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Abstract

A k-line-distinguishing coloring of n graph G = (V. £} is a partition of V' into F sets
Vieeo.. Vi sueh that g({Vi)) < Viori=1..... Fand g(Vi V) €1 for 1 i< j<k I
e color classes in a line=distinguishing coloring is also independent. then it is called a
harmonions coloring. A coloring is winimal il when two color classes are combined. we
no longer have a coloring of the given type. The upper harmonious chromatic munber.
H(G). is defined as the wmaxinmm cardinality of & winimal harmonious coloring of a
praph . while the upper nedistingnishing chromatic munber. H{(G). is delined as
the maximum cardinality of a winimal line-distinguishing coloring of a graph . We
determine H(C,) and H(C,) for a evele C.
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1 Introduction

Graph theory terminology not presented here may be fonnd in {1, Let ¢ = (V.E) be a
graph with # vertices. A C V and B € V. we will use (A, B) (o denote the number
of edges between the sets 4 and B. Let $ € V. The set S is independent if for distinet
wor €S ue g E.while S is a packing if every two vertices in 8 are at distance at least 3
apart in G. The subgraph induced by S is denoted by (S). The distance d(e. S) from a
verlex ¢ 1o the set § is defined as the minimum distance from ¢ to a vertex of S,

A k-coloring of G is a partition IT of V7 into & sets. Vi Vool Vi A proper k-coloring
is a k-coloring such that each V; is independent. A k-coloring is a complete coloring if for
every i j. L <i< j<koq(ViiVy) > 1

The chromalic number £\ ((7) is defined as min{d | & has a proper k-coloring}. while the
achromatic number ¢(G) is defined as max{& | G has a proper complete k-coloring}.

A k-line-distinguishing coloring of (7 is a partition of V into k sets V..., V3 such that
gV <lfori=1..... Fandg(Vi. V) <l for 1 i< j<k

Il a line-distinguishing coloring is also a proper coloring. then it is ealled a harmonions
coloring. In other words. the partition {Vi. Vo .. Vi} is a harmonious coloring of ¢ if and
only il q({(Vi)) =0fori=1..... kand (Vi V) <11 <i<j<h.

The line-distinguishing coloring number W'(G) is delined as min{k | G has a k-line-
distinguishing coloring}. while the harmonious coloring number h(G) is defined as min{k | G
has a k-harmonions coloring}.

The achromatic number was first introduced and studied by Harary. Hedetniemi and
Prins [6]. The line-distinguishing number. #(G). was introduced independently by Frank.
Harary and Plantholt (7] and Hoperoft and Krishnamoorthy [8] even though the latter
authors called it the harmonions coloring number. Harmonions colorings were introduced
by Miller and Pritikin in [9] and further investigated in [4] and [3].

Consider a partition I = {V). Va..... Wi} of V according to some specified properties
P and Q. This means that (Vi) has property P for i = 1..... &k and the bipartite graph
(V. V}) hias property Q for distinet i.j € {1..... k}. The partition is minimal with respect
to properties I and Q if any partition I1' obtained from IT by combining color classes V; and
V; no longer satisfies properties P and Q. The smallest and largest cardinality of minimal
partitions with respect to properties P and Q give rise 1o two parameters associated with a
graph. For example. the chromatic and achromatic numbers are. respectively. the mininmun
and maximum cardinality of a minimal partition where the property P specilies that the
indueed subgraph of cach set in the partition contains no edge.

Let P be the property “contains no edges™ and @ he the property “comtains at most
one edge™. IT T = {V..... Vi-} is a partition according to the properties P and Q. then TT
is & harmonious coloring of G. If we change property P 1o “comtains al most one odge”.
then [T becomes a line-distinguishing coloring of ;. Before proceeding further. we state
a characterization of minimal hannonions and minimal line-distinguishing colorings of
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sraph. as given in [2].

Lemma 1 (Chien et al. [2]) 4 harmonions coloring {Vy..... Wi} is minimal if and only for
distinct i.j€ {1..... k)

(1) q(Vi.V)) =1 or

(2) if V;UV5 is independent. there s an r € {l..... kY= {i.j} such that q(Vi V) = 1 and
gV 1) =1

Lemma 2 (Chen ot al. [2]) A line-distinguishing coloring {Vi... .. Vi.} is minimal if and
only for distinel i.j € {1..... k}

(1) q{V;uV;)) > L. or

(2) if g((V; U V) < L. there is an r € {1..... kY = {i.j} such that (V. V) = 1 and
gV Vi) = 1.

