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Abstract

A weighted graph (G, w) is a graph G = (V, E) together with a
positive weight-function on its vertices w:V — R>°. The weighted
domination number vw(G) of (G, w) is the minimum weight w(D) =
Y uep w(v) of a vertex set D C V with N[D] =V, i.e. a dominating
set of G.

For this natural generalization of the well-known domination num-
ber we study some of the classical questions of domination theory.
We characterize all extremal graphs for the simple Ore-like bound
+w(G) < Lw(V) and prove Nordhaus-Gaddum-type inequalities for
the weighted domination number.
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1 Introduction

All graphs will be simple, undirected and finite. The order n(G) of graph

= (V(G), E(G)) with vertex set V = V(G) and edge set £ = E(G)
is |V|. The (closed) neighbourhood of a vertex v € V of G is denoted by
N(v) = N(v,G) (N[v] = N[v,G]). Foraset X C Vlet N(X) = N(X,G) =
U.,exN(v G) and N[X] = N[X, G] = Uyex N[v, G]. The degree of a vertex
v € V is denoted by d(v) = d(v,G). The complement of a graph G is
denoted by G.

A graph G = (V, E) together with a positive, real-valued weight-func-
tion w : V — R>? is called a weighted graph and is denoted by (G, w).
If (G,w) is such that 3 ., w(v) = |V|, then (G, w) is called a normed
weighted graph.

Let (G, w) be a weighted graph. For a set V' C V(G) or a subgraph H
of G let w(V') =3 v w(v) and w(H) = w(V(H)).

A set D C V(G) is a dominating set of the graph G, if N[D] = V(G).
The domination number 4(G) of a graph G is the minimum cardinality of
a dominating of G. This parameter has received an ever-growing attention
during the last three decades and a quite exhaustive overview of the related
research can be found in the two books {5] and [6].

In this paper we will study a very natural generalization of the classical
domination number for weighted graphs. Instead of considering a domi-
nating set of small cardinality we will consider dominating sets of small
weight and study some of the classical questions in domination theory for
this new concept. The proofs of our results often display some surprising
and interesting differences compared with the classical proofs. This sort of
generalization already appeared several times in the construction of algo-
rithms (see for instance Kratsch [8]) but has received little attention from
a theoretical point of view.

Some totally different domination concepts also involving weights on
the vertices of the underlying graphs have been studied under the names
of signed domination, minus domination or majority domination etc.

Now we come to the precise definition. A dominating set D of the
weighted graph (G,w) of minimum weight w(D) is a minimum weighted
dominating set and its weight is the weighted domination number v, (G).

Let (G, w) be a weighted graph without isolated vertices. Since the com-
plement of a minimum weighted dominating set of G is again a dominating
set, we obtain

Observation 1.1 If (G,w) is a weighted graph without isolated vertices,
then vy (G) < E(El

196



This generalizes Ore’s classical bound ¥(G) < % for graphs G of order
n without isolated vertices [9]. In several proofs of results for the classical
domination number < the existence of a minimum dominating set with so-
called exterior private neighbours - which was observed by Bollobis and
Cockayne [2] - is a valuable tool. Unfortunately, such a statement is no
longer true for the weighted domination number as can be seen by the graph
in Figure 1 whose unique minimum weighted dominating set is {u,v}.

Figure 1.

As in the case of Ore’s bound several results for v easily generalize to
Yw-

Observation 1.2 If (G,w) is a normed weighted graph of order n and

Ay, = ma.x{ﬂu%%mv € V(G)}, then

Yuw(G) >

n

Ay, +17

Proof: If D is a minimum weighted dominating set of G, then V(G) =
DUU,ep N(v) and w(D) = 7(G). Since (G,w) is a normed weighted
graph, it follows

n=wV(G) < Y w@)+) wlN())
veD veD
Ny (1 P )
= 2 ()
< (14+Ay) Z w(v)
veD
= (1 + Aw)')'w(G). m]

This generalizes the bound 4(G) > a3t for graphs of order n and
maximum degree A.

