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Abstract

Generalized Steiner systems GSq(t, k, v, g) were first introduced by
Etzion and used to construct optimal coustant weight codes over an
alphabet of size g -+ 1 with miniimum Hamming distance d, in which
each codeword has length v and weight k. It was proved that the
necessary conditions for the existence of a GS4(2, 4, v, ¢) are also suf-
ficient for ¢ = 2,4 and 6. In this paper, a general result on the
existence of a GS4(2,4,v,9) is presented. By using this result, we
prove that the necessary conditions v = 1 (mod 3) and v > 7 are also
sufficient. for the existence of a (354(2,4,v,4).
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1 Introduction

The H-design was first introduced by Hanani [I,\q as a generalization of
Steiner systems (the notion of H-design is due to Mills [81) An H(v,g,k,1)
design is a triple (X, G, B), where X is a set of points whose cardinality is
vg, and G = lGl,' .+, Gy} is a partition of X into v sets of cardinality g;
the members of G are called groups. A transverse of G is a subset of X' that
meets each group in at most one point. The set B contains k-elernent trans-
verse of G, called blocks, with the property that each t-elernent transverse
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of G is contained in precisely one block. When ¢ = 2, an H(v, ¢, k,2) is just
a group divisible design of group type g* and denoted by k-GDD(g").

As stated in Etzion [6] and Yin et al. [14), an optimal (g+1)-ary (v, &, d)
constant weight code (CWC) over Z 4, can be constructed frqm a given
H(v,g, k, t) (I, x I, {{i}x I, | i € I,}, B), where I, = {1,2,---,m} and
d is the minimum Hamming distance of the resulting code. For each block
{(i1, a1), (22, a2), -+, (%, ax)}€ B, we form a codeword of length v by
putting a; in position 4;, 1 < j < k, and zeros elsewhere. For convenience,
when two codewords obtained from blocks B, and B have distance d, we
simply say that By and B, have distance d.

In the code which is related to an H(v, g, k,t), we want that the rnini-
mum Hamming distance d is as large as possible. It is not difficult to see
that k—t+1<d < 2(k-t)+1. In [6), an H(v,g,k,t) which forms a
code with mininmm Hamming distance 2(k = ¢) + 1 was called a general-
ized Steiner system GS(t, k,v,g). An H(v, g, k,1) which forms a code with
minirmum Hamming distance d was denoted by GSa(t, k, v, 9).

Much work has been done for the existence of GS(t, k,v, ¢g) when ¢ = 2
and k = 3 (see [6), [2], [10], [9), 3], [4], [11]). For k = 4, it was proved
that the necessary conditions for the existence of a GS4(2,4,v,¢) are also
sufficient for ¢ = 2,3,6 (sce [12]). There are also some partial result on
(35(2,4, v, 2)(see [13]) and some product constructions stated in [6].

The following necessary conditions are stated in [12].

Lemma 1.1 If there exists ¢ GS4(2,4,v,9), then
(1) (*3%) > 9; and
(2) v=1,4 (mod 12), if g = 1,5 (mnod 6),
v =1 (mod 3), if g = 2,4 (1nod 6),
v=0,1 (mod 4), if g =3 (mod 6).
Since the existence of GS4(2,4, v, ¢) is completely solved for g = 2,3,6
(see [12]), then in this paper we suppose that g ¢ {2,3,6}. A general result
on the existence of GS4(2.4, %, ¢) 1s presented. Using this result, we prove

that the necessary conditions v = 1 (rnod 3) and v > 7 are also sufficient
for the existence of a GS4(2,4,v,4).

Let
Ty = {v: there exists a GS4(2,4,v,9)}.

By = {n: n satisfying the necessary conditions of a GS4(2,4,n,9)},

M. = {n:n € By,up < n< flg)(h(yg) +2)+1}, if g#10,
97 {n:n=1 (mod 3),7 < n <235}, if g = 10.

where, ug=min {n:n € B,},

184



_ {13, if g #3 (mod 6),
flo) = { 16, if g =3 (mod 6).

h(g)=max {not k(g)}»

40, if g=1,5 (mod 6),
E(g) =< 13, if g =0,2,4 (mod 6),
16, if g =3 (mod 6).

no=min {n:n > g,n € By}, if g =3 (1nod 6),
we need that ng = 0 (mod 4).

We state the main results of this paper below.

Theorem 1.2 Suppose that g ¢ {2,3,6}. If Mg C Ty, then By = Ty,

i.e., the necessary condilions for the existence of a GS4(2,4,v,9) are also
sufficient.

