A3-Codes Under Collusion Attacks

Reihaneh Safavi-Naini and Yejing Wang
School of Information Technology and Computer Science
University of Wollongong
Wollongong 2522, Australia
email: [rei,yejing]@uow.edu.au

January 23, 2002

Abstract

An A3-code is an extension of an A-code in which none of the three
participants, transmitter, receiver and arbiter, is trusted. In this paper
we extend the previous model of A3-codes by allowing the transmitter
and the receiver to not only individually attack the system, but also
collude with the arbiter against the other. We derive information-
theoretic lower bounds on success probability of various attacks, and
combinatorial lower bounds on the size of key spaces. We also study
combinatorial structure of optimal A3-code against collusion attacks
and give a construction of an optimal code.

Keywords: A3-codes, optimal A3-codes, a-resolvable designs, partially bal-
anced t-designs

1 Introduction

Authentication codes (A-codes) [8] provide protection for two trustworthy
participants against an active spoofer tampering with the messages sent by a
transmitler to a receiver over a public channel. In this mnodel transmitter and
receiver arc assumed trusted. An extension of this model is an authentication
codes with arbitration [9], or A%-codes for short, in which transmitter and
receiver are not trusted: transmitter may deny a message that he/she has
sent, and recciver may attribute a fraudulent message to the transmitter.
In an A2%-code a trusted third party, called the erbiter, resolves the dispute
between transmitter and receiver. A%-codes have been studied by various
authors [6, 4, 12, 5.
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Brickell and Stinson (1] introduced authentication code with dishonest
arbiter(s), or A3-code, where the arbiter may tamper with the communi-
cation but they will remain trusted in their arbitration. In an A3-code
cach participant has some secret key information which is used to protect
him/her against attacks in the system. These codes have also been studied
in (3, 10, 4], where some constructions were given.

Collusion attacks in A-codes have been studied in various extensions
of A-codes, such as multisender schemes [2] where unauthorised groups of
senders can collude to construct a fraudulent message that is attributed to
an authorised group, and multireceiver schemes where unauthorised groups
of reccivers collude to construct a fraudulent message that is attributed to
the transmitter. The model studied in [4] is an extension of multireceiver
schemes where the transmitter can collude with unauthorised groups of re-
ceivers. In the first two cases no arbitration is required as at least one side in
the communication, that is receiver in a multisender scheme and transmitter
in a multireceiver scheme, is assumed honest. However in the last case nei-
ther transmitter(s) nor the receiver(s) are assumed honest and dispute may
arise between the two sides. To resolve the dispute either an honest arbiter
is employed or a majority vote of participants will be used. The suggestion
for resolving the dispute is to either include a trusted arbiter or, take the
majority vote of the receivers.

In this paper we extend the attack model of A3-codes to include collusion
between arbiter and transmitter or receiver, against the other participants.
For example, the arbiter may collude with the transmitter to construct a
message that the transmitter can later deny sending it, or she may collude
with the receiver to impersonate the transmitter or substitute a message

- that he has sent. We assume that the arbiter always honestly follows the
arbitration rules. These rules are public and collusion with a participant
effectively means that the arbiter will make her key information available to
that participant. An extended abstract version of this paper, where proofs
were omitted because of page limit, was published in {11]. In this paper
we use a slightly different model (details in section 2), which in essence is
the model proposed in [4] enhanced with the collusion attack, and prove a
number of results on performance and structure of the codes.

The rest of this paper is organised as follows. In section 2 we introduce
the model. In section 3 we derive information-theoretic bounds on success
probabilities of various attacks. Combinatorial bounds on the size of key
spaces for each participant are given in section 4. Section 5 and section
6 define optimal A%-codes and Cartesian A3-codes, respectively. We give
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propertics of Cartesian optimal A3-codes. Section 7 gives combinatorial
structure of Cartesian optimal A*-codes. In section 8 we conclude the paper.

