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Abstract

We construct a complex K" of m-ary relations, 1 <m < n+1,
in a finite set X # 0, representing a model of an abstract cellular
complex. For such a complex K™ we define the matrices of incidence
and coincidence, the groups of homologies Hm (K™) and cohomologies
H™(K™) on the group of integers Z, and the Euler characteristic.
On a combinatorial basis we derive their main properties. In further
publications we will derive more analogues of classical properties, and
also applications with respect to the existence of fixed relations in the
utilization of the isomorphisms will be investigated. In particular, we
intend to complete the theory of hypergraphs with the help of such
topological observations.

§ 1 The complex of multi-ary relations

Let X = {z),---,2,} be a set of 7 > 2 elements, and let, furthermore,
X = X', X2,..., X7t . with 1 € n < r be a sequence of cartesian
products (cf. [32]) of the set X : X™*! = X™ . X with m = 1,...,n.
Any nonempty subset R™ C X™,m > 1, is said to be an m-ary relation of
elements from X (see [32] and (34]). The set R! C X! defines a subset of
elements from X. The m-ary relation R™ consists of a family of sequences
with m elements from X in a given order. For example, (i, , Tiy, . -+ Ti,, )
is a sequence from R™ in which the elements can be repeated. If there is
no repetition in the sequence (z;,, Zi,, . - -, Zi,, ), then any order of elements
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from this sequence z;,,Zj,,...,%;j, | < m, which preserves the given order,
is called hereditary.

Now we consider a finite subset of relations R!, R?,..., R*t! of the infinite
set mentioned above, and we require that this subset satisfies the following
conditions:

L Rl=X'=X;
II. R*H =9,
III. If R™ = §, then any sequence (z;,,Zi,,.--,%i,,) € R™ contains the

pairwise distinct elements of X, m =2,3,...,n+1.

IV. Any subsequence (zj,,Zj5,...,%;), 1 £ I <m < n+1, of the se-
quence (z;,, Ti,, - - . , Zi,, ), Which represents a hereditary sequence, is
contained in R'.

Definition 1. A family of relations R!, R?,..., R™*! which satisfies the
conditions I - IV is called a finite complex of multi-ary relations and denoted
by R™*! = (R, R?,...,R™1). O

Moreover, since we will not investigate the infinite family of multi-ary re-
lations, we can simply speak about the complex of relations R"+1.

According to the conditions I, II, IV it turns out that any set R™ of the
complex of relations R**! is nonempty.

Considering the complex of relations R? = (R!, R2), it is obvious that this
complex represents an oriented graph, cf. [7], [12], and [60]. Therefore it is
natural to call the complex of relations R™*! also an oriented hyperpgraph.
This notion is frequently used in the literature, but it represents a structure
distinct from the known notion of a hypergraph (see [5], [6], [40], [44],
[57], and [60]). Below we will describe a procedure showing a possibility
of obtaining the notion of a hypergraph from the notion of an oriented
hypergraph.

Definition 2. Let there be given two complexes of relations R™*+! =
(R}, R3,...,RP*!) and R"*! = (R, R?,...,R™*!) with m < n. If for
any integer I,1 < ! < m+ 1, Rt C R' holds, then R™*! is said to be
a subcomplez of the complex R™! (R™+1 c R"+1). In the case that
R, =R', 1 <1< m+1, the complex R™*! is called the skeleton of degree
m + 1 of the complex R**1. O
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Clearly, the skeleton of degree 2 of the complex of relations R™*!,n > 1,
is an oriented graph. Indeed, this complex can be represented as a pair
G = (X,R?), ie., as a set X of points (vertices) with the binary relation
R? which does not contain the elements (z, z) (usually called loops), cf. [5],
[7], and [40].

Definition 3. The complex of relations R™*! = (R!,R?,...,R™) is
called connected if for any two elements z;,z; € R! there exists a set

T = Ty, Tty,...,%, = z; of elements of R such that one of the pairs
(t,,%t,41 ), (Tt,4,, %2,) belongs to RZ, 7 =1,2,...,s—1. The set of pairs of
elements z; = xy,,24,,...,%:, = x; is called a chain of dimension 1 joining

the vertices z; and z;, which themselves are said to be the extremities
of this chain. Denote the chain of dimension 1 with extremities z;,z; by
L'(z;,z;). (Later on, L'(z;,z;) will be represented also in an algebraic
form.) 0O

Definition 4. Let there be given two complexes of relations R™+! =
(R}, R2,...,RM*Y) and R™+! = (R}, R%,...,R™*1). The union of the
complexes R™+1 Rn2+1 g the complex R = Rm+1y R™+! = (R} U
RI,R2URZ,...), where n = max{ni,n2}. The intersection of the com-
plexes R™+1 Rna+1 jg the complex R™t! = R™M+l N R+l where n =
min{ny,ny}. O

The following assertion is a generalization of a theorem formulated in [27]
and [28], and it refers to the majority of theorems and corollaries given
below.

