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Abstract

We prove that 15 is the maximal size of a 3-arc in the projective plane of
order 8.

1 Introduction

Let PG(2,q) = (P, L) be the desarguesian projective plane of order ¢q. A
point set L C P is a (k,n)-arc if KC has cardinality £ and no more than
n points of K are collinear. Denote by ma(n,g) the maximum cardinality
k of a (k,n)-arc in PG(2,q). The objective of this paper is a proof of the
following:

Theorem 1. m2(3,8) = 15.

This closes the last gap in our knowledge of the numbers ma(n, g) for
q < 9. For more details and references we refer to [1].

Two nonequivalent (15, 3)-arcs will be constructed (see Lemma 5, Corol-
lary 2). An (n,k)-arc in PG(2,q) is equivalent to a linear g-ary code
[n,3,n — k]q. In terms of coding theory Theorem 1 states that an 8-ary
code (16,3,13]g does not exist while codes [15,3,12]s do exist. The most
important tool in the proof is the determination of the weight distribution
(see [5] and Theorem 2) of the code generated by the plane. In Section 2
we will use these numbers to describe the codewords of weights up to 25
explicitly. Especially important is a set of 18 points which arises naturally
in connection with the codewords of weight 25.

Occasionally we will have to calculate in coordinates. We use homoge-
neous coordinates. The point (a : 8 : ) is incident with line [a : b : ¢] if
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and only if aa + Bb+ yc = 0. We fix a primitive element ¢ of Fy such that
e+ =24+ =+ =1.

In order to study the embedding of a point set B in PG(2,8) we use the
following terminology:

Li(B) is the set of lines meeting B in precisely ¢ points (the i-secants of
B), and a;(B) = |Li(B)|. L;(B) denotes the set of i-secants passing through
point P, and a;(P,B) = |L;(P,B)|. In the dual situation when a set G of
lines is given we use analogous terminology. In particular P;(G) is the set
of points, which are on precisely 7 lines of G, a;(G) = |Pi(G)|.

J.W.P. Hirschfeld informed me that A.L.Yasin, a student of his, has
proven m2(3,8) = 15 by an exhaustive computer search (see [6]). An
unpublished manuscript of mine (3] containing proofs of m2(3,8) = 15 and
ma(7,8) = 49 existed since March 1988. While there is now a short proof
for the fact that mg(7,8) = 49 (see [2]) this does not seem to be the case
for the result proved in this paper.

2 The structure of PG(2,8) and its code
Let Il = PG(2,8) = (P, £).

Lemma 1. 1. The group PGL3(8) has order 2° - 32 .72 .73 and acts
transitively on quadrangles, 5-arcs, hyperovals and Fano planes of II.

2. 11 has 26 .3 .72 .73 = 686,784 quadrangles, 27 - 32 . 72 . 73 5-arcs,
25.7.73 hyperovals and 25 -3 -7 - 73 = 98,112 Fano planes.

3. A complete arc in Il is either a 6-arc or a hyperoval.

4. Every 5-arc in Il is contained in ezactly two hyperovals and in ezactly
three complete 6-arcs.

Proof. The order of PGL3(8) and the transitivity of its action on quadran-
gles and on Fano planes are classical results. As PGL3(8) is regular on or-
dered quadrangles, the number of non-ordered quadrangles is | PG L3(8)|/4!
The number of Fano planes is |PGL3(8)|/|GL3(2)|. The remaining state-
ments are to be found in [4],pp. 209f,401f,406. =

Let V be the binary vector space with the point set P as basis. We define
the binary point code C and the binary line code C* and state without proof
some of the basic properties of these codes.

Definition 1. The binary point code C of Il is the subspace of V gen-
erated by the lines. Interpret elements v € C as point sets by identifying v
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with its support. The weight |v| is its cardinality. Let C; the set of code-
words v € C of weight i and A; = |Ci|.

The binary line code C* of II is the point code of the dual plane. The
weights, the sets C; and numbers A} are defined in analogy with the case of
the point code.

If AC P is a set of points, then ) 4c 4 A € C*. Here ) 4. 4 A denotes the
set of those lines, which intersect A in odd cardinality.

If BC L is a set of lines, then Eges g € C, where EgeB g denotes the set
of those points, which are on an odd number of lines from B.

Lemma 2. 1. If g is a line and v € C, then [gNv| = |v| (mod 2).
If P is a point and v* € C*, then |{g | g € v*, P € g}| = |v*| (mod 2).

2. PeC,LecC.

3. IfvelC, thenP\veC.
Ifv* € C*, then L\ v* € C*.

Proof. 1. is a classical result, 2. follows from Ege ¢ 9 = P and the corre-
sponding dual statement, 3. follows from 2. m

Lemma 3. 1. A;= A] for alli.
2. A73_i = Ai fO’I‘ all 1.
Proof. 1. is clear as I1 is self-dual, 2. follows from Lemma 2,2. »

Recall that we consider code words v € C as sets of points, words v* € C*
as sets of lines.

Theorem 2 (Mezzaroba). The weight distribution of C is as given in the
following table. The larger weights are determined by using A73—; = A;.