2 Model and Bounds

There are three participants: a transmitter T, a receiver R and an arbiter A,
none of them is assumed trusted. T wants to send a source state s, s € S,
to R over a public channel. Each participant has some secret key. T uses
his key information to construct a message m € M for a source state s to be
sent over the channel. R uses her key information to verify authenticity of
a received message and finally A who does not know the key information of
T' and R will use her key information to resolve a dispute between the two.
Transmitter’s key e; is determined by an encoding function

f : Er x S — M.
The receiver’s key e, is determined by a verification function
g: Ep x M — SU{reject}

and so each e, determines a subset of M that the receiver will accept as
valid message. The arbiter’s key e, is determined by an arbitration function

h:E4 x M — SU{reject}

and so each e, determines a subset of M that the arbiter will accept as valid.
There is also an outsider O, who has no key information. A collud-
ing group of attackers in general use their knowledge of the system, their
key information and all the previous communicated messages to construct
fraudulent messages.
The system has the following stages.

Key Distribution: A triplet (e, er,e,) of keys for the three participants
T, R and A is generated and each participant securely receives his/her key.
This stage may be performed by a trusted party, or through a secure dis-
tributed protocol among participants T, R, A.

Authentication: T uses his key e; to construct an authentic message m
for a source state s.
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Verification: A message is acceptable by R if R accepts the message as
authentic.

We note that in [11] a message was considered acceptable if it is accept-
able by R and A both while in this paper, similar to [4], it is only required
to be acceptable by R.

Arbitration: A dispute occurs if T sends a message and later denics it,
or receiver tries to impersonate T or substitute a message that she has
received. The arbiter accepts the message if it is valid under e,. Hence
when T attempts to deny a message and the receiver asks for arbitration,
T looses if the message is acceptable by the arbiter. Similarly if R tries to
attribute a message to T and T asks for arbitration, R looses if the message
is not acceptable by the arbiter.
We assume the following types of attacks.

1. Attack O;: Observing a sequence of ¢ messages my,ma,---,m;,
constructed under the same key, opponent places a message m into the
channel. He is successful if the receiver accepts m as authentic.

2. Attack R;: Receiving a sequence of ¢ messages m,,mg,---,m;,
constructed under the same key, and using her key e, R claims that she
has received a message m # m,,ms,---,m;. She is successful if m can be
generated by the transmitter under his key e;.

3. Attack A;: Observing a sequence of i messages m,my,---,m;,
constructed under the same key, and using a key (an arbitrating rule) e,,
the arbiter puts another message m into the channel. She is successful if the
message is valid for R.

4. Attack T: Using his key (an encoding rule) e;, transmitter sends a
fraudulent message m’ which could not be generated by e;. He succeeds if
the receiver accepts this message.

5. Collusion Attack RA;: Having received a sequence of i messages
mi,ma,- -+, mi, R and A collude to cheat against T. R, in collusion with A
constructs a message and claims it has been sent by the transmitter. They
succeed if m can be generated by the transmitter under his key e,.

6. Collusion Attack TA: A and T, using the keys e; and e,, respec-
tively, collude to construct a message m' which is not incident with e, but
accepted by R.

This model of A3-codes is similar to the model in [4] with the extension
of considering collusion attacks. The difference with the model in [11] is
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that in [11] the success in Attacks O; and T was defined as R and A both
accepting the message while in this paper, similar to (4], only R must need
to accept the message.

Let Er, Eg and E4 be the sct of transmitter’s, receiver’s and arbiter’s
keys, respectively. We assume a probability distribution, pler, er,€q), ON
Er x Ep x E4. A three tuple (e, ¢r, €q) has non-zero probability only if the
following properties hold.

1. a message generated by e, is valid under ¢, and ¢, both

2. a message valid for e, and ¢, determines e, that is used for its gener-
ation.

The distributions: p(er, eq), pled), pler) and pleq) on Eg x Ea, Er, Ep and
E 4, respectively, can be calculated from p(ey, er,e,). We assume there is
a probability distribution p(s) on the set of source states S. Support of
pley, er,eq) is denoted by Ero Epo E,4 and defined by

E’I' o ER o EA = {(eheraca) : P(Cts €r, ea) > 0}:
Similarly, support of p(er, €,) is defined by
Ero Ex = {(er, ea) : pler,ea) > 0}-

Let M be the set of all possible messages, M* denote the set of sequences,
mi, of i distinct messages. We will also use the following notations.