Theorem 1. The complex R™t1 is connected if and only if there are no
two complezes R™M+1, R"2+1 gatisfying the equality R™H! = RMH1IURPa+2,
where RM+1 A Rr2+1 £ (.

Proof.

1. Let R**! = (R, Ry,...,R™*!) be a connected complex of rela-
tions, and z be an arbitrary vertex of it. Consider the set of all
vertices z' € R™*+! for which there exists a chain L'(z,z'), and de-
note this set of vertices by R.. It is obvious that if an element z;,
of a sequence (Tig,...,Tiyy---1%in) € R™*! belongs to R., then
any other elment z;,, 1 < k < m, belongs to R, (condition IV). So
the complex R™*! = (R}, R2,...,RM*!), for which any sequence
(2 Thys-- a2l ) € R, 1 < my < my, contains an element
z' (' = =iy, say) such that there exists the chain L'(z,z'), forms
a subcomplex of R+ (R™+1 C R*H1).
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Now let R"2+! = (R}, R},..., Ry3**!), where R** = R™\R™ , my =
1,2,...,n5. It is obvious that the following equalities hold: R} =
O, R2 = 0,...,Ry**! = §; otherwise we obtain a construction with
the connection of R™*!. Since z is an arbitrary vertex of the subcom-
plexes R™+1 and R"2*! with the property R™+! = Rm+lyRnz+l,
the intersection R™+1 N R™2*! £ @ does not exist.

2. Assume the contrary, i.e., let R®*! be a non-connected complex. In
the same way as above one can construct the complexes R™+! =
(R}, R%,...,RP'*!) and R™+! = (R}, RE,...,R}**), where R} =
0,R2 =0,...,R3*™ =@ and for which R**! = Rm+1yRre+l and
RMm+L AR+ £ ) a contradiction. =

Now let T be a fixed element of X. Consider the subset X C X of all
elements ¢’ € X (including Z) for which there exists a chain L'(%,z').
Let X' = X,X°,...,Xm,... be the sequence of natural powers of X and
consider the intersections B := X' N R™® m=1,2,...,n+ 1. Let n; be
the maximal index such that R™M+! # 0,

Definition 5. The subcomplex of relations R2*! = & ',... R
is called a connected component of the complex of relations R*+t1. O

It is obvious that this complex does not depend on . Therefore, in the
notation of the conneced component, the index T will be omitted, i.e., we
simply write R™+1,

Theorem 2. Let R+ Rn2tl | Rt be g family of all connected
and pairwise distinct components of the complex of relation R™*t!. Then
the following equality holds:

RAHL = R YRty UR™H! (1)

where R%T MR =0 fori#j andi,j=1,2,...,q.

Proof. The proof of this statement is quite easy. First, determine the
inclusions R™**! ¢ RMm+ly R+l y .. U Rt and Rmtl 0 Re2Hl 0
...NA R+ c R whence equality (1) is obtained. Second, verify the
equality R* ! N R+ =@ fori # j and i,j = 1,2,...,¢. And third, by
using condition II one gets n = max{ni,ns,...,ng}. M

Definition 6. The complex of relations R**! = (R!, R?,..., R"*!) is said
to be locally complete (see [44]) if for any m € {1,2,...,n} and any se-
quence (Tig, Ziy , - - -  Ti,, ) € R™H1 the relation R™+! contains all sequences
obtained after all permutations of indices 4g,%1,...,4m. O
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The following two ezamples of locally complete complezes might be instruc-
tive.

1. The symmetric graph R? = (R!, R?) without loops, where R? is a
binary and symmetric relation, is a locally complete complex, cf [4],
[40], and [45].

2. According to condition III, the complex of relations R**! = (X} =
XL, X2, ..., X3, where X[t represents the set of all sequences of
X m+1 without repetitions of elements from X, is a locally complete
complex.

Following the purpose announced in the title of this paper (and by analogy
to what is known from the classical literature about combinatorial and
algebraic topology) the conditons I — IV suggest to use new notions and
notation, keeping the equivalence of exposition of the complex relations
and the properties we are interested in. Having this in mind, we give the
following definitions.

Definition 7. Any sequence (zig,...,Ci;,-..,%i,) € R™*! is said to be
an abstract simplex of dimension m and denoted by

S™ = (Tig, Tiys - - - Ti,, ) € R, m = dim S™.

Any hereditary sequence (zj,,%j,,. . .,%;) € R'*! which can be considered
as a subsequence of the given sequence S is called a face of dimension I of
the simplex S/ and denoted by S} = (2j,,%j,,...,%;), S§ C S A face
of dimension 0 is also called a vertez of S*,0<m<n. O

Thus the number of distinct abstract simplices of dimension m, that can
be constructed on the set of m + 1 pairwise different elements from X, is
determined by the number of permutations of these elements of a simplex.
Hence one can imagine the distinct abstract simplices of dimension m + 1,
which are strained on the elements z;, 2, ..., Zn4+; from X, as membranes.