"The upper harmoniows chromatic nrumber. 1(G). is defined as the maximum cardinality of
a minimal harmonions coloring of a graph G. while the upper line-distinguishing chromalic
number. H'(G). is defined as the maximum cardinality of a minimal line-distinguishing
coloring of a graph G. These parameters were first introduced and studied in 2. In
particular. it was shown that the decision problems corresponding to the computat ion of
I(G) and IF'(G) for a general graph G are NP-complete. that the two parameters are
incomparable. even for trees. and. lastly. H(P,) and If '(P,) were determined for the pah
P, of order n.

In this paper. we determine H'(C,) and H(Cy) for a eyele Cy, on n vertices.

2 The value of H'(C,)

In this section we determine the upper line-distinguishing chromatic number of a cycle. We
start with the following result.

Lemma 3 If n =3k + r is a positive integer with r € {0. 1. 2. m>2k+2and V..., Vi
is a coloring of C,,. then there are al least two color classes of canlinality one.

Proof. Let £ be the number of color classes of cardinality one. Then n — € > 2(m = (). 5o
that 00> 2m =€ > 22k +2) — (. Thus. (3k + ) 24k +d - Cosothat FZ2hk+41-r22.0
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Theorem 4 Fora > 3. 1I'(C,) =2{%] 1 1.

Proof. Let b = [%]. We lirst show that /1°(C7,) € 2k + L. Suppose. to the contrary.
H(C,) = m > 2642 and let V... Vi be a minimal line-distinguishing coloring of
Cy. Without loss of generality assume Vi = {a} with N(w) = {r.y} (¢f. Lemma 3).
Furthermore. assume r € Vs and y € V5. Let A = VUl andlet B =V =1, - A
Since we cannot combine color classes ¥y and Vi = 4... .. m. some vertex in V, mnst
be adjacent 1o some vertex in A, Then. since B is the union of at least 2k — 1 color
classes. each joined to AL it follows that |B] > 2k — 1 and ¢(A.B) > 2k — 1. Thus.
[Al =3k +r -1 - B <3k +r-1-(2k-1)=Fk+r and

20({(AN) + 2k + 1 < 29((A)) + 2+ ¢(A. B) = Z deg(r) = 2[A] < 2k + 2r. (1)

el

Thus. 2¢({4)) < (2k+2r) - (2k+1) = 2r — 1 < 3. 50 that g({A4)) < 1. I 4 is independent .
then we may combine ¥y and ¥y 1o obtain a line-distinguishing coloring of €7,. cont rary 1o
minimality. Thus. ¢({A)) = 1. Il r =0 or r = 1. Equation (1) leads 10 a contradiction.
Thus. r = 2.

By Equation (1). ¢(A. B) < 2k and [A] > (2k +3)/2. Thus. |[A] = k+2 and |B] = 2k - 1.

Let B = {u..... tak—1}. Since B is the union of at least 2k — 1 color classes. cach joined
to 4. {1} is a color class and »; is adjacent (0 at least one vertex of A (i = 1..... 2k ~1).

Thus. ¢((B)) < k — 1 and g(A. B) > 2k. Hence. g({B)) = k — 1 and (B) = K, U (k — )R,
Withont loss of gencrality, assume that deggy (e1) = 0.

First consider the case when & = 1. Since we cannot combine color classes V) and Vi,
some vertex of V; is adjacent to some vertex of Vi Let {3} = A - {x.y}. Without loss of
generality assume = € Vo, Then y is adjacent 1o 2 and vy is adjacent to x and 2. which is a
contradiction. Thus. & > 2.

Suppose the neighbor of 3 in A is in color class Va. Since we cannot combine color classes
{r2} and {#} (i =3..... 2k —1). the neighbor of ; in A is also in V. Furthermore. since we
cannot combine color classes {ep} and V. some vertex of Vy is adjacent to some vertex of
Va. We conclude that V3 and Vg are independent sets. Since [N(W)] = 2k + 1. [V > b+ 1.
Thus. V3 = {y}. and. consequently. y is adjacent to some vertex of Va. the vertex w and the
vertex vy, which is a contradiction. Thus. H/(C,) < 2k + 1.