Em(mi) = {(er,ea) € ERoE4: mt is valid under e;, e, }
Tzﬁ(et) = {(er,€a) € ER° E, :ples,er,eq) > 0}

Probability of success in various attacks can be defined as follows.

Pp, = max max p(R accepts m | R accepts m')
mie Mi meM
Pp, = max  max p(T generates m |T generates m', e;)
mieMie.€Ep meM
Py, = max max p(R accepts m | R accepts mi,eq)
mieMie,EE4 MEA
Pr = max max R accepts m' | e
et€ET m' ¢ (er) P b l )
Ppz = max max max p(T generates | T generates m! ! ery Ca)

o miEA! (er,ea)EEROEA MmEM

P— = max R accepts m' ey, e
TA e:éE—re,.eb,uneM(e..)\M(c;)p( P et ea)
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3 Information-theoretic bounds

We will use the following notations throughout the paper.

Ex(m') = {e; € Ex :m' is available for ex}
Ex(ey) = {e:z € Ex :pleg,ey) > 0}
M(ey) = {m € M :m is available for ey}.

We assume that if a sequence of ¢ (up to £ + 1) messages is valid under the
receiver’s key, then it could be generated by one transmitter’s key.

Theorem 3.1 to 3.6 give information-theoretic bounds on success proba-
bility in the above attacks. Proofs of these theorems use an approach similar
to [4] and are omitted here.

Theorem 3.1 Pp, > 2H(ErIM™*)-H(ERIM') | for qny i > 0.
Equality holds if and only if,

pler | R accepts m')
pler | R accepts m*, m)

is independent of m*,m and e, € Eg(m’,m) that satisfy Ep(m!, m) # 0.

Theorem 3.2 Pp, > 2H(ErIM™'Eg)-H(ET| M ER) for gny i > 0.
Equality holds if and only if,

pley| T generates mi,e,)
plet | T generates mi,m,e,)

is independent of m',m,e, € Eg(m',m) and e; € Er(m’, m), where Eg(m’,m) #
0, Er(m*,m) # 0 and p(e;, e,) > 0.

Theorem 3.3 P,, > 2H(Er|M™* . Eq)=H(Er|M'\E) for any i > 0.
Equality holds if and only if,

pler | R accepts m',e,)
pler | R accepts mi, m,e,)

is indepe'ndent ofmi,m,e, € Ep(mt,m) and e, € E (m',m), where Ep(mi,m) #
0, Ea(m*,m) # 0 and p(e,,e;) > 0.
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Theorem 3.4 Pp > 2H(Er|M"Er)=H(Er|Fr),
Equality holds if and only if,

plerler)
pler | R accepts m!,e;)

is independent of e, e, if pleg,e;) > 0 and m' ¢ M(e,).
Theorem 3.5 Ppz 2 QH(Er [ M+ Eg,EA)=H(Er | M En,E) for any i 2 0.
Equality holds if and only if

plec| T generates m', e, e,)

ple, | T generates m*,m,e,,e,)

is independent of m',m,e; € Er(mi,m) and (e, es) € Epz(m',m), where
Er(m*,m) # 0, Exz(m*,m) # 0 and p(es, er,€q) > 0.

Theorem 3.6 Pr; > oH(ER|M' \ET.EA)-H(ER| ET,EA)

Equality holds if and only if

pler | et €a)
pler | R accepts m’, e, eq)

is independent of e;,e,,e, with p(ey,er,€5) > 0 and m' € M(e,) \ M(e,).

Using the above bounds we have a bound on size of the message space.

