,64) (63,92) (65,82) (68,95)
(71,79)(72,94)(75,102) (76,120) (80,103)
(81,83) (84,88) (87,110) (89,108) (91,105)
(112,116) (114,117), order 2;

c = (3,29)(4,97)(6,24)(7,76)(8,93)
(10,50) (11,62) (13,16) (14,103) (16,26)
(17,74) (18,52) (19,985) (21,49) (22,80)
(23,55)(25,77)(27,107) (28,113) (30,82)
(31,100) (33,67) (34,61) (35,101) (36,47)
(37,64) (38,105) (39,84) (40,79) (42,92)
(43,68) (44,78) (45,111) (46,108) (48,114)
(53,68) (54,91) (59,60) (63,87) (65,99)
(67,70)(71,72)(73,110) (76,115) (80,117)
(81,96)(85,112) (86,98) (94,119) (102,106)
(104,120)(116,118), order 2;

d = (5,41,93,99)(6,82,51,70)(7,76,60,
120) (8,29,65,69) (10,50,58,119) (11,84,33,
57)(12,67,30,56) (13,44,116,37) (14,80,53,
103) (15,106) (16,78,34,91) (17,79,40,71)
(18,52,19,48) (20,73,63,83) (21,27,38,105)
(22,54,111,118) (23,55) (25,64,45,61) (26,
102,115,75) (28,97,101,32) (31,47) (35,66,
88,113) (36,112,85,100) (39,62) (42,92,81,
98) (43,94) (49,107) (69,104) (68,117) (72,
74)(77,50) (86,96) (87,89,110,108) (95,114),
order 4;

e = (5,115)(7,56) (11,73) (12,76) (20,57)
(22,45) (23,77) (25,111) (26,93) (30,120) (31,
47) (33,83) (35,98) (41,75) (42,66) (43,94) (49,
107) (54,61) (65,90) (60,67) (63,84) (64,118)
(68,117)(72,74)(81,113) (88,92) (95,114)
(99,102), order 2;

f = (8,106)(10,50)(11,63) (13,44) (14,103)
(15,65) (16,78) (18,52) (22,90) (23,111)
(25,77) (26,99) (28,86) (30,60) (35,81)
(38,105) (39,110) (40,79) (45,66) (69,82)

(62,87) (67,120) (70,104) (73,84) (85,112)
(93,102) (96,101) (98,113),
order 2;

g = (4,77)(7,10)(9,55)(11,100) (13,66)
(15,72)(17,102) (22,97) (26,80) (27,84)
(28,61)(32,111)(33,112) (35,91) (39,47)
(40,75) (48,120) (49,62) (52,76) (57,105)
(58,60) (59,95) (64,101) (68,106)

(78,88) (94,104) (103,115) (113,116) ,
order 2;

h = (10,18)(13,16) (14,40) (17,53) (19,58)

(21,100) (22,25) (23,55) (27,36) (31,49)
(34,116)(37,91) (38,112) (43,95) (44,78)
(45,111) (47,107) (48,119) (50,52) (54,64)
(61,118)(68,74) (71,80) (72,117)(77,90)
(79,103) (85,105) (94,114), order 2.

8.2 Designs and codes
from Ag and Ay

//The program, where G=A6 or A9
load simgps;

g:=SimGroup(‘‘G*’);
re:=SimRecord(‘‘G*?);

ma:=ra‘Max;

‘‘no. of prim. reps=’’,#ma;

for k:=1 to #ma do

k,’’th prim. rep.’’;

gk:=malk];
al,a2,a3:=CosetAction(g,gk);
st:=Stabilizer(a2,1);
orbs:=0rbits(st);

‘‘no. of orbits=’?, #orbs;
v:=Index(a2,st);

‘ ‘degree=’’,v;

pr:=[2,3,5,7];

lo:=[#orbs[il: i in [1..#o0rbs]];
‘‘seq. of orbit lengths=’’,lo;
for j:=2 to #lo do

