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Abstract

Colbourn introduced Vj(m,t) to construct transversal designs with index A.
A Vy(m.t) leads to a (mt + 1, mt + 2; A, 0; t)-aussie-difference matrix. In this
article, we use Weil's theorem on character sums to show that for any in-
teger A > 2, a Vy(m,1) alwa.ys exists in GF(mt + 1) for any prime power
mt+1> By(m) = [E—*'[E’TE] where E = A(u - 1)(m = I)m* —m®*~! +1,

= (u—-1)dm* and u = M In particular, we determine the
existence of Vi(m, t) for (\,m) = (2,2),(2,3).

Keywords: Vj(m,t) vector, finite field, cyclotomics classes, character sums,
Weil’s theorem.

1 Introduction

Let ¢ = mt + 1 be a prime power. Denoted by H™ the umque subgroup of order ¢
of the cyclic multiplicative group GF(q)". The cosets Hy*, HP,---, H™_, of H™ are

defined by )

H'=¢H™,
where £ is a primitive element of GF(g). These cosets are called the cyclotomic classes
of GF(q) of index m.
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Let A be a positive integer. For ¢ = mt + 1 a prime power, Colbourn [8} defined
a Vi(m.t) to be a vector (a;,az,--+,amr+1) With elements from GF(q) satisfying the
property that for every k satisfying 1 < k£ < mA + 1, the set

{arsi—ai: 1€i<mA+ ], k+i#mAi+2},

subscripts computed modulo mA + 2, represents the cyclotomic classes of index m A
times each.

It is easy to see that a V)(m,) exists only if ¢ > A. The Vi(m, t) vector is often
written with a ~ in the O-th position. For each k, we speak of the k-th difference
collection, denoted by Dy. These are the differences which are & apart in the vector.
Colbourn (8] proved the following lemma.

Lemma 1.1 ([SL/ ) Let ¢ = mt+1 be a prime power and let ) be a positive integer. If
there is a vector Vi(m,t) in GF(q), then there ezists a (mt + 1, mt + 2; A, 0; t)-aussie-
difference matriz.

When A = 1, a Vy(m, ) has become known as V(m,t), and substantial existence
results are known (9], [13] [2] and [15). By definition, we have the following,

Lemma 1.2 4 V(Am,t) is a Vi(m, At).

For 2 < A < 6, the results of a computational search for Vy(m,t) with mt +1 < 100
are reported by Colbourn (8). For A =2, the following lemma can be found in [2].

Lemma 1.3 ([2]) (i) A Va(2,4t + 2) exists in GF(q) for ¢ = 8t + 5 a prime power
ezcept for q
(ii) A V2(3 2t) e:msts in GF(q) for g =6t + 1 a prime power and t > 4.

By using Wilson's Theorem 3 in [17] one can get the following.

Lemma 1.4 Let ¢ = mt + 1 be a prime power and let X\ > 2 be a positive integer.
Then there ezists a Vi(m, t) in GF(q) whenever g > mm™\mi+1),

As stated in [8], there is not at present any general theory for the existence of
Va(m,t) vectors.

In this article, we shall improve the bound in Lemma 1.4. Specifically, we shall
prove the following in Section 2.

Theorem 1.5 Let ¢ = mt + 1 be a prime power and let A > 2 be a positiveainteger.
Then there erists a Vy(m,t) in GF(q) whenever ¢ > By(m) = [&b@] , where
E=Mu-1)(m-1)m*—m*'+1, F=(u-1)Am" andu = I."‘—'\%('—'&J
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In particular. we shall determine the existence of Vy(m, t) for (A, m) = (2.2), (2.3)
in Sections 3. That is. we shall prove the following.

fTheorem 1.6 Al 15(2.t) exists in GF(q) forq =2t +1 > 5 a prime power except
orq=35.

Theorem 1.7 All Vy(3,t) exists in GF(q) for ¢ = 3t + 1 > 7 a prime power with
two exception of ¢ = 7.2* and with one possible exception of ¢ = 210,

To obtain these results Weil's theorem on character sums will be useful. which
can be found in Lid} and Niederreiter ([12], Theorem 5.41).