Corollary 3.1 |M| > P“P" 2H(S),
Equality holds if and only 1f Poo and Pz meet their lower bounds

Proof: From Theorem 3.1 and 3.5 we know that
PoyPgz, > 9H(ER,EA|M)~H(ER,Ea)+H(ET|M,ER,EA)-H(ET|ER,EA)
oH(ER,Ea,M)—H(M)~H(ER.EA)+H(ET,ER,Ea,M)—H(ER,Ea,M)~
H(ET,ER,Ea)+H(En.Ea)

o—H(M)+H(M|ET,ER,E4)

o—H(M)+H(M|ET)

9—H(M)+H(S)

The corollary is followed.
0O

From Corollary 3.1 we know that when the probability distribution on §
is uniform we have, |M| > Pg, 11"l |.S' | Corollary 3.1 also tells us the size

of message space is minimised when Po, and Ppz  meet their bounds.
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4 Combinatorial bounds on the size of key spaces

In this subsection we will derive the lower bounds on each participant’s key
space.

~ Theorem 4.1 |Er| > ([T{z Po,) ™" (IT{zo Pr) ™" (Tlizo Prz,) ™"
Equality holds if and only if

1. H(E’rl Me+l,E'R,EA) =0,
2. H(Er|M'' Ep) = H(Er| Eg, Ea),
3. H(ER|M*™') = H(Eg| Er), and

4. the probability distribution on Er is uniform.

Proof: Using theorems 3.1, 3.2 and 3.5 we have

[4 4 [4
(II Po)(I] Pr: ]I Prz)
i=0 =0 =0
oH(Eg | M+ )~H(Eg)+H(Er |M‘*' . Ep)-H(Fr |ER)+H(ET | M Eg,EA)-H(ET | Ep,Ea)

>
9H(ERr| MUVY)L H(Er | MUV ER)+ H(ET | M+ ER,EA)~H(Er | ET)-H(ET)-H(ET{ ER,EA)
So
|Br| > 240

QH(ER | M)+ H(E | M+ ER)+ H(Er | M) Ep,EA)-H(ER | ET)-H(ET | ER,E4)

[ [4 [4
(T1 Pos) M1 Pr)~"(I] Prz) "

i=0 =0 =0

v v

Noting that H(Egr| M*')~H(ER| Er) > 0, H(Er | M'*', ER)—H(Er | Eg, E4) >
0, then

14 4 [4
|Br| > (T Po.)~"(I] Pro) " (I] Pra,)~"-
=0 =0 1=0

Equality holds if and only if (i) H(Er | M+, Ep, E4) =0, (ii) H(Eg| M) =
H(E:RIET)a (l“) H(ETlMe+I1ER) = H(ETIERaEA)a and (IV) |ET| =
2H(ET)  Clearly (iv) is equivalent to the probability distribution on Ep
is uniform. The theorem is proved.

a
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Theorem 4.2 |Eg| > ([Tf= Po,)™" (Tl{=o Pa) ™" (Prp) ™"
Equality holds if and only if,

1. H(Eg| M®**") = H(Er| Ea),
2. HEg| M E ) = H(Eg| Er,En),
3 H(ERIMIO E’I’; E{\) = 0: ﬂ'n-d

4. probability distribution on Ep is uniform.

Proof: Using thcorems 3.1, 3.4 and 3.6 we have

¢ ¢
(IT Po XTI Pad ()
=0 =0
S oH(ER | M) = H(Er)+H(Ex| MU EA)=H(Eg | Ex)+H(En | M' By Ex)~H(Er| Br.Es)

So

|Eg| > 29(FR)
S oH(ERIMU )+ H(Eg | M4 EA)+H(Er | M ET.EA)=H(Eg | EA)=H(ER | Er.Ea)

[4 4
(I Po)™MIT Pa) " (Pr) ™"
i=0 =0
Since H(Eg | M!*\)—H(Eg| Ea) 2 0, H(Er|M*',Es)~H(Er | Er,E4) 2
0, then
[4 [4
\Er| > ([T Poi) ™" (IT Pad) ™" (Pr) "
i=0 i=0
Equality holds if and only if (i) H(Er|M%') — H(Eg|E4) = 0, (ii)
H(Ep| M, E4) — H(Eg|Er,Ea) =0, (iii) H(Er|M', Er, E4) = 0, and
(iv) |Eg| = 2H#(ER). The theorem is proved.
a

To obtain the value of |E4| we first prove the following lemma.