Theorem 1.3 The necessary conditions v = 1 (mod 3) and v >i7 are also
sufficient for the existence of a (G84(2,4,v,4).

For general background on designs, see [1], [5).

2 The existence of GS4(2,4,v,9)

In order to prove Theorem 1.2, we need some lemmas, which were stated
in [12]. We first give the following conception.

A holey group divisible design, K—HGDD, is a four-tuple (V,G,H, B),
where V is a set of points, G is a partition of V into subsets called groups,
H C G, Bis a set of blocks such that a group and a block contain at
most one comrnon point and every pair of points frorn distinct groups, not
both in A, occurs in a unique block in B, where |B| € K for any B€ B. A
k—HGDD(g""*)) denotes a K-HGDD with v groups of size g in G, u groups
in # and K = {k}. Similarly to the way a (v, k,d) CWC is constructed
from an an H(v,g,k,1), we can also construct a (v, k,d) CWC from an
k-HGDD(g***)). The distance of two blocks in a k-HGDD(g(*")), is the
Hamming distance of the two codewords obtained from the two blocks. A
holey generalized Steiner system, HGS4(2, k, (v, u),g),is a k—HGDD(g'"'*))
with the property that the minirnum Hamming distance of related CWC
is d. For convenience, we also say that the design has minimum Hamming
distance d. P

It is easy to see that if v = 0 or u = 1, then an HGSq4(2,k, (v, u), g) is
just a GSq(2, k,v,9).
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Lemma 2.1 Let m,t,u,n and a be integers such that 0 < a < u, n > 2a,
1<t < n, and (n,a) # (5,1). Suppose the following designs ezist: (1) a
4—GDD(¢g™) with the property that all its blocks can be partitioned into 1
sets Sp, S1,+ -+, Se—1, such that the minimum distance in S,., 0 < r <1-1, s
4. (2) an HGS4(2,4, (n+u, ’l:l),g). Then there exists an HGS4$2,4,TC, )y 9),
where f = (v — 1a + u and e = ran + f. Further, if the following design
erists a GS4(2,4, [,9), then there erists a GS4(2,4,¢,9).

t
Lemma 2.2 Let m,t,u,n be integers such thatu = 0, or 1,1 <t < n,
n & {2,6}. Suppose the following designs ezist: (1) a 4—GDD(g™) with the
property that all its blocks can be partitioned into t sets Sp, Sy, -, Si-1,
such that the minimum distancein S,, 0 < r <1-1, is4;(2) a GS4(2,4,n+
u,9). Then there exist both a GS4(2,4, mn+u,g) and an [1GS4(2,4, (mn+
u,n+u),g).

Lemma 2.3 Let m,n,u be inltegers such that u = 0, or |, n & {2,6}.
Suppose there exist both a GS4(2,4.7n,9) and a GS4(2,4,n+ n,g). Then
there exist both a GS4(2,4,mn+u,g) and an HGS4(2,4, (mn+u,n+u),g).

We first suppose that ¢ # 10, and hence N(g) > 3. So, there exists
an R’I‘D{tl,g), which is also a 4-RGDD(g?). Such an RGDD has g parallel

classes. It is clear that the rinimnrm distance of cach parallel class is 4. So,
we have the following result.

Lemma 2.4 Ifg & {2,3,6,10}, then there ezists a 4-GDD(g*) whose blocks
can be partitioned into g sets, such that the minimum distance of each is 4.

Lemma 2.5 Suppose p, a are inlegers, p € {2,6}, p> g and 0 < a < p.
If both p and p+ 3a are in Ty, then 13p + 3a € Ty.

Proof Takem = 4, n =p, v = 0 and { = g in Lemma 2. to obtain
an HGS4(2,4, (4p,p), 9), the input designs are from Lemnma 2.4 and the
assumption. The result is obtained by taking m = 4, n = 3p, v = p and
t =g in Lemnma 2.1.

To deal with the case of g = 3 ﬂmod 6), we need some further resnlts.
Suppose g = 3 (mod 6), and g # 3, let

g, if 9,
plg) ={ 9 ifgis.
It is clear that p(g) < g.