Let o= 3k 4 r. where k and r are nonnegative integers and denote the conscecutive vertices
of the evele by ey, ... vy,

If r = 0. then the partition {{r.ey..... rae—a b {m ) {es}o o {rae—1}. {rar}} is a mini-
mal line-clistingnishing coloring of (. whence I1(C,) > 2k + 1.

If = 1. then the pactition {{r).e)..... tapn. taeeg b {ea ) esde o {rapr ) {ean} ) isa
winimal line-distinguishing coloring of C,,. whenee I17(C,) > 2k 4 1.

If r = 2. then the partition {{r.ry..... TSRS IO T FUTTERES R LTS U 127 DU {ran1 ) {esnan}.

{rar—1} e rarga }) is @ minimal line-distingnishing coloring of . whenee I(C,) >
25 + 1. The result follows, O
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3 The value of /1(C',)
In this section we determine the upper harmonious chromatic number of a evele.

Theorem 5 Forn > 3.
A2l ifne {48}
ey =< 2[81+1 ifn=5
2051V 1 otherwise
Proof. We first determine the values I (Cy). H(Cs) and (). By putting cach vertex of

(') in its own color class. we obtain a minimal harmonious coloring of €', 5o that I(€°)) = 4.
Similarly. () = 5.

IMe..... e are conseentive vertices of Cr. then {{ey}. {eae s} {ene e} {ra) {es)- {071}
is a minimal harmonious coloring of Cx. so that I/{Cx) > 6. We now show that II{Cx) < 6.
Supposc. 1o the contrary. that IJ(CR) = m > Tand let Vi..... Vi be a minimal harmonious

coloring of Cy. Withont loss of generality assume V) = {w} with N(w) = {x.y} (.
Lemma 3). Furthermore. asswne r € Vi and y € Vi, Let A = Vaulgand let B = V-V—-A.
Since we cannot combine color classes V) and Viii = 4..... mr. some veriex in Vi must be
adjacent to some vertex in A, Since m — 3 2 4. we have ¢(4. B) 2 4. [B] 2 4 and |[A] < 3.
Thus.

2((A)) + 6 < 2¢((A)) + 2+ ¢(4. B) = > deg(e) < 2|4] < 6. (2)

red

Thus. 2g((AY) < 0. so that A is an independent set. By Equation (2). {A] = 3. so that
[B] = 4. Let {2} = 4 - {ar.y} and let N(z) = {ra.e3}. Suppose 1y is adjacent 10 x and
g is adjacent to . Withont loss of generality assume ryeg and 3y are edges. Morcover.
we may without loss of generality assume that = € V5. But then we may combine color
classes {1} and {ry} 10 abtain a harmonious coloring of Cx. which is a contradiction. Thus.
H(Cy) = 6.

In what follows. suppase n = 3k +r > 3 and n ¢ {4.5.8} is an integer with r € {0.1.2}.
We first show that FI(C) < 2k + 1. Suppose. to the contrary. H(C,) = m > 2k + 2 and
let Vi..... V. be a minimal harmonious coloring of C,,.

Without loss of generality assume Vi = {w} with N(w) = {r.y} (c[. Lemma 3). Fur-
thermore. assume o+ € Vp andd y € V4. Let A = Vuland lt B =V -V — A
Since we cannot combine color classes V) and Vi.i = 4..... . some vertex in V;omust
be adjacent to some vertex in A, Then. since B is the union of at least 2k — 1 color
classes. cach joined 10 Al it follows that [B] = 2k — 1 and ¢(4.8) > 2k — 1. Thus.
JAl =3k +r—1—|B|<3k+r—-1-(2k-1)=k+rand

2¢((A)) + 2k + 1 < 24((A) + 2+ (4. B) = Y den(e) < 2[A] = 2k + 2 3
[X-N1
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Henee, 0 < 2¢((A)) < (28 +20) = (20 + 1) = 2r = L. so that r € {1.2}. By the definition
ol a harmonious coloring. ¢{({4)) < 1.