Lemma 4.1 Suppose all siz attacks achieve their lower bounds, and \Er|, | ER|
also achicve their lower bounds. Then we have

¢ [4

2H(ET,ER|EA) =(H }-)Ai)—l(H PR_Ai)_lP% (Iﬂd (]-)
i=0 i=0

QH(Ea | Er) _ oll(ER | M Er)+H(EA| ErBR)(Pp)=\(Prr) (2)
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Proof: Using theorcms 4.1 and 4.2 we have

14 [4
(H PAi)(H L lm,»)P'ﬂ
=0 i=0
= ofi(Er| ML EN)—H{(Eg | EA)+H(ET | MY ER,EA)—H(ET | Ep,Ea)+
H(Ep|M' E7,Ea)-1I(En | Ey,F4)
= oH(ER|Er.Ex)-H(Ep|Ea)-H(Er|ErEa)-H(ER|ET,EA)
9-H(ET.Er| EA)

Equality (1) is proved.
Using theorems 3.4, 3.6 and 4.2 we have

(PT)(I:)T_A)—I 2 ‘2H(ER | AI',ET)—H(ER l ET)—fI(En | AJ’,ET,EA)-{-H(ER |ET,Eq)

9H(En| M \E7)-H(EaA|ET)+H(EA| ET\ER)

So
9H(EA|ET) — oH(ER| M .ET)+H(E4| ETaER)(PT)' I(PT_A)'

Equation (2) is proved.

a

Theorem 4.3 Suppose all siz attacks achieve their lower bounds, and |Er|,|ER|
also achieve their lower bounds. Then we have

|Eal > (PT)_l(ﬁ Poi)‘l(ﬁ PR;)_I(ﬁ Pyp,)Prz.
=0 i=0 i=0
Equality holds if and only if
1. H(Er|M',Er) =0,
2. HEs|Er,Er) =0, and

3. the probability distribution on E, is uniform.

Proof: Using above results we have
2H(EA) — 2H(En | ET,EA) . 2”(E4 {ET) . 2H(E'r) . 2—”(57‘,5;: |E4)

(Prp) 7! .oH(Er | M' ET)+H(E4| ET:ER)(PT)‘I(Pﬁ) .
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¢ ‘ ¢ ¢ ¢
(T Po)~"(I] Pe)~"(II Pr,) ™" - (I Pa)I1 Prz)Prx

=0 i=0 i=0 i=0 i=0
[4 13 4
2H(En | M)+ H(EA | ET,En)(I)T)—l(H P(),')-I(H PR )_l(H P,]‘)P?—“
i=0 i=0 i=0 ’
4 14 4
> (Pr) ([T Po) " (I Pr) " (J] Pa) Pz
=0 1=0 i=0

Equality holds if and only if H(Eg|M',Er) = H(Ea|Er,ER) = 0. The
theorem is proved.
a

5 [{-optimal codes

An A3-code is called £-optimal if

(?) Po;, Pr;y Pa;, Pr, PH.JP’T‘W achieve their lower bounds, for 0 < < ¢;
and

(#) |Er|,|ERr| and |Ea| achieve their lower bounds.

Theorem 4.3 shows that H(E4 | Er, Er) = 0 in an f-optimal A3-code.
It means that the arbiter’s key e, is determined uniquely by pair of (e, e;).
We have seen from above subsection that in an ¢-optimal A3-code, the prob-
ability distributions on Er, ER, E4 are uniform. Further we assumne that

(#4i) the joint probability distributions on Er o Er, Ero E4, Ero Egpo Ex
are uniform.

In the rest part of this paper, we always use this assumption without claim-
ing. Under this assumption together with theorem 3.1 to theorem 3.6, the
following theorem can be easily proved.

Theorem 5.1 In an ¢-optimal A3-code the probabilities of attacks can be
rewritten as follows,

|Eﬂ(mi$m)l
Po. = ————=,
> |Br(m)]
po — |Br(m™*)nEre)|
R' =

' |Br(m?) N Erer)] ’
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Py = |E[{(1ni+jl) N Elf(ca)l
; |Er(mni) N Erfea)]
Pr pler | er),
P | Br(m?, m) N Er(er, q)|
RA; lE’T('m,i) n E’[‘(cru ca)l '
P = plerleed).