) Ai 1

0 1 24| 784896 || 32 | 29369214
9 73 25| 1379700 || 33 | 36301440
16 | 2628 || 28 | 6671616 || 36 | 49056000
21 | 56064 || 29 | 10596096

A; i A;

We are going to describe explicitly all the code words of C* of weight
up to 25.
Lemma 4. C§ = {0},C§ ={P | P € P}

c;6={P+QIP9Q€PvP¢Q}a
C3, ={P+Q+ R|P,Q,ReP form a triangle }.
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Proof. Comparison with Theorem 2 shows we found precisely A; elements
in each case. Thus there are no others. Recall that we interpret a point
P here as the set of lines through P. Addition is formal binary addition.
Thus P+ Q is a set of 16 lines. m

Proposition 1. Let E C P be (the point set of) a Fano plane. Put L; =
Li(E),a; = ai(E),i = 0,1,3. Further P; = P;i(L3(E)),p: = |Pi|,i =0,1,3.
Elements of L£1,Lq are tangents and exterior lines, respectively, elements
of Po are exterior points of E. Then the following hold:

1. ag=p3="T7,a1 =p1 =42,a0 =po = 24.
Every exterior line contains exactly 2 exterior points, every exterior
point is on ezactly 2 erterior lines.

2. Ly is an element of C*.

3. Put Go = PGL3(8),G = PU'L3(8). The stabilizer Gg of E in G is
the direct product of GL3(2) and a cyclic group Z of order 3. Ezactly
then are ezxterior points P,Q in the same Z-orbit if PQ is an exte-
rior line. The eight orbits of Z on the exterior points are regions of
imprimitivity for the action of Gy.

Proof. 1. follows from trivial counting arguments, 2. from Lo = 5 pep, P-
3. We know that Gy operates regularly on ordered quadrangles and induces
the full automorphism group GL3(2) on E. It follows that Gg is a direct
product as claimed. Z is the Galois group of Fg | F5. It follows that Z
has no fixed points outside E and no fixed lines outside £3(E). The eight
orbits of Z in Py are regions of imprimitivity of Go. In the light of 1. it
suffices to prove that g = PQ is an exterior line if P, Q) are exterior points
in the same Z-orbit. Assume g ¢ Lo. Then g € £;. Put gN E = {R}. As
R is fixed under Z we obtain the contradiction that g is fixed by Z. m

We remark at this point that the action of Gy on the eight Z-orbits
of exterior points may be identified with the operation of PSL3(7) on the
projective line, thus yielding another proof of the exceptional isomorphism
between the simple groups GL3(2) and PSLy(7).

Corollary 1. C3, consists of 686,784 sums of quadrangles and of 98,112
sets of exterior lines of Fano planes.

Proof. This follows from comparison with Theorem 2. m
The case of weight 25 is somewhat more difficult.

Definition 2. A pentatrio (short pio) is a set of three pairwise disjoint
5-arcs, such that the union of any two of these 5-arcs is always a hyperoval.
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Lemma 5. Every 5-arc K is in a unigue pio T(K). The point set of a pio
is a (15,3)-arc. All pios are projectively equivalent. There are 27-3-72.73
pios.

Proof. Put Ky = {N1,(1:0:0),(0:0:1),(1:1:1),(e®: € : 1)}, where
Ny =(0:1:0). Then K, is a 5-arc. The hyperovals containing X; (see
Lemma 1,4.) are Oy = K1 U K3 and O3 = K; U K2, where
Ko={No,(e*:€2:1),(f:e3:1),(:€5:1),(®:€6:1)},No=(e:€:1)
and
Ks={N3(e:e3:1),(f:e2:1),(e?:e®:1),(e2:€*:1)},N3=(e:¢€:
1).

It is easily checked that O; = K3UK; is a hyperoval. As different hyperovals
cannot intersect in more than half their points (see [4],p.165), different pios
must have different point sets. The lemma follows. m

Lemma 6. Let K be a 5-arc, G = G(K) = Y pcx P € C*. Then G, the
set of tangents of K, is in C35. Ezactly then is G(K) = G(K') for a 5-arc
K'#K if CUK' is a hyperoval.

Proof. G(K) is the set of 25 tangents to K. Clearly G(K) = G(K') if K and
K’ are in a common pio. Let now G(K) = G(K') for some K’ # K. Then
Ku{Q} is a 6-arc for every Q € K'\ K.

If Pe KNK', then necessarily £,(P;K) = L,(P;K’), whence L2(P;K) =
Lo(P;K'). Tt follows |PQ N K| = 2 for every Q € K’ \ K, contradicting the
fact that X U {Q} is a 6-arc. We have proved K N X' = (. The lemma
follows. =

Proposition 2. C35 consists of 6132 sums of three collinear points and of
27.3.7%.73 = 1,373,568 sums of 5-arcs.