Case 1. r = 1.

Equation (3) shows that A is independent. JaA] 2 (20 v 1)/21 =8 ¢+ L Thus. (Al =k 4 |
and |Bl =2k - 1. Let B = {i..... tap—1 ). Sinee mois the union of at least 2k = 1 color
classes, each joined to A, {r,} is a color elass and ¢ is addjacent 10 st least one vertex of A
(i=1.... 2 = 1). Thus. ¢((B)) < k=1 and (4. B) > 2k. By Equation (3). g(4. B) < 2k.
so that g((B)) =k - 1 and (B) = K, U (k — 1)K,. Without loss of generality, asste tha
(I(-g(u)(l'l) =0 and assume ey i =240, 2k = 2. 0% an edge. Note that & > 20

If& = 2. then not both vy and v are adjacent 1o 2 € A—{r.y}. Without loss of generality
assume 4 is adjacent to 2. Then vy is adjacent to = and y. whenee = € V. We conclude
that 1y is adjacent to =, But then we may combine color classes {1} and V3 to obtain a
harmonious coloring. contrary 10 minimality.

We henceforth assame that & > 3. Suppase the neighbor of 1o in A is in color class Vo,

Since we cannot combine color classes {r} and {m;} (i=4..... 2k = 1). the neighbor of »;
in A is also in V5. Furthermore. since we cannot combine {7} with {23}, the neighbor of
rgin A is also in V3. Thus. none of the vertices in {ra..... -1} are adjacent to vertices

in V4. But then we may combine color classes Vi and {2} to obtain a harmonious coloring
of C,,. contrary to minimality.

Case 2. r =2,
Note that & > 3.

Case 2.1 ¢((A)) = 1. By Equation (3). 2k + 3 < 2|A] < 2k + 1. so that |A] = &+ 2.
Hence. [B] = 2k — 1. As before. cach {4} is a color class and is adjacent to at least

one vertex of A (i = 1..... 2k — 1). Thus. ¢((B)) < k -1 and ¢(A. B) > 2k. Ience.
q({B)) = k — 1 and ¢(A.B) = 2k. Let B = {ry.....v9._1}. Without loss of generality.
assume that degigy(er) = 0 and assume iy, i = 2.4, 2k — 2. is an edge. Suppose
the neighbor of 2 in A is in color class V. Since we cannot combine color classes {12} and
{ri} G=4..... 2k —1). the neighbor of #, in A is also in Vo. Furthermore. since we cannot

combine {1} with {3}, the neighbor of 4 in A is also in Va. Since |[N(V)] = 24 + 1.
Vo] 2 k + 1. But then Vi = {y}. and it follows that y is adjacent 1o some vertex of Vi, the
vertex w and the vertex vy, which is a contradiction.

Case 2.2 A is independent. By Equation (3). k+ 1 < [A] < bk + 2.

Case 2.2.1 |4| =k + 1. Then |B] = 2k. Reeall from the second paragraph of the proof
that q(A.B) > 2k — 1. Since m —3 > 2k — L. each {i}.i=1..... 2k. forms a color class or
there is a color class. say C. containing exactly two vertices, while each remaining vertex of
B forms a color class. Let B = {r)..... .}
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Case 2.2.1.1 Each vertex of B is adjacent to at least one vertex of A,

Let € be the number of vertices of B !lml is acdjacent 1o exactly |\\u vertice vs of 4. Then
Sh+2=q(C))=24+qA.B)+q((B)) =2+2+ k-0 +k-—5=3k+3 £ 42, 50 that
{ = 0. Without loss of generality, assume 4. 1= 13 2 — l is an c(luv Suppose
the neighbor of 1 in 4 is in color class V5. Since we cannot combine color classes {1 1} and
()} Gi=3..... 2k). the neighbor of r; in A is also in Va. Since we cannot combine {ry}
with {rs}. the neighbor of 12 in A is also in Vi, Since [N (13)] = 2k + 1. |15] > & + 1. which
is a contradiction.

