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ABSTRACT. I G and H arc graphs, deline the Ramsey number r(G, H)
to be the lcast number p such that if the cdges of the complele graph

K p are colored red and blue(say) , either the red graph contains a copy of
G, or the blue graph contains a copy of H. In this paper, we determined
the Ramsey number (mC, ,nC) foranym21,n21.

1. Introduction
Let G and H be simple graphs. Define the Ramsey number r(G, H) to be

the least number p such that if the edges of K p are two-colored, say red and
blue, either the red graph contains a copy of G. or the blue graph contains a
copy of H(we as well call that K, contains a red G or a bluec H) .

In this paper, we will generally follow the notation of Harary |4]. Acycle
with n (2 3) vertices is called an n-cvcle and denoted by C,, . mC, denotes
the union of m vertex-disjoint copies of C, . If A is a vertex set, we denote

the induced subgraph of 4 by < A >. We call vertex u a red-neighbor of
vertex v if it is joined to v by a red edge. Likewise we define a blue-

neighbor. Let G be a graph, ﬁo (G) denote the maximum cardinality among

the independent scts of vertices in graph G.
Mizuno and Sato[6] decided that: r(mC,, nC, ) = nk + 2m — 1. where
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k=6, n2m21,; mk+2) - 1< r(mC,, mC, )< m(k+2), where k = 4, 5,
m22. The authors determined r(mC,4, nC,) in [5]: (mC, , nC, ) = 2m +
4n — 1, where n2m21, (m, n) # (1, 1). In this paper, we establish the
values of (mC, ,nCg ) forany m21,n21.

Some of useful theorems are given below.

Theorem A [1]
rG, H)2|V(G)| + V)| - min(B ( (G), B o (H)) -1
Theorem B [1] Let i = min(f o (H). B o (K)). and suppose that any two-

colored complete graph containing a mutually disjoint red H and blue K
contains a red H and a blue K having at least i vertices in common, then
r((m+ 1) H, (n + DK)< r(mH, nK ) + |V(H)| HV(K)|
-min (B o (H), B o (K))
Theorem C [1]
KG, mH) < 1(G, (m - DH) + |V(H)|, m22

Theorem D (6] If a two-colored complete graph K ,(m24) contains a
red C m(m24) and a blue C 4 being disjoint, then it contains a red C . and
ablue C, having at least two vertices in common.

2. Some lemmas
Lemma 1. Suppose that a nwo-colored complete graph K contains neither

red C, nor blue C, then it has as subgraph a red K, UK sand a blue

K, ,-e where K, . - e denotes a K, , deleted one edge.

Proof. Because Kgdoesn’t contains red C,, by n(C,, C,) = 6[2], it
contains a blue C . Denote the blue C, by C “iw 1Wa wiwy w. Set the

other two vertices to be w ;and w . Then,

Ifw, W, (#=35,6,5=1,2,3,4)are all red edges, then there is a red C,.
Let w ;w, be a blue edge.

If wyw,and wgw, are not both red edges, then there is a blue
CS_W5W2 wWawawiwsor W w, ,wy wywy wy. Therefore w,w, and

w W, are red edges.
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If both wew, and wyw, are red edges, then there is a red C,:
wsw, wew, w,. Let wow, be a blue edge.

If wow,and w,w,are not both red edges, then there is a blue
Cs_wew,wywaw weorwewyw, w,w, w,. Let wow and w,w ;be red
edges.

If both w,w;and wyw, arc red edges, then there is a red C,:

wowswow, w,. By the symmetry of wowiand wyw, in K . Let
ww;be a blue edge.

If w, w is blue edges, then there is a blue C5: w jww w, w, w . Let
w, w, be ared edge.

If both wyw,and wow, are red. then there is a red C,:
Wy wyw w w, . Thus either w w, or w w is a blue edge.

If wgw,is blue. then wwis red. Otherwisc. there is a blue C:
wiwy wow, wow 1 if wow is blue. then w wis red as well. Othenwisc.
there is a blue C G W WL W W W W

By now. we have twored K;: <{w,, w,, w }>and <{w, . w, . w }>
and there are eight blue edges between the two red K ;, therefore Lemma 1

is proved.
Lemma 2. Suppose that a two-colored complete graph K |, has as subgraph

a red C and a blue C having three common vertices, then it has a red
2C , or a blue 2C ; as subgraph.