Lemma 2.6 Ifg=6s+3, and g # 3, then there ezists a 4-GDD(g®) with
the property that the blocks of the GDD can be partitioned into p(g) sets,
such that the minimum distance of each is 4.
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Proof There exists a GS4(2,4,5,3) from [12]. Suppose that (Vy, Gy, B)) is
a G54(2,4, 5,3). First we consider the case g # 9. In this case, we have
that N(254+1) > 3, and hence there exists an RTD(4, 2s+1), which is also a
4-RGDD((2s+1)%). For cach block B € By, let Ag denote the blocks of the
4-RGDD((2s+1)*) on point set (B x Z2,41), and group Gp = {{b} X Z2,41 :
b € B}. Let S} denote the i-th parallel class of the RGDD, 1 <1 < 2s + 1.
Let V = v, X Zz,+;, G = {G X Zz,..;.) :G € GI}- A= U AB- It is well
BegB,
known that (V,G, A) is a 4-GDD(g®). Let S;= |J S§,1<i<2s5+1. It
BeB,

2541
is evident that A = |J S;. Since the starting GDD is a GS4(2,4, 5, 3) and
i=1
the minimurn distance of each parallel class is 4, it is not difficult to check
the minimum distance of each S; is 4.

For g = 9, note that there exists a 4-GDD(34), which Las 9 blocks. Take
each block as a partial parallel class in the above process, the result is then

obtained. This completes the proof. 0
Lemma 2.7 Suppose that p = 0 (mod 4) is an integer, § = 0 or 1 and
0 <a<p+disaninteger. If both p+6 and p+4a+ 8 are in Ty, then
16p+da+d €T, i

Proof We can apply Lernma 23 withm =4, n=p,u=4§andt =g to
obtain an HGS4(2,4,(4p+ 8, p+4),9). Take m =5, n =3p, u = p+4
and t = p(g) in Lemma 2.1, we can obtain the result, the input designs are
from Lemina 2.6 and the assumption.

For convenience, let [z,y]f denote the sel of integers v, such that z <
v <y, and v = ¢ (mod b). [a:,y]:'! denote the set of integers v, such that
z<v<yandv=¢, f (modlb).

Lemma 2.8 Suppose that g & {2,3,6,10}. If My C Ty, then By = Ty.

Proof For g = 0 (mod 6), Lemma 2.5 guarantees that for any p > g,
[»,4p)§ C T, implies [13p, 16p); C Ty. In Lemma 2.5, take p = n, n+1, n+2
respectively, we obtain that [n,4(n +2)] C T, implies [13(n+2),16n) C Ty.
Note that f(g) = 13, it is not difficult to see that |J [13(p + 2),16p] =
r2h(9)
[f(g)(1(g) + 2),00). We will prove that for any v € By, v € Ty. If v € My,
then the result comes from assumption. Otherwise, there exists a p > h(g)
such that v € [13(p + 2), 16p]. From the definition of h(g), we have that
h(g) > g. So, if [p, 4(p+2)] C My, then from the above we have that v € Tj,.
If there exists a v/ € [p, 4(p+ 2)] such that v/ ¢ My, then we can repeat the
above process to obtain a new p’. It is evident that v/ < v. After certain
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steps, we have that [p',4(p’ + 2)] C M,. This makes [p,4(p + 2)] C My,
thus v € T,. So, the result is true for g = 0 (mod 6).

For ¢ = 1,5 (mod 6), notice that if p € By, then p = 1,4 (mod 12) and
p+3a=1,4 (mod 12) when a =0,1,3 (mod 4). From Lemma 2.5, we can

obtain that for any p > ¢ in By, [p,4p)ly C Ty implies [13p, 16p)}5 C Ty
Note that

U [13p.168)15 = [£(9)h(g), c0)r3',
p2h(g)
P=1,4 (mod 12)
the rest part is similar to the case of g = 0 (mod 6).

-For g = 2,4 (mod 6), if p € By, then p =1 (mod 3). From Lemma 2.5,

we have that for any p >'g in By, [p,4p}} C T, implies [13p, 16p]} C Ty.
Note that

U (1391685 = [f(9)h(g). o0)3,
p2h(9)
P=1 (mod 3)
the rest part is sirnilar to the above.

Finally, for ¢ = 3 (mod 6), we suppose that p = 0 (mod 4). From
Lemma 2.7, we can obtain that for any p> g and p+6 € By, [p+6,4(p+

8)]4 C T, implies [16p + 8, 20p + 585 C T,. So, we have that for any p> ¢
in By, [p,4(p+ 1)]3" C T, implies [16p + 1, 20p)3" C T,,. Note that

U [6p+ 11,2003 = [f(0)h(g) + 1, 00)7'",

p2h(g)
P=0 (mod 4)

we can obtain the result similar to the above. The proof is complete.