We cite further examples without their simple proofs. If the weights
of the vertices of a weighted graph are chosen uniformly at random from
the interval (0,1) and normed afterwards to produce a normed weighted
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graph, then the expected cardinality of a dominating set is also its expected
weight. This implies that

ln(5+l)+1n

'7w(G)S. S+ 1

for a normed weighted graph (G,w) of order n with minimum degree §
which generalizes a probabilistic bound on v in Alon and Spencer’s book
(1]

Similarly, proofs for theorems dealing with ¥ sometimes even imply
results for ,,. The proof by Jaeger and Payan [7] (see also [5], p. 238) of
the bound ¥(G)7(G) < n, for instance, immediately implies for a normed
weighted graph (G, w) that 7(G)7w(G) < n.

. w(G
2 Connected graphs G with v, (G) = —(2—1
In this section we will characterize the connected weighted graphs (G, w)
for which v, (G) = 3%9 The alignment of our statements closely follows
Fink, Jacobson, Kinch and Roberts [4]. Nevertheless, the proofs present
some essential differences to the work in [4].

An endvertez is a vertex of degree at most 1. Just for convenience in
this section let Nend(v) = Nend(v, G) denote the set of endvertices in the
neighbourhood of a vertex v € V(G).

A weighted tree (T, w) is said to fulfill condition (%) if and only if either
every non-endvertex v of T satisfies w(v) = w(Nena(v)) or T = K3 and the
two vertices of T have the same weight.

Theorem 2.1 A weighted tree (T, w) of order at least 2 satisfies v, (T) =
ﬂzﬁ if and only if (T, w) fulfills condition (*).

Proof: Since the statement is trivial for T = K3, we assume that T is of
order at least 3. If (T,w) fulfills (x), then for every non-endvertex v the
set Neng(v) is not empty and a dominating set of T either contains v or
all elements of Neng(v). This implies that the set of non-endvertices is a
minimum weighted dominating set with a total weight of w)

Now we assume the existence of a weighted tree (T, w) with v, (T) =
'—"%7—‘2 such that (T',w) does not fulfill (). We assume that (T,w) has
minimum order given this condition.

CASE 1: There is a non-endvertex v with w(v) < w(Nend(v))-

The components Ti, ..., Tk of T — [{v} U N,n4(v)] all have order at least
2. Hence 7, (T}) < ﬂzll for 1 < i < k. Let D; be a minimum weighted
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dominating set of T;. Now D = {v} U ¥
with

i=1 Di is a dominating set of T

k
w(D) = w(v)+ ) w(Di)
i=1
< -[w(v) + w(Nena(v))] + Z w(T) _ w()
i=1

2

which is a contradiction.

CASE 2: There exists a non-endvertex v with w(v) > w(Nenq(v)) and
Nena(v) # 0.

We obtain a similar contradiction as in CASE 1 considering the domi-
nating set Nena(v) U Uf=1 D;.

CASE 3: There is a non-endvertex v with Ne,q(v) =@

Let u be an arbitrary neighbour of v. Let TY, ..., T} be the components
that arise from T if we delete all edges incident with v except uv. (Note
that all these components have order at least 2.)

If there is at least one index 1 < i <1 such that 7, (T}) < ﬂ‘zﬂl, then
the union of minimum weighted dominating sets of T7, ..., T} is a dominating
set D' of T with w(D') < @, which is a contradiction.

Hence, v, (T}) = 2123'_) for all 1 < ¢ < I. By the choice of T, we
deduce that T} fulfills (¥) for 1 < 7 < I. Since v is now an endvertex
adjacent to u, we conclude that w(u) = w(v) + w(Nena(u)). Therefore,
w(u) > w(Ne,,d(u)) If Nena(u) # 0, then we obtain a contradiction as in
Cask 2. Consequently, Nenq(u) =

Let vzyz,...zy be a shortest path in T from v to a vertex y which is
a neighbour of an endvertex. If we repeatedly apply the above argument
along this path, then we obtain that Nen4(y) = @ which clearly contradicts
the choice of y. This completes the proof. O

Lemma 2.2 Let (G,w) be a connected weighted graph with v, (G) = ﬂ(gl
and let T be a spanning tree of G. Then every endvertex of T is an end-
vertezr of G.