‘‘orbs no’’,j,’’of length’’,#orbs[jl;
blox:=Setseq(orbs[j]l"a2);
des:=Design<1,v|blox>;des;

autdes :=AutomorphismGroup(des) ;
‘‘autgp of order’’,Order(autdes);
for i:=1 to #pr do

p:=pr[il;
dc:=LinearCode(des,GF(p));
dl:=Dual(dc);

d1:=Dim(dc);

d2:=Dim(dl);

d3:=Dim(dc meet dl);
f¢p=??,p,?’din=’’,d1,’ *dindual="",
d2,’’hull=’’,d3;

if not ({d1,d2} subset {0,1,v-1,v})
then

if i in {1} then
cau:=PermutationGroup(dc);

‘‘perm gp of order’’,Order(cau);
end if;end if;

end for;
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//omiting the trivial designs and
//the natural representations
//Results for G=A6, of order 360
$4 th prim. rep.

no. of orbits= 3

degree= 15

seq. of orbit$ lengths= ([ 1, 6, 8]
orbs no 2 of length 6

1-(15, 6, 6) Design with 15 blocks
autgp of order 720

p= 2 dim= 14 dimdual= 1 hull= 0
p= 3 dim= 9 dimdual= 6 hull= 0
perm gp of order 720

p= 5 dim= 15 dimdual= 0 hull= 0
orbs no 3 of length 8

1-(15, 8, 8) Design with 15 blocks
autgp of order 20160

p= 2 dim= 4 dimdual= 11 hull= 4

. perm gp of order 20160

p= 3 dim= 15 dimdual= 0 hull= 0
P= 5 dim= 15 dimdual= 0 hull= 0

5 th prim. rep.

no. of orbits= 3

degree= 15

seq. of orbit lengths= [ 1, 6, 8 ]
orbs no 2 of length 6

1-(15, 6, 6) Design with 15 blocks
autgp of order 720

P= 2 dim= 14 dimduals 1 hull= 0
p= 3 dim= 9 dimdual= 6 hull=s 0
perm gp of order 720

p= b dim= 15 dimdual= 0 hull= 0
orbs no 3 of length 8

1-(15, 8, 8) Design with 15 blocks
autgp of order 20160

p= 2 dim= 4 dimdual= 11 hull= 4
perm gp of order 20160

p= 3 dim= 15 dimdual= 0 hull= 0
p= § din= 15 dimdual= 0 hull= 0

//Results for G=A9 of order 181440
//omiting trivial designs

no. of prim. reps= 8

2 th prim. rep.

no. of orbits= 3

degree= 36

seq. of orbit lengths= [ 1, 14, 21 ]
orbs no 2 of length 14

1-(36, 14, 14) Design with 36 blocks
autgp of order 362880

P= 2 din= 8 dimdual= 28 hull= 0
perm gp of order 362880
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p= 3 dim= 36 dimdual= 0 hull= 0
p= 5 dim= 28 dimdual= 8 hull= 0
p= 7 dim= 35 dimdual= i hull= 0
orbs no 3 of length 21

1-(36, 21, 21) Design with 36 blocks
autgp of order 362880

P< 2 dim= 28 dimdual= 8 hull= 0
pern gp of order 362880

p= 3 dim= 27 dimdual= 9 hull= 0
p= 5§ dim= 36 dimdual= 0 hull= 0
p= 7 dim= 35 dimdual= 1 hull= 0
3 th prim. rep.

no. of orbits= 4

degree= 84

seq. of orbit lengths= [ 1, 18, 20, 45 )

orbs no 2 of length 18

1-(84, 18, 18) Design with 84 blocks
autgp of order 362880

p= 2 dim= 56 dimdual= 28 hull= 0
perm gp of order 362880

p= 3 dim= 34 dimdual= 50 hulls 7

p= 5 dim= 84 dimdual= 0 hull= Q

p= 7 dim= 84 dimdual= 0 hull= 0

orbs no 3 of length 20

1-(84, 20, 20) Design with 84 blocks
autgp of order 362880

p= 2 dim= 48 dimdual= 36 hull= 0
perm gp of order 362880

p= 3 dim= 84 dimdual= 0 hull= 0

p= 5 dim= 75 dimdual= 9 hull= 0

p= 7 dim= 84 dimdual= 0 hull= 0
orbs no 4 of length 45

1-(84, 45, 45) Design with 84 blocks
autgp of order 362880

p= 2 dim= 76 dimdual= 8 hull= 0
perm gp of order 362880

p= 3 dim= 34 dimdual= 60 hull= 7

p= 5 dim= 75 dimdual= 9 hull= 0

p= 7 dim= 57 dimdual= 27 hull= 8

4 th prim. rep.

