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Abstract

In this paper we derive an inequality on the existence of bi-level
balanced arrays (B-arrays) of strength eight by using a result involv-
ing central moments from statistics, and by counting in two ways
the number of coincidences of various columns with a specific col-
umn. We discuss the use of this inequality in obtaining the maximum
number of constraints for these arrays, and present some illustrative
examples.

1. Introduction and Preliminaries.

For ease of reference, we recall here some basic definitions and results
concerning balanced arrays (B-arrays). An array T’ with S levels (symbols),
m constraints (rows), and N runs (columns) is merely a matrix of size
(m x N) with S elements (say, 0,1,2,..,5-1). Furthermore, T is called a
B-array of strength ¢ (¢ < m) if in every (tx N) submatrix T* of T', we have
the following condition satisfied for all permutations P and for all t-vectors
ain T™:

Ma;T*) = A(P(@);T*) where P(a) is a vector obtained by permuting

the elements of any t-vector ¢ in T, and A(q;T"*) represents the frequency

with which ¢ appears in T*. In this paper we confine ourselves to B-arrays
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with ¢ = 8 and § = 2 (say, 0 and 1). For this special case, we let W (e)
represent the weight of the vector a (the weight of a vector is the number
of ones in it). It is quite obvious that W (a)= W (P(q)).
If W (@)= 1 (0 < i < 8), then the above condition is reduced to
MasT*) =M(P(a);T*) = p; (say) i = 0,1,2,..,8. The symbols m,

8
N = (Z(?)p,—), t =8 and y,;(i = 0,1,..,8) are called the parameters of
i=0

the array and sometimes we denote it by

BA{ma N) S(= 2)1 t(= 8);£=(ﬂ0,“1,") “8)}
Next, we provide an example of a B-array T of strength ¢ = 2.
Example, let us consider the following array.

010001011
011000101
0011000T11
T=[01011000 1
001011001
000101101
(00001011 1]

Here, m =7, N =9, s = 2, strength ¢t = 2, and E'= (o, ig) =
(3,2,2). Take any (2 x 9) submatrix T* of T (say, the first two rows of the
B-array T'). For this T* we find g, = the frequency of the vector @) =
3, p, = the frequency of the vector ((1]) = the frequency of its permutation
which is (3) = 2, and p, = the frequency of the vector (}) =2. It can be
checked easilty that (1o p, o) = (3,2,2) for every (2 x 9) submatrix T* of
T.

It is quite obvious that B-arrays may not exist for a given 4 and m
(m >t = 8). The construction of such arrays with the maximum m for
a given ' is very important both in statistical design of experiments and
combinatorics. Orthogonal arrays (O-arrays) and the incidence matrix
of a balanced incomplete block design (B I B design) are special cases of
B-arrays, and these arrays have been extensively used in the construction
of balanced fractional factorial designs which permit us to estimate, under
certain conditions, all the effects of interest to us. To learn more about
the importance of B-arrays to design of experiments and combinatorics,
the interested reader may consult the list of references, by no means an
exhaustive list, at the end of this paper, and also further references listed
therein. The problem of the existence of B-arrays for a given p’ and
m > 8, and, as a consequence, to obtain an upper bound on m is a nontrivial
matter. Such problems for O-arrays and B-arrays have been investigated,
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among others, by Bose and Bush [1], Chopra and/or Dios [3, 4, 5], Rafter
and Seiden [9], Saha et al [11], Seiden and Zemach [12], Yamamoto, et al
[15], etc.

2. Upper Bounds for Constraints of Balanced Arrays.

First of all, we state some results for later use in deriving the necessary
existence conditions for B-arrays with ¢ = 8.

Lemma 2.1. A B-array T with an arbitrary ¢/ and with m =t = 8
always exists. -

Lemma 2.2. A B-array T of strength ¢t = 8 and with p'=(ug p,,.., #g)
is also of strength t' where 0 < ¢’ < 8. The index set of T, considered as
an array of strength ¢/, is given by

t—t’ ,
p @)= {p;¥') | 5 =0,1,..,t; with p;(¥') = Eo(t_f Ytis}-

%

Remark 1: It is quite obvious that each y;(t') is a linear function of
the p, ’s, t' = 0 corresponds to N (the total number of columns in T') and
t' = 8 corresponds to the index set y'.

Definition 2.1. Two columns of a B-array T with m constraints are
said to have j coincidences (0 < j < m) if the j rows of these two columns
have the same symbols.

Lemma 2.3. Consider a B-array T (m x N) with the index set

©'=(po 1., tig). If L is the weight of some column (say, the first one)
of T and z; is the number of columns of T (other than the first one) having
exactly j coincidences with the first one, then the following nine equalities
hold:

m k-1
Iy = Z jhaj = Z(‘l)(k_l)-i bi(k)I; + k!By, where
j=0 i=1
k
l m—1

i=0

u; (k) = N for k = 0 and p; (k) = p; for k = 8, b;(k) are known
constants obtained while deriving (2.1), Ip = N — 1, and 0° is defined to
be equal to 1.