Proof: Since the statement is trivial for |V(G)| < 3, we assume that
[V(G)| > 4. Since for any spanning tree T' of G

w(T’) w(G) _ »(T)
2 T 2
we have, by Theorem 2.1, that T” fulfills (). Now let T be a spanning tree

of G. We assume that T has an endvertex u that is no endvertex of G. Let
v be the neighbour of u in T

> Yu(T") 2 1(G) =
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CAsE 1: u is adjacent to a non-endvertex v’ of T'.
The spanning tree T' = T — vu + v'u of G does not fulfill (), as
w(v') = w(Nend(v',T)) < w(Nend(v',T"))
= w(Nend(v',T)) + w(u).

This is a contradiction.

CASE 2: u is adjacent to an endvertex u’' € Nena(v,T).

The spanning tree 7' = T — vu + w'u of G does not fulfill (), as
d(v,T') > 2 and
w(Nend(vy T)) > ‘w(Nend(U,T))
w(Nend('U,T)) - w(u) - w(u’).

w(v)

This is a contradiction.
CASE 3: u is adjacent to an endvertex u’' € Nenq(v,T).
Let v be the unique neighbour of v’ in T. Note that v’ is no endvertex.
The spanning tree T/ = T — vu + v'u of G does not fulfill (), as
w(v’) w(Nena(v', T))
= wW(Nena(v',T')) + w(u')
> w(Nena(v',T)).

This is a contradiction and the proof is complete. O

A connected weighted graph (G, w) is said to fulfill condition (¥*) if and
only if either

(i) G = K3 and the two vertices of G have the same weight or
(i) G = C4 and the four vertices of G have the same weight or
(iii) every non-endvertex v of G satisfies w(v) = w(Nena(v)).

Note that (iii) implies that the weighted graph (G, w) has the followmg
structure. Let vy,..., vx be the non-endvertices of G. Then for 1 <i<kwe
have Nena(vi) # 0 a.nd w(v;) = W(Nend(vi)). Furthermore, G’[{vl, oV}
is connected.

Theorem 2.3 A connected weighted graph (G,w) satisfies v, (G) = J—l
if and only if (G,w) fulfills condition (x*).

Proof: Since the statement is easily verified for |V/(G)| < 4, we assume that
[V(G)| > 5. Let T be any spanning tree of G. Theorem 2.1 and Lemma 2.2
imply, that T fulfills condition () and all endvertices of T are endvertices
of G. This easily implies that G fulfills condition (+). O
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Theorem 2.3 implies the following well-known result.

Corollary 2.4 (Payan, Xuong [10]; Fink, Jacobson, Kinch and Ro-
berts [4]) Let G be a connected graph of order n. Then ¥(G) = 5 if and
only if G = K2, G = C4 or every non-endverter is adjacent to ezactly one
endverter.

3 Nordhaus-Gaddum-type results

For a given graph-theoretical parameter v a Nordhaus-Gaddum-type result
is a bound on the sum or the product of ¥(G) and v(G) for a graph G.
In this section we will prove some results of this type for the weighted
domination number.

Lemma 3.1 Let (G,w) be a normed weighted graph of order n. Then
Y(G) + 7w (G) < n+ min{w(v)jv € V(G)}.

Proof: Let w(vo) = min{w(v)|v € V(G)}. Since V(G) \ N(vo) is a domi-
nating set of G and {vp} U N(vp) is a dominating set of G, we have

10(G) +70(6) < w(V(G)\ N(vw)) +w({vo} UN(w))
= w(V(G)) +w(vo) = n+w(vo)

and the proof is complete. O

The bound in Lemma 3.1 is best possible as can be seen by a star
K1,n-1 in which the centre vertex has weight % and all other vertices share
the remaining weight of 2. Clearly, for such a star 7w (K1,n-1) = 5 and
Yu(K1n-1) = 3 + min{w(v)]v € V(G)}. Note that by Observation 1.1,
the bound in Lemma 3.1 is only interesting if either G or G has isolated
vertices, since otherwise v, (G) + 7(G) < n.