For ¢ = 10, we also need a lemma on the partition of blocks of a 4-
GDD(10%). A transversal in a Latin square of side n is a set of n cclls, one
from each row and colurnn containing each of the n symbols exactly once.
A partial transversal of length k in a Latin square of side n is a sep of £ cells,
each from a different row and each from a different colurnn such that no two
containing the same symbols. It is well known that (k — 2)MOLS(n)s is
equivalent to a TD(k, n). It is not difficult to see that a common transversal
(partial transversal) of the (k- 2)M OLS{n)s gives a parallel class (partial
parallel class) of the corresponding TD(k,n). So, we have the following
result since that a TD(4,n) is a 4-GDD(n?).

Lemma 2.9 There ezists a 4-GDD(10%) with the property that the blocks
of the design can be partitioned into 16 sets So, ---, Sis, such that the
minimum distance of S,, 0 < r <15, is 4.
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Proof We need only to find 2MOLS(10)s, such that the 2MOLS(10)s
have 16 comnrmon partial transversals which partition the 100 positions of the
Latin squares. The following SOLS(10) was stated in [5, Chapter 1V, p.444),
and it is generated pseudo-cyclically.

SOLS(10) on symbol set Zy U {z}.

0]2({8]6]=|7]|1]5|4]|3
51113[0]7|=|8]2(6]4
716]2|4|1|8[=|0]3]5
418]7[3[5]|2|0[=z[1]6
L=25084631x7
2[316]110{6]7|4|2|8
3|x(4[7]2]1]6]|8|5]0
614]=]5]8]3[2]7{0]1
1{7(5|=|6]0]|4[3]8]|2
8[015]|2[3]4]|5]6]|7|x

In the notion of (4, j), ¢ denotes the i-th row of the Latin square, and j
denotes the j-th column. We suppose both the rows and the columns of
gne S{Q[}.? are indexed by {0,1,---,8,z}. Let Do = {(4,j) : 1 = j, 4,5 €

gU{z}}.

For k=1,2,3,6,7,8, define

D ={(i,5):i—j=k, i,j€ Zy},

Let
' Po = {(0,4),(1,6), (2,2), (z,1)},
Pi={(0+4,5+1),(1+4,6414),(2+4,2),(z,14+¢)},1 <i<8
Then Dy Sk =0,1,23,6,7, 8) and P.-SO <7 < 8) are 16 cornmon partial

transversals of L and its transpose, which partition the 100 positions of L,
thus we complete the proof of this lernma. 0

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 For g ¢ {2,3,6,10}, the result comes from
Lemma 2.8. For g = 10, from Lemma 2.9, there exists a 4-GDD(10%)
whose blocks can be partitioned into 16 sets, such that the minirnum dis-
tance of each is 4. So, if we take ng = 16, then Lemma 2.8 still works. In
this case, we have that f(10) = 13, #(10) = 16, we obtain the result. This
completes the proof. ]

In the next section, we will use the above result to deal with the existence
of GS4(2,4,v,4).
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3 The existence of GS4(2,4,v,4)

For g = 4, it is easy to see that wo = ng = 7, h(4) = 13, and f(4) = 13. So,
M4 = [7, 193];.

For v = 7, to construct a GS4(2,4,v,4) in Z3g, it suffices to find a set
of generalized base blocks, A = {B,:- -, Bg}, such that (V,G, B) forms a
GS4(2,4,'U,4), where V = Z33, G = {Go, Gy, " “,G(;},Gi = {i +75:0<
§<3},0<i<6,and B={B+4j: B€A, 0<j <6} Forconvenience,

3

we write A = U {{%,z,¥,2} : {z,v,z} € Si}. So, for A we need only
=0

display the corresponding S;,0 <7 < 3.

Lemma 3.1 There ezists a G54(2,4,7,4).

Proof With the aid of a computer, we have found a gencralized hase
blocks, which are listed below.

v="7
So - {4,5,13}, {12, 18, 22}, {15,19,20); S: : {17,19,27},{14,25,26},{10,12,28);
S, :{3,25,28); Ss:{14,19,22}.
This completes the proof. 0

For v # 7, to construct a 38,(2,4.v,4) in Z4,, it suffices to find a set

of base blocks, A = {By,---, B.}, where s = ";‘ such that (V,G, B) forms

a GS4(2,4,v,4), where V = Z4,, G = {Go,G1,:-,Gu}, G = y+vj 10 <
7 <3},0<i<wv-1,and B is obtained by developing A (rnod 4v).