So we can represent the complex of rela,tlons R = (RLR?,...,R""1)in
the following way: S® = R1,S! = .,8” = R™t1 and (89, Sl .,87) =
K™, keeping for K™ the name "complex" where n = dim K™ is the dimen-
sion of K™. The following statement is obvious.

Theorem 3. The complex of relations K™ is not a simplicial abstract
complex since many simplices can be strained on the same set of vertices.
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Definition 8. Let S € S™ be an abstract simplex of dimension m, i =
1,2,...,am, and st SI* be the set of all simplices of dimension m + 1 from
S™ having S as common face. This set st S[* is called the star of the
simplex S, m =1,2,...,n (cf. [16] and [27]). O

Depending on what is needed, the complex of relations K™ will be rep-
resented in one of the equivalent forms: K™ = (R!,R?,...,R™1), K™ =
(89,8%,...,8™).

Further on, it is convenient to represent the family of simplices S°,§},...,8™
in the following way:

8O = {S,8%,...,50,}
st = {s1,5},...,5.,},
S™ = {SP.SP..- ST},
S* = {S},55,....55,},
where ap, 1, ...,Q, are the respective cardinalities of these families.

Definition 9 ([1], [2], [4], [25]). Given the complex of relations K* =
(89,81,...,8™), the function of integer values

X(K™) = (-1)e
i=0

is called the Euler characteristic of this complex. 0O
The following corollaries are obvious.

Corollary 1. If K™ and K™ are two subcomplezes of the complex of
relations K™, then

X(K™ U K™) = X(K™) + X(K™) - X(K™ N K™).

Corollary 2. If K™ K™2,..., K™ represent all connected components of
K™, then
q 3
X(K™) =Y X(KY). 2)
i=0
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§ 2 The orientation of simplices and the incidence matrices

Let K™ = (S°,8,...,8™) be a complex of relations, and S™ C S§™, i =
1,2,...,am, be an arbitrary simplex represented by the respective sequence
SM = (@ig,Tiyy.-+»Tin ), m = 0,1,...,n. For the sequence of indices
(40,%1,---,im), one might consider the number of transpositions (cf. [32])
of the sequence (0,1, ...,m) and denote this number by t(io,%1, .. .,%m)-

Definition 10. If for S* € S™ the number (4o, %1,...,%m) is even, then
the simplex S is said to be positively oriented and denoted by +S[".
Otherwise, if this number is odd, then the simplex S is negatively oriented
and denoted by —S*. O

Now let Sm' € S™~! be a simplex of dimension m — 1 such that S]"~ -1¢
ST, ie., SJ'" ~1 is a face of S™. Assume that the simplices S and S""
have the representations

(xioazin” 2 Tip 19 Tig s Tigyqy - -azm) )
(xio,xila'- ')wik_nxip.!xik.(..u- . -,wm) y

sy
g1

where the symbol " signifies the absence of z;,.

Under these conditions the simplices ST and (—1)*S7*~" are called coher-
ent, and S and (—1)’”‘13;-"'l are said to be non-coherent.

We will not extend the notions of coherence and non-coherence to simplices
whose difference of dimensions is larger than 1.

Definition 11 ([2], [12], [25], [48]). For the pairs of arbitrary simplices
STt € S"‘,S]'-""l € S™ we will introduce the following symbols:

1. [S7: st = g%(m, A) is called the coefficient of A-incidence of ST
and S™~! in the given order, where

+1 if S and S™=1 are coherent ,
ej-(m, A)y=¢ -1 if S and .S'"‘_1 are non—coherent

0 if S"“1 ¢ S'" are coherent ,

withm =1,2,...,nandi=1,2,...,am_1 aswellasj = 1,2,...,an.
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2. [SP : St = €l(m, V) is said to be the coefficient of V-incidence
of the simplices ST* and .S',"""1 in the given order, where

+1 if S and S**! are coherent ,
gm, V)= -1 if ST and S;*! are non-coherent ,
0 if SP¢ S are coherent

withm =0,1,...,n-1,j =1,2,...,ay and | = 1,2,...,am41.
]

Corollary 3. The following equalities hold:

e§(m,A)=e{(m—1,V), where m=1,2,...,n,
e;(m,V) =¢l(m+1,A), where m=0,1,...,n—1

andm=0,1,...,am-1, j=1,2,...,am, andl = 1L,2,...,am41.

Remark 1. The symbols A and V, taken from [14] and [28], are suitable
for the exposition here.