Case 2.2.1.2 Some vertex of B is not adjacent to A, say . This vertex is in €. Then
all vertices. except ¢y, are adjacent to at least one vertex of 4. Let € be the munber
of vertices of B that is adjacent to exactly two vertices of A, Then 3k + 2 = ¢(C,) =
24 g(AB)+q((BY) =2+ 20+ 2k =1-0+2+ (k-3 -5)=3k+5+F. sothat f =1
Withont loss of generality. assume ) is adjacent to r and to ry and that #y is isolated in
{B). Morcover. suppose iy =35.7..... 2k — 1. is an edge of O

Suppose 11y is the other vertex in C. Without loss of generality. suppose the neighbor of
vy in A is in V. But then {14} is a color class of size one which is adjacent to a vertex in
C and a vertex in V. Let A = VU and let B =V — {4} — A”. Note that g({4')) =1
and we obtain a contradiction as in Case 2.1,

Thus C = {e1.0;) for some i € {5.....2k}. Without loss of generality assume that

= {r.r3}. Suppose the neighbor of 3 in A is in V,. If the neighbor of v5 in A is also
in Vi. we obtain a contradiction as in the previous paragraph. Thus. the neighbor of 5 in
A is in V4. By the same reasoning. the neighbor of 1 in A is also in V3. Since we cannot
combine {14} and V,. the neighbor of vg in A is in Va. If & = 3. then one of the vertices in
V4 has degree one. which is a contradiction.

Thus. k& > 4. Suppose the neighbor of r; in A is in V. We may then combine color
classes C and {7} 10 obtain a harmonious coloring of C,. which is contrary to minimality.
If the neighbor of ¢z in A is in Vi, we may combine color classes {rg} and {#7} 1o obtain a
harmonious coloring of (. which is contrary to minimality.

Case 2.2.2 |4] = k+2. Then [B] =2k - 1. Let B = {r..... ra—1}. As before. each
{wm}.i=1...., 2k - 1. is a color class and is adjacent to at least one vertex of A. Let € be

the number of vertices of B that is adjacent 1o two vertices of A. len 3k +2=¢(C,) =
2+ qAB)+q((B) =2+20+2k-1—-(+k —3—5 = 2+ + 3k. so that £ = 3.

Thus. (B) = Ky + (k — 2)K,. Suppose vy, 02 and 4 are the isolated vertices of (B). Let
it i = LG, .. 2k = 2, be edges of C,.

First consider the case when & = 3. If Vo = {r}. then r is adjacent to w1y s and
ry. which is a contradiction. Thus. [V5] > 20 and. by svmmetry. [Vy] > 20 Without loss
of generality assume |Vy] = 2 and V3] = 3. Let ¥, = {r.z}. Withowt loss of generality.
assnme that ) is adjacent to o and that ry and 3 are hoth adjacent 1o =, Notice that
N({ri.es}) N1 = B, But then we may combine V45 and {3} to obtain a harmonious
coloring of (',,. which is a contradiction.
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[enceforth we assume & > 1. Suppose the neighbor of ¢y in A is in color class Vs, Since

we cannot combine color classes {e} and {o} (= 6..... 2k 1). the neighbor of +; in .1
is also in Vs, Since we cannot combine {6} with {es}. the neighbor of v in A is also in
¥y, Thus. none of the vertices in {ry..... ey} are adjacent to vertices of ¥y, But then

we may combine color classes {eg} and Vi to obtain a barmonious coloring. contrary to
minimality,

Let n = 3k +r. where & and r are nonnegative integers and denote the consecutive vertices
of the evele by e, oL .

If r = 0. then the partition {{ry.eq..... (TSNS R FIYS B WS YU {st—1}- {ra}} is a mini-
mal harmonions coloring of €', whenee 11°(C,) 2 20 + 1.

Ifr = L. then the partition {{ep m} U{es e ooy b {ee e {esa v ) {es ) {es ) e}

{rw). ... {ew ). {eap=1 ) is & minimal harmonious coloring of €', whenee IF(C,) > 2k 4 1.
ITr = 2_then the partition {{e. e eaeaa}. (e} {a) s {tax—10}- {rae—a ) {7}

{ese—g. a1} {ran—a}e {raeone vand {eae—1 }- {ae=2}} is a minimal harmonions coloring of
Cy. whenee H(C,) 2 2k + 1. The result follows. O
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