Proof. There are 73(3) = 6132 sets of three collinear points and these
yield as many codewords of weight 25. By Lemmas 5 and 6 there are
exactly 27 -3-72 .73 different elements in C}5, which are sums of 5-arcs. As
27.3.72.73 4 6132 = Ay there are no other codewords of weight 25. m

Definition 3. Let IC be a 5-arc. Denote by R(K) the set of points R which
complement K to a complete 6-arc.

It follows from Lemma 1,4. that |R(K)| = 3.

Lemma 7. Let T = {K,,K2,K2} be a pio. Then R(K)) = R(Kz) =
R(K3). Denote this set by R(T).

Proof. Let R € R(K,). By definition of a pio we have R ¢ K; UKz U K3.
As K, U {R} is a 6-arc we have PR € G(K,) (see Lemma 6). By Lemma 6
we have G(K1) = G(K2) = G(K3). It follows that Kz U {R} and K3 U {R}
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are 6-arcs. By Lemma 1,3. and the definition of a pio these are complete
6-arcs. m

Definition 4. A complete pentatrio (short clio) is a set
M ={T,R},
where T is a pio and R = R(T).

Lemma 8. Clios are projectively equivalent. Every 5-arc is in a unique
clio. There are 27 -3-7%.73 clios.

This is trivial.

Lemma 9. There is a canonical bijection o between clios and words in C3;,
which are sums of 5-arcs. This bijection is defined as follows:

If M = {K1,K2,K3,R} is a clio, then (M) = G(K1) = G(K2) = G(K3).
IfG =73 pex, P € C3s, where Ky is a 5-arc, then

o~HG) = T(K1) UR(K:) = Ps(G).

Proof. Tt follows from Lemma 1,4. and Lemmas 5, 6 that ¢ is a bijection.
The inverse image of G is by definition T (K1) UR(K;). We wish to identify
this set with P5(G), the set of all points, which are on 5 lines from G. Put
a; = a;(G). As one inclusion is obvious it suffices to show a5 = 18. We have
a; = 0 for 7 > 5, by definition. It follows from Lemma 2 that a; = 0 when
i is even. We have only three unknowns, a,, a3, as. By counting

o the lines,
e incidences (@, g), where Q € P,g € G,Q € g, and
o pairs of lines

we obtain the equations

ay+azt+as = 73
ay+3az+5a5 = 225
3a3 + 10as = 300

The unique solution is a5 = 18,a3 = 40,a; = 15. m

Lemma 10. Let M = {K,,K2,K3,R} be a clio, O; = K;UKy, for {i,5,k} =
{1,2,3}. Let N; € K; such that Ny, No, N3 are the nuclei of Oz, 01, Oz, re-
spectively.

Then there is a line so = so(M) € a(M) such that

soNM=RU {Nl,NQ,N:;}.
We call so(M) the strong line of M.
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Proof. Because of projective equivalence we can start from the pio given in
the proof of Lemma 5. Put

Ri=(e:€?:1),Rp=(c:€2:1),R3 = (e: e : 1).

An easy calculation with coordinates shows that for each ¢ the lines R;P, P €
K, are pairwise different. It follows R = {R;, Rz, Ra}. The strong line of
Missg=1:0:1]. m

Lemma 11. The stabilizer of a clio in PT'L3(8) is isomorphic to A4 X Z3.

Proof. Tt follows from Lemmas 8 and 1 that the stabilizer in question has
order 36. Consider the group H = (M1, Ma,p1) X (p2), where

0 0 ¢ e e ¢
M=10120|,M=|0120
e 0 0 e 8 ¢

and p; = M¢, po = M'¢p, where ¢ is the Frobenius automorphism and

111 S & e
M={010 | ,M=]1 & & |.
1 00 e 4 8

Operation is from the right. Then H stabilizes the clio as introduced in
the proofs of Lemma 5 and 10. m

Lemma 12. Let M = {K;,K2,K3,R} be a clio. Identify M with its point
set. Then the following hold:

ag(M) = 1,a5(M) = 0,a4(M) = a3(M) = a1 (M) =12,
az(M) = 30,a0(M) = 6.
We have
La(M) = {so(M)}, La(M) = Ul La(Re; M), L3(M) = UL, L3(Nis M),
G = Lo(M) U La(M) U Ls(M), L1(M) = UL, Li(Ris M).
The proof is trivial.

Proposition 3. Let M = {K{,K2,K3,R} be a clio. Then {so(M)} U
Lo(M) is the set of lines of a Fano plane E.

The word 3" pcpq M = L1(M) U L3(M) of the line code is the set of 0-
secants of E.

We have E N sg(M) = so(M)\ M. If A € E\ so(M), then AR € L4(M)
for all R€ R and AN; € L3(M),i=1,2,3.
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Table 1:

i || Ps(G) | P3(G) | Pr(G)
6 6 0 3
4 4 4 1
3 3 6 0
2 2 4 3
1 1 6 2
0 0 8 1

Proof. We use the same clio as before. Then
LoM)={[e® e 1, [ s s 1), [et e, fe e s 1) €2 e 1), [ €9 : 1))
and E = {A,..., A7}, where

Ay =(e:0:1),Ap=(e:1:1),A3=(e:€:1), A4 =(0::1),

A5 = (62 01 :0),A6 = (62 : 63 : 1),A7 = (1 :62 : l),So(M)ﬂE = {Al,Ag,Aa}.

