The Ramsey Numbers r(mC₄, nC₅)

Li Dayong
Department of Radio Engineering
Southeast University
Nanjing 210096
PEOPLE'S REPUBLIC OF CHINA

Wang Zhijian
Department of Applied Mathematics
University of Science and Technology of Suzhou
Suzhou 215009
PEOPLE'S REPUBLIC OF CHINA

ABSTRACT. If G and H are graphs, define the Ramsey number r(G, H) to be the least number p such that if the edges of the complete graph K_p are colored red and blue(say), either the red graph contains a copy of G, or the blue graph contains a copy of H. In this paper, we determined the Ramsey number $r(mC_4, nC_5)$ for any $m \ge 1, n \ge 1$.

1. Introduction

Let G and H be simple graphs. Define the Ramsey number r(G, H) to be the least number p such that if the edges of K_p are two-colored, say red and blue, either the red graph contains a copy of G, or the blue graph contains a copy of H(we as well call that K_n contains a red G or a blue H).

In this paper, we will generally follow the notation of Harary [4]. A cycle with $n \ (\geq 3)$ vertices is called an *n-cycle* and denoted by C_n , mC_n denotes the union of m vertex-disjoint copies of C_n . If A is a vertex set, we denote the induced subgraph of A by A > 0. We call vertex A = 0 a red-neighbor of vertex A = 0 if it is joined to A = 0 by a red edge. Likewise we define a blue-neighbor. Let A = 0 be a graph, A = 0 denote the maximum cardinality among the independent sets of vertices in graph A = 0.

Mizuno and Sato[6] decided that: $r(mC_4, nC_k) = nk + 2m - 1$, where

 $k \ge 6$, $n \ge m \ge 1$; $m(k+2) - 1 \le r(mC_4, mC_k) \le m(k+2)$, where k = 4, 5, $m \ge 2$. The authors determined $r(mC_4, nC_4)$ in [5]: $r(mC_4, nC_4) = 2m + 4n - 1$, where $n \ge m \ge 1$, $(m, n) \ne (1, 1)$. In this paper, we establish the values of $r(mC_4, nC_5)$ for any $m \ge 1$, $n \ge 1$.

Some of useful theorems are given below.

Theorem A [1]

$$r(G, H) \ge |V(G)| + |V(H)| - min(\beta_0(G), \beta_0(H)) - 1$$

Theorem B [1] Let $i = min(\beta_0(H), \beta_0(K))$, and suppose that any two-colored complete graph containing a mutually disjoint red H and blue K contains a red H and a blue K having at least i vertices in common, then

$$r((m+1) H, (n+1)K) \le r(mH, nK) + |V(H)| + |V(K)|$$

- $min (\beta_0(H), \beta_0(K))$

Theorem C [1]

$$r(G, mH) \le r(G, (m-1)H) + |V(H)|, m \ge 2$$

Theorem D [6] If a two-colored complete graph K_{m+4} ($m \ge 4$) contains a red C_m ($m \ge 4$) and a blue C_4 being disjoint, then it contains a red C_m and a blue C_4 having at least two vertices in common.

2. Some lemmas

Lemma 1. Suppose that a two-colored complete graph K_6 contains neither red C_4 nor blue C_5 , then it has as subgraph a red $K_3 \cup K_3$ and a blue $K_{3,3}$ - e, where $K_{3,3}$ - e denotes a $K_{3,3}$ deleted one edge.

Proof. Because K_6 doesn't contains red C_4 , by $r(C_4, C_4) = 6[2]$, it contains a blue C_4 . Denote the blue C_4 by C^* : $w_1w_2 w_3w_4 w_1$. Set the other two vertices to be w_5 and w_6 . Then,

If $w_i w_j$ (i = 5, 6, j = 1, 2, 3, 4) are all red edges, then there is a red C_4 . Let $w_5 w_1$ be a blue edge.

If w_5w_2 and w_5w_4 are not both red edges, then there is a blue $C_{5-}w_5w_2w_3w_4w_1w_5$ or $w_5w_1w_2w_3w_4w_5$. Therefore w_5w_2 and w_5w_4 are red edges.

If both w_6w_2 and w_6w_4 are red edges, then there is a red C_4 : $w_5w_2w_6w_4w_5$. Let w_6w_2 be a blue edge.