Theorem 1.8 ([12]) Let v be a multiplicative character of GF(q) of order m > 1
and let f € GF(q)|z] be a monic polynomial of positive degree that is not an mth
power of a polynomial. Let d be the number of distinct roots of f in its splitting field
over GF(q), then for every a € GF(y), we have

Y. uwlaf(e)|<(d-1)vq (1)

c€EGF(q)

This theorem has been useful in dealing with the existence of various combinatorial
designs such as Steiner triple systems (see {10]), triplewhist tournaments (see [1], [14]),
me. t) vectors (see 513]. [2] ), APAV (see [4]), difference families (see (3], [5], (6]),
Q(k. A} (see [7]), cyclically resolvable cyclic Steiner 2-designs (see [11]) etc. It has
also some other applications in combinatorics (see [16}).

2 An Improved Bound

In this section, we shall improve the bound mt + 1 > m™m+1) in Lemma 1.4. It
can be lowered to mt + 1 > By (m), where By(m) is defined in Theorem 1.5.

Let ¢ = mt + 1 be a prime power and let A > 2 be a positive integer. For
convenience, we denote H™ by C;, 0 < i < m ~ 1. Let £ be a primitive element of
GF(q) and € € C,. We shall take

V= (~1,1,2% -, 2™).

As before. denote by Dy the differences of elements k-apart in the vector. Since
Dy = —Diuxsak, the vector is a Vy(m.t) if every Dy for 1 < k < lm“2+2J represents
the cyclotomic classes of index m A times. When A is even, then

mi42 miA=2

Dz = + (7% - 1) (L, 2"}
mAi42 '\/2_[ :
= % (x+ - 1) U {r"“{l,x,o--,z'""}}.
i=0
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It is easy to see that if D; represents each of the cyclotomic classes of index m A
times then so does Dm_a’ﬁ. Therefore, we have the following.

Lemma 2.1 The vector (~,1,z,22,---,2™) in GF(mt + 1) is a Va(m, 1) if every
Dy represents each of the cyclotomic classes of index m A times for 1 < k < u, where
u= l.m,\+1+2g—12*‘+‘J.

Letu = | ZAMHEW ) ond let hy(z) = 2ot = zi+ - +a+l,i = 1,2, ,mA-L.
Now, we examine Dy, 1 < k < u.

A-1
D, = {x— 1,z(z - 1), z%(z - 1),--',:1:'"‘\"'(3: - l)} =(z-1) U P,
i=0
where P, = z™ {1,z,---,2™ 1}, 0 € i < A — 1. D, represents each of the cyclotomic
classes A times if every P; is a system of distinct representatives of the cyclotomic
classes, SDRC, for 0 < i < A= 1. It holds when z € C). This is equivalent to the
condition that f(z) = E""Tx € Cy. For 2 < k < u, we have
Dk = {zk - 1’ z(zk - 1)! cee ,zrm\-k(zk - 1)’ _(xrm\—k-l& - 1)) _z(zm»\—k+2 - l)v
cer, _zk-2(xrm\—k+2 - l)}

A=1
= (z - 1) '90 }’g’,
where P, = ™h;y(z) {1,2,---,2™'},0<i< A -2, and

P, = {37'“()"”11;:-1(:5){1,% e ,-’l—""'k}} U {— ma-k-1) ({1, 2, - ,xk'z}}-

D, represents each of the cyclotomic classes A times if every P, is an SDRC for
0<i<A-1 Itiseasytoseethat, for 0 <i<A—2, P isan SDRCifz € C,.
Suppose z € Cy, hk_l(.‘l:) € Cjk’ —hm,\_(;,_.)(:r) € Cg,‘. Then Py, is an SDRC if {jk,
1+ Gk, 2+ jky oo+ (m = k) + Jiy &y 1+ &k, - -+, (kK — 2) + &} contains the m residue
classes modulo m. This will be true if ;. equals gm — k) + 1 + ji modulo m. Hence
P,_, is an SDRC if (m — 1)ji + & + k — 1 = 0 (mod m). This is equivalent to the

condition that gy (z) = =€~ [Ak—1(2)]™ " hma-(e-1)(z) € Co With z € C.

By Lemma 2.1 there exists a Vi(m,t) in GF(g) if there exists an element z €
GF(q) satisfying the following:

(i) f(z) =€™"'z € Cy;

(i) gi(z) = =€ [hi(z)]™ hmr-i(z) € Co forany i, 1 <i<u-—1.
We shall show that such an element always exists in GF(q) whenever g > Bj(m).