Let X and Y be two sets and p(z,y) denote a joint probability distribu-
tion on X x Y. For y € Y, denote by X, the set {z € X' : p(x,y) > 0}.

Lemma 5.1 Assume p(zr,y) and the marginal distributions on X and Y
are uniform. If |Xy| < |X| then there is a partition on the set X given by:
X = Uy X, where all subsets Xy, are of equal size.

Proof: Consider a graph with vertex set given by X U Y and an edge
between @ and y if p(z,y) # 0. It is easy to see that we have a bipartite graph
where the number of edges incident with a node z in X' is | Y|, the number of
edges incident with a node y in Y is |X,| and we have |X] x |Vz| = |V] x |Xy|.

For 4 € Y, let Xy = Xy, and

Yx, ={y' : p(z,y’) > 0 for some z € A1}.

Then Yy, # Y, as otherwise |X1| x |Vz| = |V| x |&,| and so | X| = |X)| which
contradicts the assumption.

Choose y? € Y\ YV, and let X, = Xy2. Then Xy N Az = 0.

Suppose we have chosen &) = Xy(l)a"',Xd-—l = Xya-1 as above. If
there exists y' € Y such that p(z,y’) > 0 and

v & {y : p(z,y) >0 forsomez € AHU---UAy_},
then we choose
¥ e Y\ (Vx UVx U Ua,,),
and let Xy = Xya. Then Xy N Xy N---NAXy = 0. Repeat above steps until,
{/ : p(z,y') >0 forsome z € XHU---UAg_ 1} =D.
Now we have a partition of X = U;X;, in which all &; have the same size

plz|y) "
a

174



Theorem 5.2 In an €-optimal A®-code, the following conditions arc salis-
fied:
1. If E'yj(m") N Er(er,eq) # 0, then |Er(m') N Er(er,e,)| is independent

of m',e, and eq.

2. lf.E'p(m") N Ep(er) # 0, then |Ep(m') N Ep(er)| is independent of

m, ep.

3. If Ep(m')N Eg(es) # 0, then |Er(m?) N Eg(eq)| is independent of m
and e,.

4. If Ep(m') # 0, then |Er(m?)| is independent of m'.
5. If Ep(mi) # 0, then |Eg(m?)| is independent of m'.

Proof: The first three statements and the fifth are true because of theorem
5.1. Applying lemma 5.1 to Epo E’? oFE4,Epo Ey, we thain a partition of
Er = Ue, e, Er(er, €0). So |Er(m*)] = Ler ea) |Er(m*) N Er(e,, eq)| does

not depend on m'.
a

6 Cartesian A%-codes

An A3-code is Cartesian if for any message m, there is a unique source state
s which can be encoded to m. This means that in a Cartesian code M can
be partitioned into M(s;), M(sg),- - - such that all messages m € M (s5) are
obtained from encoding s;. Formally, for s € S, define

M(s) = {m : s can be encoded to m by some ¢; € Et}.

Then by theorem 5.2, part 4, we know that |[M(s)| = ‘—é%—)l is a constant

and
| M|
—— = |M(s)|, Vs€ S
5]

Define,

M(s,e;) = {m € M :m is accepted as s by e, }.

Theorem 6.1 |M(s,e,)| is independent of s, e,.
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Proof: For given ¢, and e, € Eg(e,), it is clear that

Z p(R accepts m|e,) = 1.
meM(s,er)

We know in optimal codes, P4, = p(R accepts m | e,) which is independent
of m,eq. So |M(s,e.)| = PXO‘ is independent of s and e,.
O

The following theorem shows that success probabilities in higher order
attacks are the same as those of impersonation attacks, and having access
to extra message does not improve success chance of the attackers.