Proof. Let W be the induced subgraph of the rest seven vertices in K |;
other than those in red €, and blue C'5. By #(C, . C; ) = 7|2], W contains a
red C orablue C, then K ;;contains a red 2C, or blue 2C',.

Lemma 3. Suppose that a two-colored complete graph K |, has as subgraph
a red C, and a blue C  having just two common veriices, then it has a red
2C , or a blue 2C ; as subgraph .

Proof. Let G and A be the red ¢ 4 and the blue ¢ 5 having just two common

vertices in K ;. respectively. Set H:v v, v v v.v 1o be the blue C. Set
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u,(i=1,2,3,4,5,6) to be the rest six vertices in K ;other than those in G
and H, and denote the induced subgraph of them by P.

If P contains a red C, or a blue Cj, then, X ,;contains a 2C, or a blue
2C,, and Lemma 3 follows. So we assume that P contains neither red
C 4 nor blue Cs. By Lemma 1, P has as subgraph a red K; UK ;and a blue
K, -e. Let <U;> and <U»> be the two red Kin P, where Uy = {u, u,,
uy}, Us = {uy, us, ug}. and Uity (1 Sj53. 4<k<6) are red except

uqug. We divide the proof into the following two cases: (1) The two

common vertices of G and A are adjacent in H: (2) The two vertices are not
adjacent in H.
Case 1. The two common vertices of G and H are adjacent in f.

Set v,and v, to be the common vertices. The following conclusions

clearly hold:
Conclusion a v, has at most one red-neighbor in Uy, thus it has at least two

blue-neighbors in U). By the symmetry of U,and U, v, also has at lcast
two blue-neighbors in U>. The same results hold for v, and v 5. respectively.

Then, If v]ulis blue. by Conclusion a, vy has at least two blue-
neighbors in Us. we may let v,u, be blue. then there exists a blue C:
v vy vau,u,v,. By Conclusion a, v and vy have at least two blue-

neighbor in U) and Us, respectively, we consider the following three cases:
(1.1) u, and 1 are blue-neighbors of v, and v ¢, respectively.
Clearly, v,vgujusu,v,is a blue C, . so adding it to
v v, vau, i, v, vields a blue 2C,.
(1.2) u gand u ; are blue-neighbors of v, and v ;. respectively.
Similar to Case (1.1), there exist a blue 2C 5
(1.3) Two of the vertices in {u 5« M. lg. U} are common red-neighbors
ofv,and v,.
Then, the induced subgraph of v,. v and their two common red-
neighbors contains a red C, . so adding it to G yiclds a red 2C', .
Now, letv # bea red edge.
By the symmetry of u, and u, in< Uy>, ViU, is red aswell. so

<{v, U U,> contains a red C, - denotc it by C'4 :
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By the symmetry of v,and v, in H, and by the symmetry of U, and U,,

<{v, }U U;> contains a red C,.so0 adding itto C, 'yields ared 2C, (See
Figure 1).

Figure 1 Figure 2

Case 2. The two common vertices of G and H are not adjacent in H.

Set v and v, to be the common vertices. Following conclusion holds
clearly.
Conclusion b Vy, v4and Vs have at most one red-neighbors in U,
respectively, thus they have at least two blue-neighbors in U,. By the
symmetry of U, and U, the same result holds for Un.

Then, If v, u is blue. by Conclusion b. either v, u, or v, u 5 is a blue

edge. by the symmetry of v, u, and v, u ;. we may set v, #, to be a blue

edge. then v, v v, u u, v,is a blue C,. Also. by Conclusion b_set

vou,and v u g 1o be blue edges, then Vsl U U, UV is a blue C;_so

addingittov, v. v, u_ u v

2 V3Vt Y,
By the symmetry of #, and in P, Let v 4 11 be red edge as well.

yields a blue 2C;. Let v, u ; be a red edge.

By the symmetry of v, and v, in H, Let v u jand v u be red edges.
thus v, u v u v, is ared C, _so adding it to G yields a red 2C, (See
Figure 2).

Hence Lemma 3 is proved.