Let x be a non-principal multiplicative character of order m of GF(q). That is,
x(z) = 8" if z € C, where 6 = %' is the m-th root of unity. Let

A= x(f(z))
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and
B =x(gi(z)). i=12.---,u—-1

These functions have the following values.

m. if f(z) € Co,
1+ A+ A2+...+A™ 1 =2 0. if f(z) ¢ CoU {0},
1. if f(z) = 0.

Foranyi, 1<i<u-1,
m. if gi(z) € Co,
14+B;+B2+---+BM'={ 0. if gi(z) ¢ Cou {0},
1. if gi(z) =0.

From these form a sum

s= ¥ (1+A+A"’+-~+A"‘")ul:Il(1+Bi+B?+~‘-+B;"") )
z€GF(q) i=l

This sum is equal to m*n + d where n is the number of elements z in GF(q)
satisfying the conditions (i) and (i), and d is the contribution when either f(z),
a1(z), -+ 1 gu-2() or gu—1(z) is O.

Now if f(z) = 0 then z = 0. gi(z) = —€ & Cy U {0} and the contribution to §
is 0. If g;(z) = O for some i (1 < i < u— 1), then the contribution to S is at most
m) - m*~! = Am*® noting that deg(hi(z)) + deg(hmr-i(z)) = mA. Hence the total
contribution to S from these cases is at most

u—1
F=Y dm*=(u-1)Am"

i=1

Thus if we are able to show that |S| > F, then n > 0 and there exists an z € GF(q)
satisfying the conditions (i) and (ii). Expanding the inner product in (2) we obtain

u—-1 . .
S= Y o1+y 3 % BB

zeGF(q) r=1 1<i1<<irLu—-1 1<H1,-grSm—1 z€GF(q)
m—1 m=-1u—-1 i .
sph )
S TS S > > T BB
s=1 reGF(q) s=1 r=l 1<€i1<<irSu—-1 1<), jr<m—1 z€GF(q)

®3)

To estimate the sum, we use Weil’s theorem on character sums.
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Now the order of x is m. If f(z)*g1(z)"* - - - gu—1(z)*-* = p(x)™ for some p(z) €
GF(g)[z], we can show that s = j} = j = -+ = ju—1 = 0 (mod m), a contradiction.
In fact. by definition we have f(z) = €™ 'z, gi(z) = ~€ (hi(z))™ " hmr-i(z) for
i(1<i<u-—1), where he(z) = =z +---+z+1,1 <€ < mi -1 Clearly,
s =0 (mod m) since f(z) is coprime to any gi(z), 1 < ¢ < u—1. Let  be a primitive
mA-th root of unity in some extension field of GF(g). Then hms—;(z) must have
an irreducible polynomial d(z) in GF(g)[z] as its factor such that d(z) has 7 as its
root. Since any he(z), 1 € ¢ < mA — 1, cannot have 7 as its root, he(z) must be
coprime to d(z). This forces j; = 0 (mod m). In a similar way, we can prove that
J2 = = jy-) =0 (mod m).

Therefore, by Theorem 1.8 forany s (1 <s<m-—1),foranyr (1<r<u-1)
we have

> Bi---Bil<(rmA-1)y7 (4)
z€GF(q)
and
AB}'...BI'| < rmA g (5)
zeGF(q)
foranyil,-- "y iy (l S <<y su_l)lforaanls"'yjr (1 Sjls"'vjr < m_l)
Note that
> l=gq (6)
zeGF(q)
and
m-1
> A= Y
s=1 zeGF(q)
From (2)-(7), we have
u—1 u—1 .
IS = ¢-3 . (m—1)"(rmA - 1)\/g
r=1
m—1u—1 u—1
-y ( , ) (m - 1)rmA/q. (8)
=1 r=1

Since
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and
E u 1 ( 1)’ r= (u ])(m )mu—‘z
m - = . — I .

(8) becomes

IS1 2 q- EVa.
where E = Au - 1)(m — 1)m* — m*~! + 1. Obviously. |S| > F if ¢ > By(m), where
By(m) = [E*'“E + .]l, which indicates that there exists an element x in GF(q)

satisfying the conditions (i) and (ii) whenever g > B,\(m) Consequently, the proof
of Theorem 1.5 is obtained.