Let A € E\ so(M). As K; U {R;} is a complete 6-arc (¢,j = 1,2,3) the
point A must be collinear with two points of K;. Thus az(A4; M) > 3. As
ao(A; M) = 3 and |M| = 18, a counting argument yields a4(4; M) =3 =
az(A; M) (see Lemma 12). It follows AR; € L4(M), AN; € L2(M), AA; €
Lo(M),i=1,2,3.Theword U = Y j;c py M = L1(M)UL3(M) has weight
24 by Lemma 12. No point of E is on a line of U. Thus U cannot be the
sum of a quadrangle. It follows from Proposition 1 and Corollary 1 that U
is the set of 0-secants of F. m

Let G € C35 be the sum of a 5-arc and M = P5(G) the corresponding
clio (see Lemma 9). In the following table we list, for every line g € £;(M),
the number of points from P;(G) it contains, j = 1,3, 5.

Corollary 2. Let G € C}5 be the sum of a 5-arc. Then P1(G) is a (15,3)-
arc but not a pio.

Proof. We have seen in the proof of Lemma 9 that a,(G) = 15. The last
column of the Table shows that P, (G) is a (15, 3)-arc. As a3(P1(G)) = 31,
this point set cannot be a pio (see Definition 2 and Lemma 5). =

Lemma 13. Let O be a hyperoval,H, Hy the stabilizers of O in PTL3(8)
and in PGL3(8), respectively.
O is the union of a conic and its nucleus N and the following hold:
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1. Hy =~ PGL,(8),H = PT'Ly(8),|Ho| =7-8-9,|H| =3 |Ho|.
2. H, is sharply 3-transitive on O\ {N}.

3. Hy 1is transitive on the flags (X,9),X € g, X ¢ O,gNn O = 0.
4. The stabilizer of a flag (X, g) in H has order 6.

Proof. It follows from Lemma 1 that O is the union of a conic and its
nucleus. 1. and 2. are classical results, see [4],pp.143f.

3. As every X ¢ O can be written as an intersection X = g1 N g2, where
g1 = XN,|g2N O] = 2, it is obvious that the triple transitivity of Hp on
O\ {N} implies the transitivity on the 63 points X ¢ O. Denote by K the
stabilizer of X in Hy. Then K is elementary abelian of order 8. We have
to show that K is transitive on the four 0-secants passing through X. Let
U < K be the stabilizer of the 0-secant g through X in K. We have to
prove |U| < 2.

Let 1 # u € U. As u fixes N and P = (XN NO)\ {N} and because
of the sharp triple transitivity of Ho on O\ {/N}, the involution u must be
fixed-point-free on O\ {N, P}. Let A € O\ {N, P}, B = A*. We claim that
A, B, X are collinear.

Assume this is not the case, let Y = ABNg. Then Y # X and Y is fixed by
u. Further u fixes (XNNO)\ {N}, but this contradicts the fixed-point-free
action on O\ {N, P}.

We have proved that B = A" is the unique point of O on AX different
from A. It follows that the action of u is uniquely determined. We have
|U| € 2. This shows |U| = 2 and claim 3.

4. follows from 1. and 3. =

Lemma 14. If O is a set of 10 points in the dual of the point code C, then
Q@ is a hyperoval.

Proof. The assumption says that every line intersects O in an even number
of points. Let P € O. As each of the 9 lines through P picks up at least
one further point of O, the lemma follows. m

3 The proof

3.1 my(3,8) <16

Assume B is a (17, 3)-arc in IT. Put £; = £i(B),a; = a;(B),i=0,1,2,3. Let
G = LoULy. We know from Lemma 2 that G € C*. Denote by w* = ag+az
the weight of G.
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Lemma 15. 1. We have B = A3UA,, where A = {P | P € B,a3(P) =
7,a2(P) = 2},./4] = {P | P e B,as(P) = 8,a1(P) = 1} Further
|A2| = a2, |A1] = a1. In particular a) + az = 17.

2. w* € {16,24,28,32}, a0 = 8+ w* /4,01 = 25 — 3uw" /4,
a2 = 3w*/4 — 8,a3 = 48 — w*/4.

Proof. 1. follows from a trivial counting argument.

2. By definition ag + a1 + a2+ az = 73. Counting pairs of points in B yields
az + 3az = 136. An easy calculation yields the formulae expressing the a;
in terms of w*.

Count incidences (P,g),P € B,g € L3U L;,P € g. We obtain a3z + a; >
17-7/3, hence a3 + a; > 40 and w* < 32 by Lemma 2 and Theorem 2. As
ao > 0, Theorem 2 yields the first statement of 2. =

We shall consider seperately the four cases in Lemma 15,2.
Lemma 16. w* # 16.