Remark 2. The coefficient of incidence [SJ* : S;*~!] for the simplices SP =
(ZjorTjrs- -+ i) and SP~1 = (4o, Tky, - - ., 2k,,_, ), Where the sequence
TkosTkys- -+ s Tkmyy CONSiSts of the elements of ST but is not a hereditary
sequence of the sequence (zj,,%j,,--.,%;,), equals 0 : Sp*~1, where the
latter is a face of the simplex SP* = (zy,, %y, . ., Tk, )-

Definition 12. Given the complex of relations K = {S°,81,...,S"}. The
matrices

L I™(A) := (e5(m, A))am-am-12m = 1,2,...,n, where i and j indicate
the order of respective lines and columns with i = 1,2,...,a,—; and
i=12,...,anm, as well as

2. I'™(V) := (e4(m, A))ap-amsrsm =0,1,...,n — 1, where [ and j indi-
cate the order of respective lines and columns with I = 1,2,...,am
and j =1,2,...,0m41

are called matriz of A-incidence of dimension m and matriz of V-incidence
of dimension m of K™, respectively (see [25] and [48]). O

This definition yields
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Corollary 4. For the complez of relations K™ the pairs of matrices I™(A),
m=12,...,n and I™(V), m=0,1,...,n—1, are described in the trans-
posed form by (I™(A))* = I™ (V) and (I™(V))* = I™+1(A), respec-
tively.

§ 3 The homologies of the complex of relations

Given the complex of relations K™ = (S9,81,...,8") and, e.g., the additive
group Z of integers.

Definition 13. Consider an arbitrary simplex S* € S™ and the following
sums:

ASPr = €5(m,A)S] ~1+el(m, A)SP 4.

) 3)
+~f-:j""‘(m,A)S{,,"m‘_ll )
where m=1,2,...,nand j =1,2,...,an, as well as
VSP = €l(m,V)SPH! +e)(m, A)S7H + ... "
4
+el,,,(m, V)STHL
where m =0,1,...,n—1and j =1,2,...,a,;. These sums are called the

A-border (border) and V-border (co-border) of the simplex ST* and denoted
by AST* and VS?, respectively. O

For all S? € §8% i = 0,1,...,, and all SJ'-‘ € S*j=12,...,as, let
us consider AS? = 0 and VS8} = 0, respectively. The formulas (3) and
(4) can be more simplified. For example, let ST* be represented by the
corresponding indices, i.e., S7* = (JosJ1s---+Jky---Jm), and its faces be
represented by S5, S™~1, ... S™~1, where Sp*~! is the face of S* being
opposite to the vertex ji. Then, according to the definition of coherence of
simplices S7* and (—1)*Sp*7%, i.e., e§(m,A) = (-1)*, formula (3) can be
written as follows:

ASP = (=1)°8P "t + (1)'SPT 4+ (CDESPT 4

(3"
+(-1)mSm-1,
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Further coefficients of A-incidence (which do not occur in (3')) are, by
definition, equal to zero.

In the same way (4) can be simplified. Indeed, let S+, S+, ., S,j"'(x
be a set of simplices of st S7*; then we obtain

VSP = &l (m,V)SPt + e, (m, V)SP + .

7

(4)

+e]. (m,V)SrH!

i(m) Ligm) *

Again, by definition, the coefficients not occuring in (4') are equal to zero.
The advantage of the fomulas (3) and (4) will be verified below.

Now let f : S™ — Z be a V-mapping with the following property: if S™ €
S™ is a negatively oriented simplex (i.e., it can be written as —S™), then
f(=S™) = - f(S™). Given S™ = {S[*, S7*,..., ST}, we have f(S™™) = g;,
where g; € Z, and for simplicity we will write ¢;S™ with m = 0,1,...,n
andi=1,2,...,as, (cf. [25] and [48]).

Definition 14. Given the family S™ = {S[*, S*,...,S"}, m =0,1,...,n.
The sum
987" + 9257 + ... + gam S,

is called the m-dimensional chain of the comlex of relations K™ and denoted
by L™. 0O

Let L* = g}S* + g3S5 + ... + gL S LT = ¢S + @3S + ... +
g2 ST be two m-dimensional chains. For example, the chain L!(z;, ;)
from Definition 3 can be written as L'(A) = g;, S}, + 96,5}, + ... + 9,5,
where g,,9t,, - - ., gt, are equal to +1 or —1, depending on the fact whether

or not the directions of the chain and the simplices of dimension 1 coincide.

Definition 15. By
LT+ L3 = (91 +63)ST" + (92 + 93)S5* + ...+ (gk,. + 62.)Sm. (5)

we describe the sum of the chains L* and LT*. O
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Theorem 4. With respect to the operation defined by (5), the set L™ of all
m-dimensional chains of the complex of relations K™ forms a commutative

group.
By (5) the proof of this statement is obvious.

Definition 16. Let L™ € L™ be an arbitrary chain, m = 0,1,...,n. Then
the equality

AL™ = i AST + g2 ASP* + ... + ga, AST (6)

is called the A-border (border) of the chain L™. O

Consider AL = 0. It is natural to call any L™ € L™ a A-chain, too. This
will be done below. So the notations L™ and AL™ are equivalent.

Corollary 5. The operation of creating a A-border of the A-chain L™ €
L™ is a homomorphism, denoted by

Aim): L™ — L™, m=1,2,.