If w_6w_1 and w_6w_3 are not both red edges, then there is a blue $C_{5-w_6w_2w_3w_4w_1w_6}$ or $w_6w_3w_4w_1w_2w_6$. Let w_6w_1 and w_6w_3 be red edges.

If both w_5w_3 and w_6w_4 are red edges, then there is a red C_4 : $w_5w_3w_6w_4w_5$. By the symmetry of w_5w_3 and w_6w_4 in K_6 . Let w_5w_3 be a blue edge.

If w_2 w_4 is blue edges, then there is a blue C_5 : $w_1 w_5 w_3 w_2 w_4 w_1$. Let $w_2 w_4$ be a red edge.

If both w_6w_4 and w_6w_5 are red, then there is a red C_4 : $w_2w_4w_6w_5w_2$. Thus either w_6w_4 or w_6w_5 is a blue edge.

If w_6w_4 is blue, then w_1w_3 is red. Otherwise, there is a blue C_5 : $w_1w_2w_6w_4w_3w_1$; if w_6w_5 is blue, then w_1w_3 is red as well. Otherwise, there is a blue C_5 : $w_1w_2w_6w_5w_3w_1$.

By now, we have two red K_3 : $\{w_1, w_3, w_6\}$ and $\{w_2, w_4, w_5\}$, and there are eight blue edges between the two red K_3 , therefore Lemma 1 is proved.

Lemma 2. Suppose that a two-colored complete graph K_{13} has as subgraph a red C_4 and a blue C_5 having three common vertices, then it has a red $2C_4$ or a blue $2C_5$ as subgraph.

Proof. Let W be the induced subgraph of the rest seven vertices in K_{13} other than those in red C_4 and blue C_5 . By $r(C_4, C_5) = 7[2]$, W contains a red C_4 or a blue C_5 , then K_{13} contains a red $2C_4$ or blue $2C_5$.

Lemma 3. Suppose that a two-colored complete graph K_{13} has as subgraph a red C_4 and a blue C_5 having just two common vertices, then it has a red $2C_4$ or a blue $2C_5$ as subgraph.

Proof. Let G and H be the red C_4 and the blue C_5 having just two common vertices in K_{13} , respectively. Set $H: v_1 v_2 v_3 v_4 v_5 v_1$ to be the blue C_5 . Set

 u_i (i = 1, 2, 3, 4, 5, 6) to be the rest six vertices in K_{13} other than those in G and H, and denote the induced subgraph of them by P.

If P contains a red C_4 or a blue C_5 , then, K_{13} contains a $2C_4$ or a blue $2C_5$, and Lemma 3 follows. So we assume that P contains neither red C_4 nor blue C_5 . By Lemma 1, P has as subgraph a red $K_3 \cup K_3$ and a blue $K_{3,3}$ - e. Let $<U_1>$ and $<U_2>$ be the two red K_3 in P, where $U_1=\{u_1,u_2,u_3\}$, $U_2=\{u_4,u_5,u_6\}$, and u_ju_k $(1 \le j \le 3, 4 \le k \le 6)$ are red except u_3u_6 . We divide the proof into the following two cases: (1) The two common vertices of G and H are adjacent in H; (2) The two vertices are not adjacent in H.

Case 1. The two common vertices of G and H are adjacent in H.

Set v_1 and v_2 to be the common vertices. The following conclusions clearly hold:

Conclusion a v_3 has at most one red-neighbor in U_1 , thus it has at least two blue-neighbors in U_1 . By the symmetry of U_1 and U_2 , v_3 also has at least two blue-neighbors in U_2 . The same results hold for v_4 and v_5 , respectively.

Then, If v_1u_1 is blue, by Conclusion a, v_3 has at least two blue-neighbors in U_2 , we may let v_3u_4 be blue, then there exists a blue C_5 : $v_1v_2v_3u_4u_1v_1$. By Conclusion a, v_4 and v_5 have at least two blue-neighbor in U_1 and U_2 , respectively, we consider the following three cases:

(1.1) u_2 and u_3 are blue-neighbors of v_4 and v_5 , respectively.

Clearly, $v_4v_5u_3u_5u_2v_4$ is a blue C_5 , so, adding it to $v_1v_2v_3u_4u_1v_1$ yields a blue $2C_5$.

(1.2) u_5 and u_6 are blue-neighbors of v_4 and v_5 , respectively.

Similar to Case (1.1), there exist a blue $2C_5$.