Proof. Assume w* = 16. Then Lo U Ly = P, + P, by Lemma 4 and
az = 4,ap = 12. Without restriction az(P;) < 2. It follows ao(P;) > 6.
In particular P, ¢ B and |B| = ZP|€g g N B| <9, contradiction. m

Lemma 17. w* # 24.

Proof. Assume w* = 24. We have gy = 14,a; = 7,a3 = 10,a3 = 42. If
G is sum of a quadrangle, then the same contradiction as in Lemma 16 is
obtained. It follows from Corollary 1 that G is the set of O-secants of a
Fano plane E. Let P € E. Then P is on no line of G, whence P ¢ A,. If
P ¢ B, then a;(P) = 5 by the standard counting argument. As a; = 7, at
most one point of E is not in A;. Let g € L3(F). By Definition of G we
have g € L1 UL3. If X € g\ E, then ao(X) + a2(X) = 4. It follows X ¢ B.
The preceding remark shows g € L3 and consequently:

E = A1,£3(E) C L3.

We have seen that A consists of exterior points of the Fano plane A;.
Assume more than two points of A; are collinear on a line h. As B is
a (17,3)-arc, h is an exterior line of A;, contradicting the fact that an
exterior line of a Fano plane contains only two exterior points.

Thus A is a hyperoval. By definition of the A; we have Lo C Lo(A;) and
gNB C Aj for every g € L3. As every point in A3 is on two 2-secants, it
follows from Lemma 1,3. that the points of A3 occur in triples whence the
contradiction that a3 is a multiple of 3. m

Lemma 18. w* # 28.
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Proof. If w* = 28, then a9 = 15,a; = 4,as = 13,a3 = 41. No three
words Py, P;, P3 of A; are collinear as otherwise the sum of the P € B
different from Py, P5, P; would yield a codeword of weight 20, contradicting
Theorem 2. Denote by D; the set of 3-secants of B, which meet .4; in i
points, put d; = |D;|. We have seen d; = 0 for i > 2. Clearly d2 = 6. The
standard counting argument yields d; = 20,dy = 15.

Let V be the sum of the P € A;. Then V =D, U Dy and V has weight 21.
By Lemma 4 we have D;UDy = Py + P, + P3, where the P; form a triangle.
As a3(P;) > 7 we have { Py, P;, P3} C B. It follows that none of the P; ison a
tangent to B, hence {Py, P2, Ps} C A2 and {P, P, P, P3, P,P;} C L,. Each
P; is the intersection of two lines from Ds. It follows that A, U { Py, P2, P3}
is a Fano plane. This is a contradiction as the P; are not collinear. =

Lemma 19. w* # 32.

Proof. If w* = 32, then ap = 16,a; = l,a3 = 16,a3 = 40. Let Py be
the point in A;. Consider D;,d; as in the proof of Lemma 18. Clearly
dy = 8,dp = 32. We have Do = ) p 4, P € C*.

For g € Dy,gNB = {Py, Py, P2}, let V(g) = Do+ P, + P; € C*. Then V(g)
has weight 24. Set {Q;,Q2} = {Q | Q € A2, AQ € L2},{R1,R2} = {R|
Re A3,PR € Cz},N = {Ql,Qz,Rl,Rz}. It is impossible that Q; = R;
as this would yield a codeword Do+ P; + P2+ Q)4 of weight 17, contradicting
Theorem 2. It follows that || = 4. As every N € N is on six lines of V (g),
we must have V(g) = Q1 + Q2 + R1 + Rp, and N is a quadrangle (see
Corollary 1). As PyN ¢ V(g) for N € N we can choose notation such that
{Po, @1, R} and { Py, Q2, Ry} are collinear on lines g, g3, respectively. The
six lines through @1, which are disjoint from the set {@2, R1, Rz}, consist of
five lines of Dp and the 2-secant P1@Q,. Thus the points {P;, Q2, Rz} are on
one 3-secant and one 2-secant through Q. We get Q1 P>Q2 € L3,Q1Rs €
L. In the same way we get Q2R; € L2. We have seen that every line
g € D) determines canonically a set {g, g2, g2} of three lines of D; with the
property that for every P € A3, P € gUgaUg3,Q € Az, PQ € L, the point
Q is in gU go U g3. We obtain the contradiction that d; is a multiple of 3. m

We have shown the following:

Lemma 20. m(3,8) < 16.

3.2 The final step

We work under the assumption that a (16,3)-arc B exists in IT. Put £; =
Li(B),a; =a;(B),i=0,1,2,3.Let G = LoU L, U =L1UL3 (both in C*).
Denote by wg = ag + a2, w; = a) + a3 the weights of these code words.
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Lemma 21. 1. We have B = ByUA,, where By = {P| P € B,a3(P) =
6,a2(P) = 3,a1(P) = 0}, 4, = {P | P € B,a3(P) = 7,a2(P) =
a1(P) = 1}. Further |Ai| = a,.

2 ay=17—-0a1/3,a0 =24 — ay,a3 = 32+ a,/3, wg = 41 — 4a,/3,
w}y = 32+ 4a,/3, a1 € {0,3,6,9,12,15).