Lemma 3.2 There exists a GS4(2, 4., v.4) forv € {10,13,16, 19, 22,25, 31,
34,43, 46, 55,58, 67,79, 82,115}

Proof For each v, with the aid of a computer, we have found a set of base
blocks, which are listed below.

v=10
A: {0,5,11,19},{0,2,17,24},{0,1,4,13}.

v=13
A: {0,38,43,46},{0,2,17,36},{0,1,30.42},{0,4,24,31}.

v=16
A: {0,7, 15,20}, {0,18,30,39},{0, 1,38,62},{0.11,33,47},{0.4,]0,45}.

v=19
A: {0,3,12,47},{0, 10,37.53},{0,1, 22,46},{0,8, 36,50},{0,7,20,25),{0,2,6, 17}.

v=22
A: {0,6!,76,79}, {0,11,43,82},{0, 1,60,81},{0,4,35,69}, {0, 30, 50,63},{0,2,26,74},
{0.5.41.51}.
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v=25
: {0,67,77,80},{0,]],53,74},{0,18,48,86},{0,9,15,69},{0,2, 59,83},
{0,39,51,55}, {0, 28,92,93},{0,5,34,78}.

v=31
: {0,39,48,77},{0,52,54,74},{0,80,87,105},{0,3, 67,91},{0,11,107,123},
{0. 8, 69,90}, {0, 26,49, 120}, {0, 51,56, 66}, {0, 65,79,92}, {0, 6, 46, 89}.

v=34

: {0,23,77,115},{0,49,80,106},{0,63,121,128}, {0, 85,91,94}, {0, 4, 24,74},
{0,13,25,35}, {0,16,97, 134}, {0, 11, 40,83}, {0, 19,52,119},{0, 1,61, 89},
{0,5,32,46}.

v=43

: {0,93,101,159}, {0,49, 117,140}, {0, 24, 146,152}, {0, 30, 78,151}, {0, 18,47,64},
{0,27,96,127}, {0,110,167,171},{0, 15,34, 75}, {0, 3,119,133}, {0, 25, 88,162},
{0,36,118,156},{0,102,139,161},{0,67,132,144},{0, 80,163, 165}.

v =46

: {0,118,177,183},{0,44,58,171}, {0,4,90,141}, {0, 38,150,173}, {0, 77,85,104},
{0,18,20,30},{0,31,73,114},{0,16,64,116}, {0,24,78,145},{0, 36,129,151},
{0,25.53,128},{0.87,102,163},{0,5.37,40},{0,45,95,155}, {0.9, 26,88}.

v=255

: {0,25,124,141},{0,5,19,179}, {0,22,45, 176}, {0,86,168,181},{0, 77,145,194},
{0, 29,83,180}, {0,43,91, 150}, {0,98, 106, 156}, {0, 18, 33,42}, {0, 2, 80,87},
{0,1, 12,93}, {0,31,37,157)},{0,47,51.67}, {0,3,115,147}, {0, 148, 158,186},
{0,65,101,136}, {0,102, 163,190}, {0, 21, 74,130}.

v=>58

: {0,23,87,97},{0,29,53,54}, {0, 114,146,176}, {0,60,121,197},{0, 16, 63,191},
{0,2,9,93},{0,48,142,161},{0, 33,99, 110}, {0, 12,43, 79},{0,108,112,130},
{0,59,147,193}, {0, 5,13, 83}, {0, 28,55,215},{0,44,117,167}, {0, 69, 89,194},
{0, 75,81,96}, {0,3,106, 198}, {0, 150, 192, 218}, {0, 49, 100, 180}.

v =67

: {0,18%,251,258},{0,106,128,257},{0, 12, 64,103}, {0, 19, 50, 186}, {0, 36,68, 227},
{0,8, 71,179}, {0, 65,80, 241}, {0, 93,137,180}, {0, 69, 217,242}, {0, 90, 149,248},
{0,5,47,189},{0,18,141,164}, {0,96, 152,154}, {0, 53,183,196}, {0, 3, 147,262},
{0,34.94,264}, {0,105, 133,166}, {0, 1,49, 239}, {0, 40, 233, 254}, {0, 37,113,187},
{0,111,156,211},{0,16,198,222}.