It is natural to say that this homomorphism is a A-homomorphism. This
is even necessary since we will use also so-called V-homomorphisms, which
immediately can be obtained by applying the respective operations for cre-
ating the V-border with respect to VS[*, 4 = 1,2,...,0m, and doing the
necessary permutations on the left side of (6) for m =0,1,...,n.

Denote by InA(m) the image and by Ker A(m) the kernel of the homo-
morphism A(m).

Theorem 5. For all L™ € L™ the following equality holds:
AAL™ =0, m=0,1,...,n

- Proof. To verify this, it suffices to show that AAST* = 0 for any S]" €
S™. Let SJ* be represented by the indices (jo,J1,---»>Jm)- Accordmg to
the deﬁmtlon of the coefficient of A—mmdence and (3) we have AAST* =

A(Zk—o( l)k’gm—l) = A(Zk-—o(]m]l) 1.7ka ,]m))a where the SymbOl
again denotes the absence of the element j. Hence

AAS Ek=0( l)k(zs_o( 1)8 (.701.71) ’Jk’ ,jm)'i'

E:‘__.k.,.l(—l)’—l(jo,jl, v a.;s" e 15?6: T ajm))-
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Observe that the (m — 2)-dimensional simplex (o, 71, .-+, Js: -+« ks - - + » jm)
occurs twice in this sum; first with the A-coefficient (—1)* - (—1)%, and
second with the opposite A-coefficient (—1)*-(—1)*—1. So it turns out that
AAST =0 with j =1,2,...,0m, (see [25]). =

Based on this proof we observe

Corollary 6. For the complex of relations K™ the following equality holds:
I™"YA) - I™(A) =0, m=1,2,...,n. (7)
Proof. Indeed, we have the following two observations:

1) Using the form in which AST" was defined (see (3)) and A(AST*), m =
1,2,...,n, and grouping suitably the (m — 2)-dimensional simplices
SP-2,5772,...,8™2, it turns out that the coefficient of ST*~2 is
the intersection element of the i-th line and j-th column of the ma-
trix I™~1(A) - I™(A).

2) Denoting by {(m — 1,A) the i-th line of the matrix I™~!(A) and
by €;(m,A) the j-th column of I™(A), we obtain the coefficient of
S7*~? in the matrix I™~!(A-I™(A). Then, according to the equality
AAST = 0, the scalar product (¢'(m — 1,A),¢;(m, A)) equals zero,
which proves the equality (7). =

Definition 17. The chain L™ € L™ with the property AL™ = 0 is said
to be the A-cycle of dimension m of the complex K™, and it is denoted by
zZ™A)=L™,m=0,1,...,n. O

For example, if in the chain L'(z;,z;), represented by L'(A) = g;, S}, +
9,55, +...+9:, S}, the equality z; = z; holds, then we have AL*(A) =0,
i.e.,, AL'(A) = Z}(A) is a A-cycle of dimension one.

Theorem 6. With respect to the addition of A-chains, the set of all A-
cycles of dimension m forms a commutative subgroup of the group L™.

The proof of this theorem is trivial.
Denote the subgroup of A-cycles of L™ by Z™(A), m =0,1,...,n.

Definition 18. Given two A-chains L™ € L™ and L™*! € L™*! with the
property L™ = AL™+1. The A-chain with this property is called A-cycle
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of dimension m being A-homologic with 0, and the property itself is denoted
by L™ = Z(A) ~ 0. Further on, two A-cycles Z[*(A), Zi*(A) € Z™(A)
are said to be A-homologic if Z*(A) - ZP*(A) ~0, m =0,1,...,n—1 (see
(1], (2} [14], [25], [28], [50], and [54]). O

Theorem 15. With respect to the additive operation of L™, the set of all
A-cycles of dimension m and being A-homologic with 0 forms a subgroup
of the group Z™(A), which is denoted by Z§*(A).

Again the proof is obvious.

It is interesting to mention that the existence of the group Z§*(A) results
from the formula AAL™ = 0, m = 0,1,...,n. Also it is obvious that
Z(A) ~ 0, since for the complex of relations K™ there are no A-chains of
dimension n + 1.

Now we are ready for the important notion of the quotient group of K™.

Definition 19. The quotient group Z™(A)/Z§(A) of the complex of
relations K™ is called the group of A-homologies (simply homologies) of
dimension m over the group Z and denoted by A™(K™), m =0,1,...,n.
The ranks of these groups are called Betti numbers. O

It should be remarked that in [1], [2], [48], [50], and [54] such groups are
denoted by Hpn(K™), m =0,1,...,n.

Now, applying Z, let us form the so-called groups of cohomologies (cf. [14]
and [25]) of the complex of relations K™.

Simplifying the notation, we will introduce (as above) the notion of a V-
chain (co-chain), which is analogous to that of a chain of respective dimen-
sion.

Definition 20. Let L™ € £™ be an arbitrary V-chain, m = 0,1,...,n.
The V-border (co-border) of the V-chain L™ is given by the equality

VL™ = g;VSP + g,VSF + ... + 0, VST, . D ®)

Consider L™ = 0.