Proof. 1. is immediate. The standard counting argument yields three equa-
tions for the a;. We can express everything in terms of a;. The equation for
ao shows that a; is a multiple of 3. Asa; < |B| = 16, it follows 0 < a; < 15.
.

We will consider the cases corresponding to different values of a; seper-
ately, starting from the easier cases.

Lemma 22. a; # 15.

Proof. If a; = 15, then ap = 12, wg = 21 by Lemma 21, hence Lo U Ly =
Py + P, + P3 (see Lemma 4). We can choose notation such that ag(P;) > 4.
Counting elements of B on lines through P, yields the contradiction |B| <
15. m

Lemma 23. a; # 0.

Proof. If @y = 0, then w; = a3 = 32,a2 = 24 by Lemma 21. Let
2z € L3,20N B = {P, P2}, put V(2) =U + P, + P,. Then V(z) has weight
24. Let {Q1,Q2} ={Q | Q € B,Q # Po, QP € £},{@3,Qu} = {Q | Q €
B,Q+# P,QPz € L2} and N = {Q1,Q2,Q3,Q4}. If Q € N, then Q is on
at least six lines of V(z). Corollary 1 yields the following;:

INI = {4, {P2Q17P2Q2) P1Q31 P1Q4} c ES’N is a qua'drangle3 V(Z) =
2gen @ We obtain L3 =U = )y pn N, where NV = NU{Py, P,}.

As every 3-secant intersects N7 nontrivially, B\ /N must be a hyperoval. As
hyperovals do not have tangents there must be 3-secants g; = PyQ3Q4 and
g2 = P,Q1Q2, and these are the only 3-secants having all their B-points in
N'. We conclude N" = N'(z) = N'(g) for every g € L2,9gNB C N'. As
exactly nine 2-secants have their B-points in N/, we get the contradiction
that as is a multiple of 9. m

Lemma 24. a; # 3.

Proof. If a; = 3, then a3 = 33,02 = 21,09 = 16. Let A; = {Py, P, P3}.
Then A, is not collinear as otherwise 3 p.5 P would have weight 17,
contradicting Theorem 2. If P;P; € L3, then U + P; + P; has weight 20,
contradiction. It follows that there is some @ € By such that Q. € gr =
RR}:{Zyjyk} = {1a213} Put N = {P11P2$P3?Q1aQ21Q3} and O = B\N
The word 3 pep, P = U + P1 + P> + P; has weight 21. It follows from
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Lemma 4 and the fact that Q. is on more than three lines of this word that
U+ P +P+ P; = Q1+Q2+Q3, hence f = L3UL; = EN NN It
follows that @ is a hyperoval. Further f N O = @ whenever |f N /\ﬁ > 1.

We introduce coordinates. Let @ = K3 UK, be the hyperoval introduced in
the proof of Lemma 5. Then A is a set of six points with the property that
any two points of A are joined by a 0-secant of O. By Lemma 13 we can
choose without restriction P = (1:1:0), AQ, = [1: 1: 1]. The stabilizer
W of the flag (P, P,Qi1) in H has order 6 (see Lemma 13). It is easily

100
checked that W is cyclic, generated by | 0 1 0 | and the Frobenius
111

automorphism ¢. The operation of W shows that we can choose @1 = (1:
0:1)or Q= (e: € : 1). Let {hl,hz,ha} = {h | P € h e ﬁo(O),h #* [1 :
1:1)},{91,92,93} = {91 Q1 € g € Lo(O),g # [1 : 1: 1]}, P,; = hiNg;. We
have hy = [3: €3 : 1), hp = [® : € : 1), ha = [ : €% : 1].

Assume Q; =(1:0:1). Theng1 =[1:€3: 1,92 =[1:€°:1],g3=[L:

€8 : 1]. We still have ¢ at our disposition. We have P11 P;; € L2(0)
whenever i # 1,7 # 1. This shows Py,; ¢ N, thus Pro ¢ N,P33 ¢
N. The operation of ¢ allows us to choose hs € Li(P1). Thus N =
{P1, @1, Pl,g,Px,a,Pg,l,Pg,s}. This is impossible as Py 2P 1 € L2(0).
We have Q1 = (e: €5 :1),g1 =[:e:1),ga=[3: e : 1], g3 = : 5 : 1].
In the same way as before we see P11 = (¢! : 0: 1) ¢ N,Pi3 = (e :
1:1) ¢ N. Thus {h1} = L1(Py). As P33 = (0 : € : 1) ¢ N, necessar-
ily {Ps,1, P32} C N. However Po3Ps2 € L2(0), P2P32 € L2(0), hence
{P23, P2} NN =0, contradiction. m

Lemma 25. a; # 6.

Proof. If a; = 6, then az = 34,a2 = 18,00 = 15. Assume z € Lo,zNB =
{P1, P2} C A;. Then U + P; + P; has weight 24, and as every Pe A\
{P,, P} is on at least six lines of U + P1 + P, we have Y = Y pea, P by
Proposition 1 and Corollary 1. Further By is a hyperoval and P, P, are on
the diagonal of the Fano plane generated by the quadrangle A; \ {P1, P2}.
Let X € z be the third point of this Fano plane on z. Then a3(X) = 0. It
follows that BU {X} is a (17, 3)-arc, contradiction.