3 The Case: Vy(m,t) for m =2,3

In this section, we shall determine the existence of V2(m,t) for m = 2,3.

We first consider the case of m = 2. It is easy to calculate that | B2(2)] = 64. By
Theorem 1.5, we have the following.
Lemma 3.1 There exists a Vo(2,t) for any prime power 2t + 1 > 64.

So, to determine the existence of V»(2,t) in GF(2t + 1) completely, we need only
to discuss the prime powers ¢ = 2t + 1 < 64. Specifically, we need only to consider
the following cases:

(a) g=2t+1is a prime and 5 < ¢ < 64;

(b) q € {32, 3%, 3¢, 5% 7%}

Lemma 3.2 There exists a Va(2,t) in GF(q) for any prime ¢ =2t + 1 € [5, 64] with
one ezception of ¢ = 5.

Proof. The nonexistence of a V3(2,2) has been verified by a computer. For any
prime ¢ = 2t + 1 € (7,64], wmh the aid of a computer we have found an element z in

GF(q) so that B = {1,z,z2, 1% 2%} forms a Vo(2 t). We list the pairs (g, z) in Table
3.1. By Lemma 1.3 (i), there exists a Va(2, 9—) for g € {29,37,61}.

For the missing case ¢ = 7, we take B = (0,1,3,6,5). It is readily checked that

B forms a V2(2,3). 1]
q T q T q z | q z
7 no [ 11 2 13 2|17 3
19 2 23 5 31 3| 41 12
43 3 47 10 | 583 2 | 59 2
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Table 3.1 Pairs (g,z) for g € [7,64]
Lemma 3.3 There ezists a Va(2,t) in GF(q) for any q € {3%,3%,34,5%, 7?}.
Proof. For each g € {3%,3%,3%,5% 7%}, we take the irreducible polynomial f(z) to

construct a GF(q). With the aid of a computer we have found an element b in F(q)
so that B = {1,b,b?,b°% b} forms a V5(2,t). We list the triples (g, f(z),b) in Table
3.2, ' 0

g flz) b g f(z) b

3 2+l z+1 | & o +2r+1 z°+1
3 zl+z+2 242 |5 242 z+1
7 241 z+3

Table 3.2 Triples (g, f(z),b)

Combining Lemmas 3.1-3.3 we get the proof of Theorem 1.6 immediately.

Now, we consider the case of m = 3. It is easy to calculate that [ B;(3)] = 43479.
By Theorem 1.5, we have the following.

Lemma 3.4 There ezists a V3(3,t) for any prime power 3t + 1 > 43479.

So, to determine the existence of V5(3,t) in GF(3t + 1) completely, we need only
to discuss the prime powers ¢ = 3t+1 < 43479. Specifically, we need only to consider
the following cases:

(c) ¢ = 3t + 1 is a prime power with ¢ even and g < 43479;
dgeE={2": 2<n<T7}.
By Lemma 1.2 (ii) and the results in Colbourn [8] we have the following.

Lemma 3.5 Let q = 3t+1 is a prime power with t even. Then there ezists a V5(3,1)
in GF(q) with one exception of ¢ =1T.

Lemma 3.6 There erists a V2(3,t) in GF(q) for any ¢ € E with one exception of
q =24 and with one possible exception of ¢ = 2'°.

Proof. The nonexistence of V3(3,5) in GF(2*) has been verified by a computer. For
any g € E'\ {24,2'°}, we take the irreducible polynomial f(z) to construct a GF(q).
With the aid of a computer, we have found a V(3,t) vector B in GF(g), which is
listed as follows:

q=2, f(z)=2°+z+1, B=(0,1,z,2% 2 +z,28 + ¥+ 22 + 2 + 1,22 + 1);
g=2, flz)=28+2'+23+z+1, B= (0,1, z,z+ 1,23+ z,2% 2" + 2% + 2 + 23);
g=2" f(z) =z +23+1, B=(0,1,2,z+ 1,2%, 2% + 7,22 + 1);

g=2"%, f(z) =z +2°+1, B=(0,L,z,z +1,2%, 2% + z,2% + 1);

0
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We are now in a position to prove Theorem 1.7.
Proof of Theorem 1.7 Combining Lemmas 3.4-3.6 we obtain the conclusion. o
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