Corollary 7. The operation of forming the V-border of a V-chain L™ €
L™ represents a V-homomorphism, denoted by

V(im): L™ — L™ m=0,1,...,n—-1.
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The proof is trivial.

Denote by I,V(m) the image and by Ker V(m) the kernel of the V-
homomorphism V(m).

Definition 21. The V-chain L™ € L™ with the property VL™ = 0 is
called V-cycle of dimension m of the complex of relations K™ and denoted
by Z®(V)=L™, m=0,1,...,n. O

Theorem 7. With respect to the addition of V-cycles from L™, the set of
all V-cycles of dimension m forms a subgroup of L™, which is denoted by
Zm™(V),m=0,1,...,n.

Again the proof is trivial.

Definition 22. Given two V-chains L™ € L™ and L™ ! € L™ ! with
the property VL™=! = L™, The V-chain L™ with this property is called
V-cycle of dimension m being V-homologic with 0, and the property itself
is denoted by L™ = Z™(V) ~ 0. Two V-cycles Z[*(V), Z*(V) € 2™(V)
are said to be V-homologic if Z*(V) - ZP*(V) ~0,m =0,1,...,n — 1.
m]

Theorem 8. With respect to the additive operation from L™, the set of
all V-cycles of dimension m being V-homologic with 0 forms a subgroup of
Z™(V), m =0,1,...,n — 1. This subgroup is denoted by ZJ*(V), and for
m = n we have ZJ(V) = Z§*(V).

The proof of this statement is also obvious.

Definition 23. The quotient group Z™(V)/Z{*(V) of the complex of
relations K™ is called the group of V-homologies (simply cohomologies)
of dimension m of this complex over Z and denoted by V,,(K®), m =
0,1,...,n. O

Again we mention that in [1], [2], [25], [48], [50], and [54] these groups are
denoted by Hpn(K™), m =0,1,...,n.

The ranks of these groups of V-homologies (cohomologies) are certain in-
tegers. We call these ranks the Betti V-coefficients of the corresponding
dimension.

Remember that the existence of groups was proved by the formula AAL™ =

0,m = 0,1,...,n. Thus, the same will be done for ZJ*(V)(K™), since
otherwise the corresponding construction is questionable.
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Theorem 9. For any V-chain L™ € L™ of the complex of relations K™
the following relation holds:

VVL™ =0, m=0,1,...,am.

Proof. According to the definition of VL™ (cf. (8)) it is sufficient to verify
that

VUSSP =0,i=12,...,0an.

Assume I™+1(A). I™+2(A) = 0. The matrix on the left side has the scalar
product (¢!(m+1, A),e;(m+2, A)) as generator element, where e'(m+1,A)
and ¢j(m + 2, A) describe the i-th line of I™*+!(A) and the j-th column of
I™2(A), respectively. Transposing the matrix I™+1(A) - I™*2(A), we get
(I™HL(A) - I™F2(A))* = IM+2(A) - IH(A) (by putting down the index
of transposition), and so we have I™+2(A) - I™*+1(A) = 0. The generator
element of the matrix from the left side is (e;(m + 2, A),&'(m +1,4)) =0,
where £;(m + 2, A) is j-the line of the matrix I**%(A) and e*(m +1,A) is
the i-the column of I™+1(A). By Corollary 3 we obtain

ei(m+2,A) =€l(m,4),
wherem =1,2,...,n—1, and
eim+1,V) =¢l(m+2,4),

wherem =0,1,...,n =2, i =1,2,...,0m, § = 1,2,...,0m41, and | =
1,2,...,a,,.+2.

From the transposition of matrices (and by a suitable change of indices) we
get

(m+1,V),ei(m+1,V)) =0,i=1,2,...,am, 1 =1,2,...,am+2,

I;"‘”(A)=s}(m+2,A)=eZ(m,V)=I’”(V),m=0,1,...,n—1,
Im2(A) = eh(m +1,V) = ¢ (m +2,4) = [™+(V),

with Tg. = -1,0,1,...,n—2,% = 1,2,...,am, j = 1,2,...,0m41, and

l=1, yo ooy Q2.
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This yields the equality
mY(v)yr~v)=0, m=0,1,...,n-1. (9)

The generator element of the matrix of this equality is (¢! (m+1, A), e;(m+
1,V))=0,withi=1,2,...;am and [ =1,2,...,am42.

Now we return to the sum VVS;, i =1,2,...,an, and group the same ele-
ments with respect to S**2. We obtain the coefficient {¢!(m+1, V), &;(m+
1,V))=0fori=1,2,...,ap, and [ = 1,2,...,am42. Thus the theorem is
proved. ®

Remark 3. For the group of homologies and cohomologies of the complex
of relation K™ the determination of the directions of its simplices is a tech-
nical problem, and it does not depend on the construction of groups (cf.
[14), [25), and [47)).