Assume d € L3,dNB={P,,P2,P3} C A;. Then U + P, + P, + P3 has
weight 21, hence U = ZPGAI P by Lemma 4. Let P € A; \ {P1, P2, P3}.
Then P is on seven lines of ¢ + P, + P2 + P3, hence without restriction
PP, € £, but this has been excluded above.

We have g = PP, € L3,9gN B = {Py, P;,Q}, where Q € By, for every
P, P, € A;. The word V = U + P + P2+ Q has weight 25. If V is the sum
of three collinear points X1, X2, X3, then clearly X; ¢ gand U = X1+ X2+
X3 + Py + P, + Q cannot have weight 40, contradiction. Consequently V is
the sum of a 5-arc (see Proposition 2). Let P € Ay \ {P1, P2}. As P cannot
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be on more than five lines of V, necessarily PQ € L3. Thus a2(Q) > 4,
contradicting Lemma 21. m

Lemma 26. a; # 12.

Proof. If a; = 12, then a3 = 36,a3 = 12,a0 = 13. As no (17, 3)-arc exists
there is no point P such that ag(P) + a2(P) = 9. By Proposition 2, G is
sum of a 5-arc. Consider the clio M = P5(G) (see Lemma 9, Definition 4)
and the strong line sp = so(M) (see Lemma 10). Clearly so € Lo U L. By
Lemma 21 we have BN M =0, A; C P1(G), By C P3(G).

Assume sg € Lo. Then A; = P1(G)\so- Let D; = {g | g € L3, |gﬂ.A1| =

i},4=10,1,2,3. By Lemma 12 we have Lo(M)UL; (M)ULy(M) = L3UL;.
Let P € A;,P € g € L;. Table 1 shows g € £,(M), whence £; = £L;(M).
Let h € Lo(M). We know h € L3. The Table shows h N A; = 0. Let
P € 5NP1(G). As P is a point of the Fano plane E generated by s and
Lo(M) (see Proposition 3) the point P is on three lines of Dy. This yields
the contradiction |Bo| > 9.
We have sg € L2,50NB = {A;, A2} C A;. Each P € P,(G)\ so is on exactly
one 4-secant v of M. If in addition P € A;, then v is a 2-secant of B. As v
contains only one point of P;(G) (see Table 1), we get exactly ten 2-secants
v of B satisfying |[vNBy| = 1. The presence of so shows that there is exactly
one 29 € L2 such that |zo N By| = 2. Thus there are two points P € By \ 2.
We have az(P) = 3, Lo(P) C L4(M). As P € P3(G), our point is on three
4-secants but on no 3-secant of M. By Lemma 12 P is on no tangent to M.
Thus, by Proposition 3, P belongs to the Fano plane E generated by so and
Lo(M). With {X} = s\ (MUB) we get {PA;, PA2, PX} C L3U Lo(M).
As A; C P1(G), Table 1 shows that none of these lines contains points of
A, outside so. Thus |PA; N By| = |PA2 N By| = 2,|PX N By| = 3. This
yields the contradiction [Bg| > 5. =

It remains to consider the hardest case:

a1 =9,a3 = 35,a3 = 15,409 = 14.

Let us call a 3-secant special if it contains three points of A;. Let s be the
number of special lines, s(P) the number of special lines through point P,
and z the number of points in .A;, which are not contained in special lines.
A line g has type (a,b) if jgN A;| = a,|gN Bo| = b.

Lemma 27. If P, P’ € A, and either s(P) # 0 or s(P') # 0, then PP’ €
L3.

Proof. Let g be a special line, gN Ay = {P,,P;,P,}. Then V =U + P, +
P> + P3 has weight 25. As every P € A; \ ¢ is on at least five lines of V,
the word V is sum of a 5-arc (see Proposition 2). This also shows that P is
on exactly five lines of V, hence PP, € £3,i=1,2,3. n
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Lemma 28. 1. If P € A; is not contained in a special line, then P is
on seven lines of type (2,1) and on one line of types (2,0) and (1,0)
each.

2. If P € A, is on some special line, then P is on 8 — 2s(P) lines of
type (2,1), on s(P) — 1 lines of type (1,2), one line of type (1,1) and
one line of type (1,0).

Proof. 1. is clear. 2. The 2-secant through P has type (1,1) by Lemma 27.
The usual counting argument then yields our claim (compare Lemma 21).
- .

Lemma 29. =0 o0rz=2.

Proof. Clearly z is even as 2-secants of type (2,0) do not intersect in B.
Assume there are two such secants, z; and zg, where z; NA; = {4, B}, 22N
Ay = {C,D}. Then G + A+ B + C + D has weight 20, contradicting
Theorem 2. m

Lemma 30. There is no triangle of special lines intersecting pairwise in
Aj.