Theorem 3.2 Let k > 1 and let (G,w) be a normed weighted graph of
order n > k + 2 such that G has k isolated vertices. Then

n2

7o(6) 70(6) < g [F+ 5= o)

Equality holds in (1) if and only if every vertez in the set X of tsolated
vertices of G has weight 37, every vertez in V(G)\X has weight lk_-i-lf(mf
and V(G) \ X is an independent set in G.
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Proof: Clearly, if (G, w) has the described structure, then equality holds in
(1). Hence it remains to prove (1) and the ‘only if’-part of the statement.

Let X = {vy,..,%}, w* = min{w(v)|v € V(G)}, and, in addition,
wy% = min{w(v;)|]1 < i < k}. Since the sets {v1}, {v2}, ..., {vx} and
V(G)\ X are dominating sets of G, we have

w(© < minfux,Zopcmn {22

By Lemma 3.1 and as w* < %&fﬂ, we have

10(€) 10(@) < (O +u" - 7(C)]
+(C) [n pre) w(c)] .

IA

We consider two cases. In what follows we will use the fact that the
function 9(z) = z(a — z) for z € [0,z;] with z; < § assumes its unique
maximum value for z = z,.

Case 1: 2X) >

n
1
We have

10(G) - W (G) £ 1(G)n+vw" —1(G)]
< (@) [+ 22 o)
< kil["“Ln;T(:()_kil]
= kil["Jrn;—:fT_kil

If equality holds in the above inequality sequence, then

(i) v* = =5* = ne=n and

(i) %(G) = g1

Property (ii) impli&s that all of the sets {vl}, {v2}, ..., {vk} and V(G)\ X
have the same weight 2+ R+ Hence w(v;) = &5 for 1 < 7 < k. Property (i)
and w(V(G) \ X) = 7 imply that all vertlces in V(G) \ X have weight
W If V(G) \ X contains an edge zy, then V(G)\ (XU {z})isa
dommatmg set of G of weight 55 '(k_-HT(n_EY which is a contradiction to
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property (ii). Hence V(G) \ X is independent in G and the proof of CASE
1 is complete.

Casg 2: 28 < (oo
We proceed as above. Note that k"% < L‘-"'—gz"i forn >k +2.

w0 7@ < W@ [n+ 22 6]

w(X) n-— w(X) w(X)

< [ k]
= k—z(—nn?,;)—w(X)[(kn — K + k) — w(X)]
n kn
< k?(n-k)k+1[(’"‘ K+ k) - k+1]

n? 1
= —0lk+—].
(k+1)2 [ n— k]
Since equality cannot occur in this case, the proof is complete. O

Corollary 3.3 Let (G,w) be a normed weighted graph of order n > 2.
Then
2

7(G) 7(G) < T 3)

Equality holds in (8) if and only if G is a star with centre vertez vo, vo has
weight 3 and every vertez in V(G) \ {vo} has weight 55%y.

n
n—1

Proof: If neither G nor G have isolated vertices, then
n?2  n2

Y0 (G) - 1(G) < — < Tn-1

by Observation 1.1. Hence we assume, without loss of generality, that G
has k > 1 isolated vertices. If n — 1 < k <n,then k=n,ie. G =K, and

n?

1(G) () 10 < s

with equality if and only if G = K and both vertices have weight 1. Thus,
it remains that 1 < k < n — 2 and Theorem 3.2 applies. Smce in this case
the nght side in (1) is maximum for k = 1 (note that (k_-ﬁ)’ is decreasing

n

and W—l) > ® +1)’( sy forl<k<n-— 2), the desired result follows from
Theorem 3.2. O

Now we will establish a Nordhaus-Gaddum-type result for bipartite
graphs.
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Theorem 3.4 Let (G,w) be a normed weighted bipartite graph of order n
with no isolated vertex and partite sets A and B such that |A|,|B| > k > 2.
Then

7(G) + % (G) < %+%+ﬁ @)
and
2
wOW@ < [+ )

Proof: We will only prove (5), since the proof of (4) will then be immediate.
We assume without loss of generality that w(A) > w(B) = n — w(A). We
have k < |A|,|B| < n—k. Since V(G)\ A is a dominating set of G, we have
7w (G) < n — w(A). Since a set containing a vertex from A and a vertex
from B is a dominating set of G, we have

w(A4)  n—w(A)
Al T e o4

Tw (G) <
and hence

Y0 (G)Vw (G)