no. of orbits= 3

degree= 120

seq. of orbit lemgths= [ 1, 56, 63 ]
orbs no 2 of length 56

1-(120, 56, 56) Design with 120 blocks
autgp of order 348364800

p= 2 din= 8 dimdual= 112 hull= 8
perm gp of order 348364800

p= 3 din= 120 dimdual= O hull= 0
P 5 dim= 120 dimdual= O hull= 0
p= 7 din= 119 dimdual= 1 hull= 0O

orbs no 3 of length 63

1-(120, 63, 63) Design with 120 blocks

autgp of order 348364800
P= 2 dim= 120 dimdual= O hull= 0
p= 3 dim= 36 dimdual= 84 hull= 36



= 6 dim= 120 dimdual= 0 hull= 0
= 7 dim= 119 dimdual= 1 hull= 0

6 th prim. rep.

no. of orbits= 3

degree= 120

seq. of orbit lemgths= [ 1, 56, 63 ]
orbs no 2 of length 56

1-(120, 56, 56) Design with 120 blocks
autgp of order 348364800

pP= 2 dim= 8 dimdual= 112 hull= 8

perm gp of order 348364800

p= 3 dim= 120 dimdual= 0 hulls 0

p= 5 dim= 120 dimdual= 0 hull=s 0

p= 7 dim= 119 dimdual= 1 hull= 0O

orbs no 3 of length 63

1-(120, 63, 63) Design with 120 blocks
autgp of order 348364800

p= 2 dims 120 dimduale O hull=s O

p= 3 dim= 36 dimdual= 84 hull= 36

P= 5 dim= 120 dimdual= O hull= 0

P= 7 dim= 119 dimdual= 1 hull= 0

6 th prim. rep.

no. of orbits= §

degree= 126

seq. of orbit lengths=

£1,5, 20, 40, 60 ]

orbs no 2 of length 5

1-(126, 5, 5) Design with 126 blocks
autgp of order 362880

pP= 2 dim= 70 dimdual= 56 hull= 0
perm gp of order 362880

p= 3 dim= 99 dimdual= 27 hull= 0

p= § dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= 0 hull= O
orbs no 3 of length 20

1-(126, 20, 20) Design with 126 blocks
autgp of order 362880

p= 2 dim= 56 dimdual= 70 hull= 0
perm gp of order 362880

p= 3 dims 126 dimdual= O hull= 0

p= 5 dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= 0 hull= 0
orbs no 4 of length 40

1-(126, 40, 40) Design with 126 blocks
autgp of order 362880

P= 2 dim= 48 dimduale 78 hull= O

p= 3 din= 99 dimdual= 27 hull= O

p= 5§ dim= 77 dimdual= 49 hull= 27
P= 7 dim= 99 dimduals 27 hull= 8
orbs no 5 of length 60

1-(126, 60, 60) Design with 126 blocks
autgp of order 362880

p= 2 dim= 74 dimdual= 52 hull= 26
P= 3 dim= 27 dimdual= 99 hull= 0

p= 5 dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= O hulls O

7 th prim. rep.

no. of orbits= §

degree= 280

seq. of orbit lengths=

[1, 27, 36, 54, 162 ]

orbs no 2 of length 27

1-(280, 27, 27) Design with 280 blocks
autgp of order 362880

P= 2 dim= 232 dimdual= 48 hull= 0

p= 3 dim= 68 dimduals 212 hull= 41

p= 5 dim= 280 dimdual= O hull= 0

P= 7 dim= 280 dimdual= 0 hull= 0

orbs no 3 of length 36

1-(280, 36, 36) Design with 280 blocks
autgp of order 362880

p= 2 dim= 42 dimdual= 238 hull= 42

p= 3 dim= 262 dimdual= 28 hull=s 0

p= 5 dim= 280 dimdual= 0 hull= O

= 7 dim= 280 dimdual= 0 hull= 0

orbs no 4 of length 54

1-(280, 54, 54) Design with 280 blocks
autgp of order 362880

P= 2 dim= 48 dimdual= 232 hull= 0

p= 3 dim= 125 dimdual= 155 hull= 84
P= 5 dim= 280 dimdual= 0 hull= 0

p= 7 dim= 280 dimdual= 0 hull= 0

orbs no § of length 162

1-(280, 162, 162) Design with 280 blocks
autgp of order 362880

P= 2 dim= 68 dimdual= 212 hull= 68

p= 3 din= 41 dimdual= 239 hull= 41

p= 5 dim= 280 dimdual= 0 hull= O

p= 7 dim= 280 dimdual= 0 hull= O

8 th prim. rep.