Proof outline: One can obtain (2.1) by considering successively T as an

array of strength k (< 8)) and counting in two ways (i.e. through columns,
and through using the fact that T is a B-array of strength k (< 8)) the
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total number of column vectors which are identical with the corresponding
vectors in the first column. For clarity, we derive one such result for k = 8
(say). Consider any eight rows of T. If the (8 x 1) vector in the first
column of T is of weight 0, it then appears (uy — 1) times amongst the
remaining columns of 7. Similarly if it is of weight i (i = 1, 2,...,8), it
will appear (p; — 1) more times amongst the remaining columns. Since the
weight of the first column is /, the total number of ways to select eight rows
so that there is an (8 x 1) vector of weight i in the first column is clearly

(') (’é‘_‘:) where () =0 if a < b. Let By denote the total number of 8-

i
tuples appearing in columns other than the first which are identical with the

8
corresponding 8-tuples of the first column. Then By = Y (:) (';_"il) (u;—

i=0
1). Next, any column having j (j > 8) coincidences with the first column

will contribute (3) to Bg. Thus we have Bg = f (3)z; = i (3) z;.
=8 i=o

m . 8
Therefore, 3 (g) T; = ZE) ( f) ( 'g'_'il)(u,- —1). Similarly results for other

j=0 1=

values of k can be derived. Further simplification will lead us to (2.1).

Remark 2: It is quite obvious that (2.1) expresses the moments of order
k of the coinidences in T' with a certain column in terms of the parameters
of the array T' and {. Next we state, without proof, the following result
from Lakshmanamurti [7].

Result: Let Z;(i = 1,2,..,n) berealssuch that )~ Z; = 0and 3" 22 = n.
Let am = £ 3 Z™. Then we have

ag > o+ af (2.2)

Next we obtain a necessary condition for the existence of a balanced
array of strength ¢ = 8 by using (2.1) and (2.2).

Theorem 2.1. Consider a B-array T of size (m x N) with the index set
#'=(po 1y, pg). If L is the weight of some column (say, the first column)
of T, then the following result holds:

LyLg > LyL% + L2 (2.3)

where L;’s (i = 2,4, 5, and 8) are given by

Ly=(N-1)I1, - I?,
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L4 = (N - 1)314 —4(N - 1)2.[,511 +6(N - 1)]2[?,
= (N=1)5—5(N —1)31,1; +10(N = 1)2I31,, —10(N — 1) I, I} + 415,

and Lg = (N—-1)" Is—8(N —1)8I71; +28(N — 1)51612—56(N 1)41513

+70(N — 12141 — 56(N — 1)2I31} + 28(N — 1)I,I8 — 718 where I}, 's
are defined in (2.1).

Proof outline: In order to use (2.2) we observe that Z;’s need not
be distinct and may occur with different frequencies. If f; is the fre-
quency of Z;(i = 1,2,3,..n) such that . f;Z; =0 and 3, fiZ? = N

1]
where N = Y~ f;, then ag > a2 + a2 where a,, = '}V > fiZ™. 1In order
to use this version of (2.2) we need to transform our data appropriately.

> iz I 2 1 = . 2
L = = ,and §2 = —— - M)z =
et us set M N1 N_ ands N—].j=()(] )’z

1 ’
: [l — (N —1)IZ]. 1t is quite obvious that 3 (=4)z; = 0 and

> ('LM)2 z; = N — 1. Clearly here z; are playing the role of frequen-

8

cies f;, and (£=2£) the role of Z;. Using this transformed data, we set

N1 > (-73—M) k:vj. Substituting a4, @5, and ag in (2.2), we obtain
1 1 2 + 1 > (2‘-M)4 ) ?
N-1 E] xJ

TS0 > | S5’
(N =1) 2530 — M)z; > [ — MYSz;)° + 52 [2(5 — M)*a;)*.

Qp =

which gives us

Expanding }_(j ~ M)*z; (k = 4,5, and 8), and using M = NLil.’ and
st = Nl_ 7 [I2 — (N = 1)IZ] we obtain the desired inequality after some
simplification.

Remark 3: It is obvious that (2.3) is a polynomial function of I, m,
and y; 's. For a given [ and p’, we can check if (2.3) is satisfied for each
m(> 8). If the first contradiction occurs at m = m* + 1 (say) then m* is
an upper bound for the B-array under investigation. Thus (2.3) is a useful
necessary condition for the existence of a B-array for a given y,l, and m.

Remark 4: A computer program was prepared to check (2.3) for a B-
array with a given g/, and I. Since computations involved exceedingly large
numbers, we will restrlct our illustrative examples to B-arrays with [ = 0
and small values of y; ’

Remark 5: For ease of calculations and computations, we list here the
values of b;(k),1 < i < k — 1, which appear in (2.1). The values of b;(k)
are listed starting with ¢ = 1 and ending with 7 = £ — 1. These are: (for
k = 8; values are 5040, 13068, 13132, 6769, 1960, 322, and 28), (for k = 7;
values are 720, 1764, 1624, 735, 175, and 21), (for k = 6; values are 120,
274, 225, 85, 15), (for k = 5; values are 24, 50, 35, 10), (for k = 4; values
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are 6, 11, 6), (for k = 3; values are 2,3), and (for k = 2; value is 1).

Next we present some illustrative examples.

Example 1. Consider the array with #'=1(2,2,2,2,3,3,3,2,2). Taking
! = 0 and using (2.3), the contradiction occurred for the first time at
m = 13. Therefore an upper bound for m is 12. Using the condition given
by Dios and Chopra [6], the contradiction occurs at m = 18. Therefore
we had an upper bound of m =17. Therefore (2.3) given here provides a
significant improvement for an upper bound.

Example 2. The upper bounds on m for the arrays (1,3,6,4,1,7,5,1,2),
(1,3,2,2,1,5,5,2,2), and (1,4,3,3,2,8,4,1,1) are 11, 10, and 9 respectively as
given by Dios and Chopra in [6] whereas the corresponding upper bounds
obtained using (2.3) are 10, 9, and 9.
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