(1.3) Two of the vertices in $\{u_2, u_3, u_5, u_6\}$ are common red-neighbors of v_4 and v_5 .

Then, the induced subgraph of v_4 , v_5 and their two common redneighbors contains a red C_4 , so adding it to G yields a red $2C_4$.

Now, let $v_1 u_1$ be a red edge.

By the symmetry of u_1 and u_2 in $< U_1>$, v_1u_2 is red as well. so $<\{v_1\}\bigcup U_1>$ contains a red C_4 , denote it by C_4 .

By the symmetry of v_1 and v_2 in H, and by the symmetry of U_1 and U_2 , $<\{v_2\} \bigcup U_2>$ contains a red C_4 , so adding it to C_4 *yields a red $2C_4$ (See Figure 1).

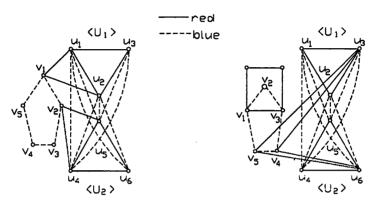


Figure 1

Figure 2

Case 2. The two common vertices of G and H are not adjacent in H.

Set v_1 and v_3 to be the common vertices. Following conclusion holds clearly.

Conclusion b v_2 , v_4 and v_5 have at most one red-neighbors in U_1 , respectively, thus they have at least two blue-neighbors in U_1 : By the symmetry of U_1 and U_2 , the same result holds for U_2 .

Then, If $v_4 u_3$ is blue, by Conclusion b, either $v_2 u_4$ or $v_2 u_5$ is a blue edge, by the symmetry of $v_2 u_4$ and $v_2 u_5$, we may set $v_2 u_4$ to be a blue edge, then $v_2 v_3 v_4 u_3 u_4 v_2$ is a blue C_5 . Also, by Conclusion b_set $v_5 u_1$ and $v_5 u_5$ to be blue edges, then $v_5 u_1 u_6 u_2 u_5 v_5$ is a blue C_5 -so adding it to $v_2 v_3 v_4 u_3 u_4 v_2$ yields a blue $2C_5$. Let $v_4 u_3$ be a red edge.

By the symmetry of u_3 and u_6 in P, Let v_4 u_6 be red edge as well.

By the symmetry of v_4 and v_5 in H, Let v_5u_3 and v_5u_6 be red edges. thus $v_4u_3v_5u_6v_4$ is a red C_4 —so adding it to G yields a red $2C_4$ (See Figure 2).

Hence Lemma 3 is proved.

Theorem 1. $r(C_4, 2C_5) = 11$.

Proof. Firstly, we show that $r(C_4, 2C_5) \ge 11$. By Theorem A.

$$r(C_4, 2C_5) \ge |V(C_4)| + |V(2C_5)| - min(\beta_0(C_4), \beta_0(2C_5)) - 1 = 11.$$

Next we show $r(C_4, 2C_5) \le 11$. If two-colored K_{11} contains a red C_4 , then the result follows. Otherwise, by $r(C_4 _ K_4) = 10[3]$, K_{11} contains a blue K_4 , denote it by K_4 . Also, by $r(C_4, C_5) = 7$, $K_{11} - K_4$ contains a blue C_5 , denote it by C_5 . Set $V(K_{11} - (K_4 \cup C_5)) = \{w_1, w_2\}$. Clearly, $\{w_1, w_2\} \cup K_4$ contains either a red C_4 or blue C_5 . If it contains a red C_4 , we get the proof; if it contains a blue C_5 , adding it to C_5 yields a blue C_5 , we get the proof as well.

Theorem 2. $r(2C_4, 2C_5) = 13$.

Proof. By Theorem A, $r(2C_4, 2C_5) \ge 13$.

Now we show that $r(2C_4, 2C_5) \le 13$. By $r(C_4, 2C_5) = 11$, K_{13} contains either a red C_4 or a blue $2C_5$. If K_{13} contains a blue $2C_5$, we get the result. Otherwise, K_{13} contains a red C_4 , denote it by C. By $r(C_4, C_5) = 7$, $K_{13} - C$ contains either a red C_4 or a blue C_5 . If $K_{13} - C$ contains a red C_4 , then adding it to C yields a red $2C_4$: if $K_{13} - C$ contains a blue C_5 , by Theorem D, K_{13} contains a red C_4 and a blue C_5 having two vertices in common. Then, by Lemma 2 and Lemma 3, we can prove the result.