Definition 24. Let K®,n > 1, be a complex of relations. We call the

complex K™ an acyclic complez if A'(K™) = A2(K™) =...= A™(K™) ~0.
a

Before we can formulate the next theorem, we have to introduce a classical
notion (cf. [14] and [48]), and according to this we will also prove a lemma.

Definition 25. Let K™ = (§%S%,...,8") be a complex of relations, S® =
(89,53,...,52.) the family of 0-dimensional simplices of this complex, and
L% =180+ 9259 + ... + gae 53, an arbitrary A-chain from £°. The index
of the A-chain L? is said to be the operator

I:'1°—7Z (10)

with the property I(L%) = g1+ 92 +...+ ga,- O

It is obvious that if L9,L3 € L° are two arbitrary A-chains, then the
following equality holds:

I(LY+ LY) = I(LY) + I(LY). (11)

Lemma 1. Given the connected complez of relation K™ = (S°,S},...,8")
and the group L° of 0-dimensional A-chains for K™. The A-chain L° € £°
is homologic with 0 if and only if I(L°) = 0.
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Proof. Let S! € S! be a simplex that is positively oriented and can be
written as S* = (87, 57), where S?, 57 € §% i # j. In this case A(g-S') =
gS;-’ — 98?2, ie., we have I(A(g - S')) = 0. According to (10), for any
z2%(A) € Z(A) the relation I(A2°(A)) = 0 holds. Now let I(L') = 0,
where L' € £0 is an arbitrary A-chain. One has to show that L! ~ 0.
The connectedness of K™ leads to the fact that for any S?,S? € S° from

K™ there exists a succession of 1-dimensional simplices S}, S},,.. ., S} such
that S4 and S},,, k = 1,2,...,t — 1, are adjacent, the forerunner of S},

coincides with S?, and the extremity of S}, coincides with S7. Moreover, the
elements of this sequence may be oriented in such a way that it is possible to
present all of them positively, i.e., as a A-chain L! = gS}, +9S}, +...+9S},,
where g € Z is positive. ‘

Instantly it can be checked that AL' = gS? — ¢S?, and so gS7 ~ ¢S57.
But this yields the statement that, whatever L! € £! is, this A-chain is
homologic with gS?. Based on this we obtain I(L') = g and also L' ~
I(LY)S?, and (11) yields I(L!) =0,i.e, L' ~0. =

Now we have

Theorem 10. If the complex of relations K™ is connected, then A°(K™)
is isomorphic to the group of integers Z.

Proof. According to (10), the operator I : £L° — Z represents an isomor-
phism of the group £° = Z°(A) in Z. But since for any g € Z there is a
A-cycle gS? in Z°(A) whose index equals g, we have I(2°(A)) = Z. Thus,
according to Lemma 1, the kernel of the homomorphism I is Z§(A), and
therefore A%(K™) = Z9(A)/23(A) is isomorphicto Z. ™

Corollary 8. If for the complez of relations K™ the equality (1) holds,
then

A™MK")~2Z0Zd - 0Z. (12)
[ e
q

Definition 25. A connected and acyclic complex of relations K™ is said
to be a directed n-tree of relations. O

The importance of this notion will be shown in forthcoming papers of the
authors. For n = 1, the corresponding constructon represents a directed
connected graph without cycles, i.e., if K! is connected, then it represents
a directed tree (see [8], [14], and [15]).
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Definition 26. If K" = {S°,§,...,5"} is a complex of relations being
locally complete (cf. Definition 6) which is transformed into an abstract
simplicial complex (see Definition 7 and after it), then K™ will be called a
symmetrical complez. O

Clearly, in this case K™ is not directed. But if necessary, each element of
S™, m=0,1,...,n, can be directed as it is described in § 2 above.

In § 1 we introduced the Euler characteristic for the complex of relations
K™. Its importance can also be seen by the following observation: If, for
example, p,,(A™(K™)),i = 0,1,...,n, represents the rank of the group
A™(K™), then we have

Theorem 11. For the complex of relations K™ = (S°,81,...,8™) the
equality

X(K™) =" pm(A™(K™))

m=0

holds.

Proof. From the algbra of groups (cf. [48]) it is know that, if A is group
of finite rank and B C A denotes a commutative subgroup of A, then for
the quotient group C' = A/B the equality

p(A) = p(B) + p(C)

holds. So we have p(L™) = am = pm(Z2™(A)) + pm(L™/2Z™(A)) for
m=0,1,...,n.

For m > 0 the quotient group £L™/Z™(A) = A™~!(K™). The kernel Ker
A(m) of the homomorphism A(m) : L™ — L™ is exactly the group
Z™(A), and I™A(m) represents the subgroup Z5*~1(A) C L™ (cf. § 1).
So we have L™/Z™(A) = Z§*"'(A). Further on, apm = pn(Z™(A) +
Pm(Z§*(4)) for m = 0,1,...,n. By definition, for m = 0 we have 2°(A) =
£°, and hence po(L%) = po(2°). By I™A(0) = Z}(A) = 0 we have
p1(25(A)) = 0, which yields am = pm(Z2™(A)) + pm-1(ZF"1(A)), m =
0,1,...,n.