Theorem 6.2 In an £-optimal Cartesian A%-code,

1. Po,=Pg, == Po,;
2. Pp, = Pp, == Pg,;
8. Pag =Py, =--=Pa,
I Prz, = Prz, = = P,

Proof: From theorems 5.1 and 6.1 we know that,

_ |Er(mi)] Er(m)| _ IM(s,e,)]
o= TEpm) 2 Foo = B T MG

We need to show that for all z,
|Er(m**)| _ |M(s,er)|
| Er(mt)| |M(s)|
It is true when i = 0. Suppose for some i > 0,

|Ba(m)] _ |M(s,e,)|
Er(m=1)] ~ TM()

Po

Consider the sequence of messages mt = (my,ma,---,m;), from the sets
M(s1), M(s2), - -+, M(s;), respectively, and let s € {sy,52,+-+,s;}. Consider
the sum 3 cpr(s) |Er(mi,m)|. An e, € Eg(m') in this sum is counted
|M(s,e.)| times which by theorem 6.1 is independent of s and e, and so,

Y. |Er(m',m)| = |Er(m)| x |M(s,er)|.
meM(s)
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Using theorem 5.2, part 5, we know that |Ep(m?,m)|,i < ¢, is constant and

we have ‘ .
|Ep(mt,m)| x |[M(s)| = |Er(m)| x |M(s,e)|,

and so the first statement is proved by induction.
The rest can be proved in a similar way.

7 Combinatorial designs and A3-codes

In the following we describe combinatorial structure of Er and Eg. First
we do a few calculations in the following lemmas.

Lemma 7.1 |Eg(e)| = R,r:"P,I—T;:- holds in an €-optimal Cartesian A3-
code.

Proof:

IEﬂ(c )l IETOEROEAI _ IETOER(ea)l
a

|Er(er,ea)l X [Eal ~ |Br(er, €l

4 ¢ 4
(IT Pad)~"(I1 Pra) ' PrxtI] Pra,) = Py~ ' Py
Ll

i=0 i=0

Lemma 7.2 |Egr(m®*")| = |Er(e:)| holds in an €-optimal A3-code.

Proof: From theorem 4.1 we know that H(Egr| M!*') = H(Er|Er) =
log|ER(e)|- Instead of values of Po,, Pr; and Pgz, in theorem 5.1 to cal-
culate Er as in theorem 4.1 we get

4 ¢ [4
(IT Po) " (I1 Pr:)~*(II Prz) ™"

|Br| =
i=0 i=0 i=0
_ |Erl |Er(e-)| . |Br(er, €a)]
|[Er(mt1)|  |Ep(m&1) N Er(e,)| |Er(mi+') N Er(er, el
IEklf:eL_l)l . IEl}'f{e(j’zal)l - |Er(er,eqa)f (by theorem 4.1)
|E7| - |Er(ed]
|Ep(mé+t)|
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The lemma is followed.
g

Lemma 7.3 If Er(m?) # 0, then |Ep(m?)| = (Po‘,)‘(+i"l(PR,,)'eJri"(Pl—z-zn)"“
in an €-optimal Cartesian A3-code, for 1 <i <€+ 1.

Proof: Based on above results, | Ex(m?)| can be calculated as follows.

|Er(m?)| - | Er(m') N Br(e,)|
|Er(e)
|Er(m*)| - {ET(m') N E7(e;)]
| Er(mt+1)|
(Poo) ™" (Pry) ™ "1 - | Er(er, ea)|
(by theorems 4.1, 5.1 and 6.2)
= (Poo) ™! (Pry) ™+~ (P, )" | Ep(m ).

|Er(m)] =

(by lemma 7.2)

When ¢ = £+ 1, it becomes

|Br(m®h)] = (Po,)°(Pro)’ (Prz,) ™~ |Br(m™!)| = (Pgz,) ™ |Er(m™")|

0

50 (Pgz,)~""! = 1. Therefore we obtain

|Br(m®)| = (Po,) " (Pre) ™", fori<e+1.

7.1 Combinatorial designs

To describe the structures of Ep and Eg we first give definitions of combi-
natorial designs used later.

Definition 7.1 A block design is a pair (V,B), where V is a set of v points
and B is a family of k-subsets (called blocks) of V. A block design is called
t-design if any t-subset of V' occurs in exactly A blocks.