no. of orbits= 12

degree= 840

seq. of orbit lengths=

1,8, 24, 24, 27, 36, 72, 72, 72, 72,
216, 216 ]

orbs no 2 of length 8

1-(B40, 8, 8) Design with 840 blocks
autgp of order 362880

p= 2 dim= 530 dimdual= 310 hull= 112
p= 3 dim= 624 dimdual= 216 hull= 189
p= 5 dim= 651 dimdual= 189 hull= 56

. p= 7 dim= 651 dimdual= 189 hull= 0

orbs no 3 of length 24

1-(840, 24, 24) Design with 840 blocks
autgp of order 181440

P= 2 dim= 322 dimdual= 518 hull= 224
p= 3 din= 699 dimdual= 141 hull= 21
p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 din= 840 dimdual= 0 hull= 0

orbs no 4 of length 24

1-(840, 24, 24) Design with 840 blocks
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autgp of order 181440 autgp of order 362880

p= 2 dim= 322 dimdual= 518 hull= 224 p= 2 dim= 418 dimdual= 422 hull= 98
p= 3 dim= 699 dimduals 141 hull= 21 p= 3 dim= 446 dimdual= 394 hull= 41
p= 5 dim= 840 dimdual= O hull= 0 p= 5 dim= 554 dimdual= 286 hull= 104
p= 7 dim= 840 dimdual= 0 hull= O p= 7 dim= 714 dimdual= 126 hull= O

orbs no 5 of length 27

1-(840, 27, 27) Design with 840 blocks
autgp of order 362880

p= 2 dim= 616 dimdual= 224 hull= 48
p= 3 dim= 446 dimdual= 394 hull= 41
p= 5 dim= 651 dimdual= 189 hull= 56

= 7 dim= 784 dimdual= 56 hull= 0
orbs no 6 of length 36

1-(840, 36, 36) Design with 840 blocks
autgp of order 362880

p= 2 dim= 608 dimdual= 232 hull= 130
p= 3 dim= 482 dimdual= 358 hull= 77
p= 5 dim= 771 dimdual= 69 hull= 21

p= 7 dim= 798 dimdual= 42 hull= 0
orbs no 7 of length 72

1-(840, 72, 72) Design with 840 blocks
autgp of order 181440

p= 2 dim= 258 dimdual= 582 hull= 160
p= 3 dim= 182 dimdual= 668 hull= 141
p= 5 dim= 268 dimdual= 582 hull= 83
p= 7 dim= 269 dimdual= 581 hull= 0
orbs no 8 of length 72

1-(840, 72, 72) Design with 840 blocks
autgp of order 181440 :

p= 2 dim= 546 dimdual= 294 hull= 176
p= 3 dim= 587 dimdual= 253 hull= 141
p= 5 dim= 840 dimdual= O hull= 0

p= 7 dim= 840 dimdual= 0 hull= 0

orbs no 9 of length 72

1-(840, 72, 72) Design with 840 blocks
autgp of order 181440

p= 2 dim= 546 dimdual= 294 hull= 176
p= 3 dim= 587 dimdual= 253 hull= 141
p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 dim= 840 dimdual= 0 hull= O

orbs no 10 of length 72

1-(840, 72, 72) Design with 840 blocks
autgp of order 181440

p= 2 dim= 268 dimdual= 582 hull= 160
p= 3 dim= 182 dimdual= 658 hull= 141
p= 5 dim= 258 dimdual= 582 hull= 83
p= 7 dim= 259 dimdual= 581 hull= 0
orbs no 11 of length 216

1-(840, 216, 216) Design with 840 blocks
autgp of order 362880

p= 2 dim= 306 dimdual= 534 hull= 160
p= 3 dim= 230 dimdual= 610 hull= 230
p= 5 dim= 595 dimdual= 245 hull= 0

p= 7 dim= 595 dimdual= 245 hull= 0
orbs no 12 of length 216

1-(840, 216, 216) Design with 840 blocks
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