Proof. Assume {g1, 92,93} is such a triangle, g = ABD, g, = ACE, g3 =
BCF,N={A,B,...,F}CA;.Let Z=U+Y yey N.If D, E, F are not
collinear, then Z has weight 20, contradicting Theorem 2. It follows that
D, E, F are collinear on a special line g4, and |Z]| =16. Thus Z =X +Y
(see Lemma 4). Let M be the seventh point of the Fano plane generated
by 91,92,93,94- Then M = AFNBENCD is on at least three lines of
Z, without restriction M = X. As Y is on six 2-secants through points of
N, we have Y ¢ B (see Lemma 21). Upon counting the points of B on
lines through Y we see that Y is on no 3-secant at all. This yields the
contradiction that BU {Y} is a (17, 3)-arc. m

Lemma 31. Special lines never intersect in B.

Proof. Let g1 = ABC, g» = ADE be special lines,

N = N(91,92) = {A,B,C,D,E}. Then Z+ Y ycp N is a word of weight
21, hence Z = X; + X2 + X3, where A = {X}, X2, X3} is a triangle. Now,
Z consists of

e four 3-secants PP',P € {B,C},P' € {D,E},
e four tangents through the points in A; \ N,
o five 2-secants through the points of A/, and

e eight 3-secants disjoint from N.
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A counting argument shows AN B # 0. Assume P € AN A,. By
Lemmas 27 and 30 our point is on five different 3-secants PN, N € N,
which are not in Z, contradiction. Thus A N B C By. The presence of
tangents shows A ¢ By.

Assume [ANB| =1, let A = {Q,X,Y}, where Q € By. Counting B
on lines through X or Y and keeping in mind that {XQ,YQ} C L2U L3
(see Lemma 21) we see that X and Y are on at most three 3-secants of
Z. This forces @ € By to be on exactly six 3-secants and one 2-secant of
Z. We can choose notation such that X is on three 3-secants and on at
least two 2-secants of Z. The argument above when applied to X yields a
contradiction.

We have A = {Q,,Q2, X}, where {Q1,Q2} C Bo, X ¢ B. As Q; € By,
the point X is in the intersection of the tangents through the points in

A \N Put

0O(91,92) = Upea,\WwP UUgeBo\{01,0:) @ U {X}.

By definition of Z we get that the sum of the P € O(g, g2) is the 0-word.
Lemma 14 shows that O(gi1,g2) is a hyperoval. Thus every special line
intersects A nontrivially. Assume A is on a third special line g3. Then
O(g1,93) # O(g1, g2), but O(g1, g3) has at least two points of A; and three
points of By in common with O(gy, g2). Let Y be the point in O(g;, g3) \ B.
AsY is the intersection of the tangents through the points in A; \ NV (g1, g3),
we get X =Y € O(g1,93) N O(g1, g2). We have found two different hyper-
ovals having more than half of their points in common. This is impossible
(see [4],p.165).

As z < 2 there must be a third special line g3. As g3NAN # 0 and because of
Lemma 30 we have without restriction gaNg; € A;1,93Ng2 ¢ A;. The same
method as above yields the contradiction 6 < |O(g1,93) N O(g1,92)| < 10.
a

Lemmas 29 and 31 show the following: s = 3, every point of A; is
in exactly one special line. Let g1 = ABC,g9o = DEF, g3 = GHI be the
special lines, where A; = {4,B,...,I}, set W=} p. 4 P. Then W has
weight 21. It consists of :

o the special lines g1, g2, g3,
[} Ll) and

¢ the nine secants of type (1,1).

We have W = X, + X3 + X3, where A = {X;, X2, X3} is a trian-
gle. Clearly AN A, = 0 as P € A, is on only three points of W. If
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Q € AN By, then Q would have to be on seven 2-secants of W, contradic-
tion to Lemma 21.
Thus A N B = §. Clearly each X € A is on exactly one special line. Con-
sider the numbers a;(X;). We have a1(X31) + a1(X2) + a1(Xs) = 9. The
word G = U + A+ B + C has weight 25. As every P € A1\ {4,B,C} ison
exactly five lines of G, the word G is sum of a 5-arc (see Proposition 2). If
a1(X1) 2 5, then X; would be on more than five lines of G, contradiction.
Assume a1(X;) = 0. Then exactly one point Q € B satisfies X1Q ¢ g
Thus X;Q is a tangent, contradiction as @ € Bp. Assume a; (Xh) = 3.
Then exactly four points Q € B satisfy X1Q ¢ G. As all these points are in
By, they must be distributed on two 2-secants. Thus g; is the only 3-secant
through X;. It follows that B’ = B\{A}U{X1} is a (16,3)-arc. However, we
have a3(B') = a3 — 6 + az(X1) = a3 — 1 = 34. This case has been excluded
already.
Assume a1(X;1) = 1. Then X; € P1(G) by the same reasoning as above.
However, A, B, C, X; are now four collinear points in Py (@). This contra-
dicts Corollary 2.

We have a; (X;) € {2,4},4 = 1,2,3. It follows that the equation a1 (X1)+
a1(X2) + a1(X3) = 9 cannot be satisfied. This is our final contradiction.
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