Definition 7.2 ({7]) A partially balanced ¢-design is a block design (V,B)
in which any t-subset of V either occurs in exactly A blocks or does not occur
in any block.
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We denote this design by ¢ — (v, k; {A,0})-design.

Definition 7.3 ([6]) A block design (V,B) is called cc-resolvable if the block
family B can be partitioned into classes Cy,Ca,--- ,Cp with the property that
in each class, every point occurs in ezactly a blocks.

We will be interested in a-resolvable design with the following properties:
There is a positive integer £ < n such that

(P1) Any collection of i blocks from i different classes cither intersect in g
points or do not intersect, 1 <i < £+ 1;

(P2) For any £+1 blocks Bj,, Bj,, -+, Bjg,, from different classes Cj,,Cj,, -+,
and any u(# 1,72, *,Je+1), there exists a unique block By, € Cy such
that

le n---nle_H =BJ'| n-~-nBj,+‘ N By

if B;, N---N Bj,,, # 0. Furthermore, for any B € C,\{Bu.},

|Bj, N---NDBj,,,NB|=1

72 Er

Theorem 7.1 In an ¢-optimal Cartesian Ad-code, (M, ET) is a strong par-
tially balanced, resolvable (€ + 1) — (M|, |S|; {,0})-design. The block set is
partitioned into n' classes, C,Ca,--*,Cy, and has following parameters:

A=1,

\= (Poo)'[““'(PRo)_”i", 1<i<e,

N=(Pgz )7t 1i<L

Proof: Since |Ep(m?)| is either 0 or a non-zero constant for all m! and
all i,1 < i < £+ 1, also |Er(m)]| is a non-zero constant for all m € M.
So (M, Er) is a strong (¢ + 1) — (IM|,|S]; {A,0})-design with parameters
Xi = |Ep(m?)], for 1 < i < £+ 1. Lemma 7.3 gives the value of | Er(m?))].
We have seen that Er has a partition Er = U, ¢,)Er(er; €a)- Clearly,
for each pair (er, ea), (M, Er(er,¢q)) is still strong (¢+1) - (|M],|S[; {A, 0})-
design with parameters A, = |Br(m') 0 Er(er, ¢q)| = (Prz,) "0
O

179

C

Jesr



7.3 Eg

The following lemma 7.4 has been proved (lemma 5.8, [12]) in an A2-code.
Based on lemmas 7.2 and 7.3, it is casy to sce that lemma 7.4 is still true in
optimal A3-code, and the proof is the same. We omit the proof here.
Lemma 7.4 For a sequence of €+1 messages m'*! from M;,, My, My,
with Ep(m®') # 0, and w # 45, j = 1,2, , £+ 1 with £+ 1 < |§]|, there
ezists a unique message m, € M, such that Eg(mft!) = Ep(mf*!, m,).

We have known that |Egp(m)| is a constant for all 7n € M. Therefore
(Er, {Er(m) : m € M}) forms a block design. For this block design we
have the following thcorem.

Theorem 7.2 In an ¢-optimal Cartesian A3-code, design (Eg,{Egr(m) :
m € M}) is a-resolvable design with properties (P1) and (P2). It has pa-
rameters:

al® = (Pr\o)'-l;

i = (Pog) =1 (Pag) ™ (Pg) ™, 1<+ 1,

Proof: Using theorem 6.1, we know that (Eg,{Er(m) : m € M}) is an a-
resolvable design with |S| classes and o{®) = [M(s,e,)| = P;ol. From theo-
rem 5.1 " = | Bg(m?)| = [1{Z Po, |Erl = (Poo) ™4~ (Pa,) =} (Brg) 1.
So the design (Eg, { Er(m) : n € M}) has property (P1). Lemma 7.4 shows
that (P2) is satisfied. The theorem is proved.

0

8 Conclusion

In this paper we introduced collusion attacks in A3-codes, obtained informa-
tion theoretic and combinatorial bounds on security and efficiency param-
eters of the codes, defined optimal codes and finally derived combinatorial
structure of optimal Cartesian codes. Our study of the optimal A3-codes is
limited to Cartesian codes. Combinatorial structure of optimal A3-codes in
the general case is an open problem.
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