IA

w(A)  n-—w(A)
‘"‘“’(A”[ A T oA ]

w(A) n — w(A)
n—k
n(n — 2k n
= ~fog " [ - ] v
n2
n—-k
The second inequality is equivalent to

w(A) -n-(|Al=k) - (0 = |A] - k) + (2w(A) —n) - |A] - k- (JA| - k) > 0

which is true by the assumptions. If n = 2k, then the last expression in
the above estimate of v, (G)7w (G) is a decreasmg linear function in w(A)
and if n > 2k, then it is a square function in w(A) assuming its unique

IA

(n - u(ay [

-+

maximum value at. W We have
n_n nk
wA) 23235~ 5map

and therefore

and the proof is complete. O
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Corollary 3.5 Let (G, w) be a normed weighted bipartite graph of order n
such that nesther G nor G has isolated vertices. Then

W@ +1@) < T4yt

and

W@ < F[1+22y]

Proof: Each of the partite sets of G must have at least 2 elements. Since
the right sides of (4) and (5) are maximum for k = 2, the desired bounds
follow. O

Using Corollary 3.5, we have shown in [3] that the inequalities in Corol-
lary 3.5 remain valid even for normed weighted triangle-free graphs.

The bounds in Theorem 3.4 and Corollary 3.5 are asymptotically best
possible as can be seen by the following example.

For n > 2k the normed weighted bipartite graph (G, w) has vertex set
V(G) = {vo, 1,y k=1, Y1, U2, ..oy Un—k }
and edge set
E(G) = {vous, viwi|1 <i <k — 1} U {vouslk < i< n—k}.

The weight of the vertices vo,v1,..., Vk-1,u1,U2,...,uk—1 is 3 and the
weight of the vertices ug,ux41,..., Un—k is m (See Figure 2 for
the case k = 2.)

nf4 n/4
z(ﬁ; nf4
Figure 2.
It is easily verified that
= n_ n n
Ww(@)+1(6) = 3+t R (©)
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and

- n? 1
wO0@) = T [1+ =@y 7
For p > 3 and normed weighted p-partite graphs G such that neither
G nor G has isolated vertices it is not possible to obtain upper boun;is on
7w (G)7w(G) and 7 (G) + 7(G) which are essentially better than Z- and
n, respectively. This can be seen by the following example.

For n > 2p and p > 3 the normed weighted p-partite graphs G has
vertex set

V(G) = {ui,jll S i S p- ]-:j = 1x2} U {up,l: "';up,n—2(p—l)}'

The vertices in V(G) \ {uy,3, 2,2} induce a complete p-partite graph with
partite sets {up,1,...,4p n_2p—1)}, {11}, {u21}, and {u; 1, u;2} for 3 <
i < p— 1. Furthermore, N(u;2) = {us,1} and N(uz2) = {u;,1}. All
vertices but uy 1, 41,2, 2,1 and uz 2 have a small weight € > 0 and the four
remaining vertices have weight "—"-(;;ﬂl. It is easily verified that

(@) = (——"‘6‘2""4))2~1‘;

and

Yw(G) +7(G) = n—e(n—4)~n.

4 Conclusion

We have seen that the study of weighted domination allows at the same time
to find natural generalizations of results for the classical domination and
to discover some interesting new behaviours and features of domination.
Therefore, we believe that further investigations are worthwhile and will
lead to interesting results. In order to incite such work, we close with some
conjectures.

Firstly, we believe that the bounds in Theorem 3.4 are not best possible
and that they should be replaced by (6) and (7). We believe that we can
prove the case k = 2 by a very clumsy and boring case analysis.

A second possible research problem would be to generalize the well-
known Vizing bound (see [11])

BG) < 3(n(6) - 1G)((G) - 7(C) +2) ®)
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for graphs G to the weighted case. Considering the proof of (8) in [5] it
becomes apparent, that most of the discussion needed to prove (8) easily
generalizes to weighted graphs.
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