By suitable substitutions we get the equalities pp (2™ (A)) = pm(Z(A)) +

Pm(Z™(A)/Z25(8)) = pm (25 (A))+pm(A™(K™)) = pm(ZF(A))+r™(A)
form=0,1,...,n. As Z*(A) = 0 (see § 1), we have am, = pn(ZF(A)) +
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7™ (A) + p1(Z5(A)), and substitutions yield X(K™) = Y0 _(=1)™am =
2(A) + p1(Z23(A)) + po(23(8)) — (r1(A) + po(23(A)) + p1(Z3(A))) +
A (1P E™(A) + o1 (ZFTHA)) + pm (ZE(A)) + ..+ (1) (r™(A) +
Pr-1(Z3 7 (AN +pn(Z5(A))) = r(A)~r  (A)+r2(A)+. . +(-1)™r™(A)+
e (FD)PA) = 8 _ (D)™ (A). m

§ 4 Concluding remarks

1. The complex of relations K™ = {S%S8?!,...,8"} is, as mentioned in
§ 1, not an abstract simplicial graph. The facts exposed in § 3 allow us to
explain what K™ really does represent.

First we pick up the following notions from [25]:

A family C™ of objects &, called abstract cells, to which certain numbers
p with 0 < p < n correspond (in each case called the dimension of such
an object and denoted, if necessary, by dim &, = p), is said to be a finite-
dimensional abstract cellular complex. If in C™ there exists at least one
cell &, of dimension n, then the whole family C™ has the dimension n, i.e.,
dim C™ = n. For the family C™ one might consider the following order
type relation <: if £ < &', then £ is called a face of the cell £'. If there are
two cells &, and &p41 satisfying the relation £, < £p41, then for this pair of
cells the coefficient of incidence [€p41 : &p] (or the coefficient of coincidence
[& : €p+1])) may be defined, which is an integer. The given objects, the order
type relation < and the coefficient of incidence (of coincidence) satisfy the
following axioms:

AC1: The relation < is strict and partial.
AC2: The relations &, < &; and &, # &, lead to the relation p < g.
AC3: For any pair &p,&,, where §p < & and p < ¢ — 1, there exists a finite

set of cells & such that &, < & < & holds for each member of this
finite set.

AC4: The inequality [£p11 : &) #0 ([6p : Ep+1] # 0) yields & < &p4a-

ACS5: For any pair £,-1,p+1 the relation

D lepr1: &) [&p: Ep-1] =0 (13)
&
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(Z[EP-I :6pl+ [&p: &pi1] = O) (14)

13

holds.

For the complex of relations define two sets of abstract simplices S™! =
{S° = 9}, 8™+t = {Sn+1 = @} (with dim @ = -1, cf. [28]) which satisfy

[S?:87']=0, where S;j'=5"'eS™,

[S;*]:SP =0, where St =8"tles§mtl=¢.

Then, by the equalities (8) and (9), we obtain

Theorem 12. The complex of relations K™ = {S°,S?,...,S™} represents
a model of a finite-dimensional abstract cellular complez.

The construction of K® = {S%§!,...,8"} and of the homologies as done
above yields a possibility to develop (in a purely combinatorial way) the
topology of multi-ary relations, to generalize the corresponding classical
theorems and to formulate new results in combinatorial topology.

- 2. As we mentioned in § 1, the complex of relations K™ = {S°,§%,...,S"}
represents a directed hypergraph. In such a form, this notion is not used
in the literature. By using some slight modifications, K™ can be trans-
formed into a usual hypergraph in the sense of Berge (see [6]). But the
investigations here go beyond this, they are more general.

First we give an observation. In [19], the normal homologies of hypergraphs
are discussed, but the constrain is made on the topological space by using
the notion of a nerv, which is a usual hypergraph of some covering of this
space, see [1] and [48].

Let us give an elementary example.

Introduce the notion of isomorphism of two complexes of relations. Ap-
plying this notion in the transformations of K™ into itself and using the
Hopf formula (cf. [25] and [48]), we can show when a directed or a usual
hypergraph has the fixed elements.

For example, if K™ consists only of the m-dimensional faces of a simplex
8™, 0 < m < n -1, where n is an even number, then any isomorphism of
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K™ into itself, keeping the orientation of S™ and permuting its vertices in
the cyclic way, has the fixed relations.

Thus, from our point of view it seems to be important to complete the
theory of hypergraphs by the new topological elements, also because this
theory is closely related to many different problems from (applied) mathe-
matics (cf. [3], [9], [11], (12}, [13), [15], [16], [21], [22], [23], [26], [27], [30),
[36], [37], [38], [39], [42], [43], [46], [49), [52], [55], [56], [57], and [59]).
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