v="T79

: {0,80,153, 258}, {0,52,69,199}, {0,41,286,302},{0,113,181,306},{0,1,61,161},
{0,145,194, 219}, {0,53, 87, 283}, {0, 3,95,143}, {0, 64, 284, 304}, {0, 168,177,289},
{0,84,246,311},{0,137, 279,287}, {0, 40,90, 278}, {0, 4, 51,118}, {0, 149,180,215},
{0,11,223,314}, {0, 22, 141, 222},{0, 46, 72, 280}, {0, 184,272,295}, {0,99,127,309},
{0, 6,109,260}, {0,77,187,262}, {0,133,218,257)},{0,42,157,301}, {0,19,43,233},
{0,146, 164,209},

v=_582

: {0,107,223,290}, {0, 84,182,207},{0, 16, 28,94}, {0, 102,206, 286}, {0, 15,34, 214},
{0,8,117,308}, {0, 35,93, 162}, {0,60,171,203}, {0, 40, 41,196}, {0,63,113,178},
{0,55,141,275}, {0, 88, 225,310}, {0,6,233,301},{0,37,51,61},{0,152,163,321},
{0,9,204,281}, {0,136,138, 264}, {0, 39,218, 247},{0, 4,197, 284}, {0, 46,49,315},
{0, 89,236,256}, {0, 5,36, 79}, {0, 142,232,302}, {0, 45,118,175}, {0, 54, 228,311},
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{0,21,112,209}, {0, 23,75, 252}.

v=115

A: {0,218,274,383}, {0, 42,103,335},{0,91,181,221}, {0, 147, 202,416}, {0, 14, 29, 146},
{0,203, 213, 298}, {0, 13,318,407}, {0, 52, 98, 250},{0, 36,179,391}, {0, 192, 254, 337},
{0,136, 243,244}, {0, 3, 280,396}, {0, 300, 333,384}, {0, 140, 392, 412}, {0, 49, 80, 289},
{0,284,342,385},{0, 2,229,363}, {0,113, 286,372}, {0, 4, 193,419}, {0, 260, 266, 397},
{0,153,316,436},{0, 74,378,428}, {0, 8, 339,449}, {0, 59, 312,334}, {0, 27,119, 309},
{0,219, 276,388}, {0, 65, 159, 237}, {0, 285,364,435}, {0, 34, 299, 434}, {0, 12,93,425},
{0,17,158,373}, {0, 37, 236,358}, {0, 5, 278,442}, {0, 114,336, 406}, {0, 197, 204, 225},
{0, 157,290,306}, {0, 255,421,451}, {0, 100, 138,211}. )

Lemma 3.3 There exisls a GS4(2,4,v,4) forv € {28, 37, 40, 49,52, 61, 64,
70,73, 76, 85,88, 118, 121,124,127}

Proof With suitable m and n, Lemma 2.3 can be used to obtain a
GS4(2,4, mn+u,4) for u = 0, 1. This takes care of v € {49, 70, 85, 118, 121,
127}. For other v, we can write v = 4n+u, where u = O or 1 and n+u € T,.
Take rn = 4, t = 4 in Lemma 2.2, there exists a GSq(2,4, 41 + u,4), the
4-GDD(4*) comes from Lemnma 2.4. This completes the proof. 0

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3 From Lemmas 3.1- 3.3, we need only to deal with
v €[91,112) U [130, 193]}

For » € [91,112)}, apply Lemma 2.2 withm =4, n=7,u=0andt{ = 4
to obtain an HGS,4(2,4,(28,7),4). Take m = 4, n =21, u=7,t =4 in
Lemma 2.1, to get a GS4(2,4,v,4), the input designs are from Lemma 3.1,
Lemma 3.2 and Lemma 3.3.

For v € [130,160]3, take 7n =4, n = 10, u = 0 and t = 4 in Lernma 2.2,
one gets an HGS4(2, 4,(40,10),4). Applying Lemma 2.1 with m = 4, n = 30,
u =10, t = 4, we obtain a GS4(2, 4, v,4) since there exists a GS4(2,4, 1, 4)
from Lemra 3.2 and Lemma 3.3, where f = 10 + 3¢ and 0 < a < 10.

Finally, for v € [163,193]}, take m =4, n = 12, u = 1 and t = 4 in
Lernma 2.2 to obtain an HGS4(2, 4, (49,13),4). Applying Lemma 2.1 with
m=4,n=36u=13,¢=4and 2 < a <12, we get a GS4(2,4,v,4),
the i?put designs are from Lemma 3.2 and Lemma 3.3." This completes the
proof. 0
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