Theorem l.r(C4. 2C; ) =11
Proof. Firstly. we show that +(C 4" 2C )2 11. By Theorem A.

r(C4.2C5 )ZlV(C" )+ |V(2('5)| - min( 3 0 (('4 ) ﬁ 0 (2('5)) -1=1L
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Next we show r(C,, 2C5)<11. If two-colored K contains a red C,,,
then the result follows. Otherwise, by #(C, _K, ) = 10[3], K, contains a
blue K, , denote it by K, *. Also, by rCy,Cs)=7K, -K, * contains a
blue C,, denote it by CS'. Set V(K,, - (K, U Cs‘)) = {w,, w, }. Clearly,
<{w,,w, }U K, "> contains either a red C 4 or blue C. If it contains a red
C,, we get the proof; if it contains a blue C, adding it to C 5' yields a blue
2C, we get the proof as well.

Theorem 2. rQ2C,, 2C )= 13.
Proof. By Theorem A, r(2C,.2C;)213.

Now we show that r2C,.2C)<13. By n(C, . 2C) = 11, K ;contains
either a red C, or a blue 2C'. Il K ; contains a blue 2C',, we get the result.
Otherwise, K ;; contains ared C, , denote it by C. By (C, . C)=7.K ;- C
contains either a red C', or a blue (5. If K ;- C' contains a red C, . then
adding it to C yields a red 2C, : if K ;- C contains a bluc (5. by Theorem

D. K,;contains a red (', and a bluc 'y having two vertices in common.
Then, by Lemma 2 and Lemina 3. we can prove the result.
Theorem 3. Form21. r (m(.'4 . ('5 )=4m + 3.
Proof. By Theorem C. r (mC, . C5 )Sr((m-l)C4 . Cs )+ |V(C4 ]
Sr(Cy.Co)+_m-1_VC )
=4m + 3.
Next we show that r(mC, , C'; ) 24m +3. Color complete graph K, ,,as
below: (1) Color a K ; 1o be red. and denote it by K. (2) Color K ,, e

K3' to be red. (3) Color the edges joining K~ to I G K," to be red.

Then. the K ,,,,, contains neither red mC'; nor blue (. So. we can prove
thatr(mC_,‘,Cs )24m+3. -
Theorem 4. Forn22,r (C4 . n(‘5 y=3n+1.

Proof. The_ lower bound follows from Thcorem A.
Next we show r (C 4 nC s y=235n+1,

By Theorem C, r(C . nC)<r(C 0 (n-H)C ) +|NC B
SHC . 2C)+ (n-DNC ) =5n+1.
Hence the thcorem is proved.
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Theorem 5. For m22_r(mC,,mCg)=Tm— 1.
Proof. The lower bound follows from Theorem A.
Next we show r(mC,,mCg) < 7m—1.

By Theorem B, it follows that
r(mC,,mCs)Sr((m-1)Cy, (m-1)Cs)+|(Cy)l +[V(Cs)l
-min(B o (Cy) P o Cs))
=r(m-1)C,,(m-1)C5)+7,
By recursion, we get
rmC,.mC)<r2C, . 2C5)+Tm-2)=Tm - 1.

Theorem 6 Forn2m=22_r(mC,.nCg)=2m+5n-1.
Proof. The lower bound follows from Theorem A.

Now we show that r(mC, . nC'y )<2m +5n - |.

By theorem C, r(mC . nC)<r(mC, . (n-1)C ) +{(C ).
By recursion, r(mC, , nC)<r(mC, . mC ) + (n-m) |[V(C ;)| = 2m +5n - 1.
Theorem 7 For m2n22_r(mC,.nCg)=4m+3n-1.

Proof. The result can be proved with the same method used in Theorem 6.
We obtain the following theorem on the basis of Theorem 4, 3, 6. 7.
Theorem 8

4m+3, if mz2ln=1.
rmC,,nCg)=2< 2m+35n-1, if n>mz21.
4m+3n-1. if m2n22.

Hence we determin the Ramsey number r(mC, , nC ) for any number m
and n. and Along with the result about r(mC, , nC, ) in [5]. we improve the
result of Minuzo and Sato for r(mC, , nC; ) by reducing & from 6 to 4.
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