Theorem 3. For $m \ge 1$, $r(mC_4, C_5) = 4m + 3$.

Proof. By Theorem C,
$$r(mC_4, C_5) \le r((m-1)C_4, C_5) + |V(C_4)|$$

 $\le r(C_4, C_5) + |w-1||V(C_4)|$
 $= 4m + 3$

Next we show that $r(mC_4, C_5) \ge 4m + 3$. Color complete graph K_{4m+2} as below: (1) Color a K_3 to be red. and denote it by K_3^* . (2) Color K_{4m+2} - K_3^* to be red. (3) Color the edges joining K_3^* to K_{4m+2} - K_3^* to be red. Then, the K_{4m+2} contains neither red mC_4 nor blue C_5 . So, we can prove that $r(mC_4, C_5) \ge 4m + 3$.

Theorem 4. For $n \ge 2$, $r(C_4, nC_5) = 5n + 1$.

Proof. The lower bound follows from Theorem A.

Next we show $r(C_4, nC_5) \ge 5n + 1$.

By Theorem C,
$$r(C_4, nC_5) \le r(C_4, (n-1)C_5) + |V(C_5)|$$

 $\le r(C_4, 2C_5) + (n-2)|V(C_5)| = 5n + 1.$

Hence the theorem is proved.

Theorem 5. For $m \ge 2 r(mC_4, mC_5) = 7m - 1$.

Proof. The lower bound follows from Theorem A.

Next we show $r(mC_4, mC_5) \le 7m - 1$.

By Theorem B, it follows that

$$r(mC_4, mC_5) \le r((m-1)C_4, (m-1)C_5) + |V(C_4)| + |V(C_5)|$$

$$- min(\beta_0(C_4), \beta_0(C_5))$$

$$= r((m-1)C_4, (m-1)C_5) + 7,$$

By recursion, we get

$$r(mC_4, mC_5) \le r(2C_4, 2C_5) + 7(m-2) = 7m-1.$$

Theorem 6 For $n \ge m \ge 2 - r(mC_4, nC_5) = 2m + 5n - 1$.

Proof. The lower bound follows from Theorem A.

Now we show that $r(mC_4, nC_5) \le 2m + 5n - 1$.

By theorem C, $r(mC_4, nC_5) \le r(mC_4, (n-1)C_5) + |V(C_5)|$,

By recursion, $r(mC_4, nC_5) \le r(mC_4, mC_5) + (n-m)|V(C_5)| = 2m + 5n - 1$.

Theorem 7 For $m \ge n \ge 2 - r(mC_4, nC_5) = 4m + 3n - 1$.

Proof. The result can be proved with the same method used in Theorem 6. We obtain the following theorem on the basis of Theorem 4, 5, 6, 7.

Theorem 8

$$r(mC_4, nC_5) = \begin{cases} 4m+3, & \text{if } m \ge 1, n = 1, \\ 2m+5n-1, & \text{if } n > m \ge 1, \\ 4m+3n-1, & \text{if } m \ge n \ge 2. \end{cases}$$

Hence we determin the Ramsey number $r(mC_4, nC_5)$ for any number m and n, and Along with the result about $r(mC_4, nC_4)$ in [5], we improve the result of Minuzo and Sato for $r(mC_4, nC_k)$ by reducing k from 6 to 4.

References

- S. A. Burr, P. Erdos and J. H. Spencer, Ramsey theorems for multiple copies of graphs. Trans. Amer. Math. Soc., Vol. 209(1975), 87-99.
- [2] G. Chartrand and S. Schuster. On the existence of specified cycles in complementary graphs, Bull. Amer. Math. Soc., Vol. 77(1971), 995-998.
- [3] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, _. Small off-diagonal numbers, Pacific Journal of Math., Vol. 41, No. 2(1972), 335~345.
- [4] F. Harary, Graph Theory. Addision-Wesley, Reading, Mass, 1969.
- [5] D. Li and Z. Wang, The Ramsey numbers r(mC₄, nC₄). Journal of Shanghai Tiedao University, Vol. 20, No.6(1999), 66~70(in China).

[6] Mizuno Hirobumi and Sato Iwao, Ramsey numbers for unions of cycles. Discrete Math., Vol. 69(1988), 283~294.