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ABSTRACT

For a graph G, the jump graph J(G) is that graph whose ver-
tices are the edges of G and where two vertices of J(G) are adja-
cent if the corresponding edges are not adjacent. For k > 2, the
kth iterated jump graph J*(G) is defined as J(J*~1(G)), where
JY@) = J(G). An infinite sequence {G;} of graphs is planar if
every graph G; is planar; while the sequence {G;} is nonplanar
otherwise. All connected graphs G for which {J*(G)} is planar
have been determined. In this paper, we investigate those con-
nected graphs G for which {J*(G)} is nonplanar. It is shown
that if {J%(G)} is a nonplanar sequence, then J k(@) is nonpla-
nar for all k¥ > 4. Furthermore, there are only six connected
graphs G for which {J¥(G)} is nonplanar and J*(G) is planar.
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1 Introduction

The jump graph J(G) of a graph G (see [3)) is that graph whose vertices
are the edges of G, and where two vertices are adjacent in J (G) if the
corresponding edges of G are not adjacent. For k 2> 2, the kth iterated
jump graph J¥(G) is defined as J(J¥1(G)), where J(G) = J(G). For
i = 1,2, the graphs F;, J(F;), J?(F;), and J*(F;) are shown in Figure 1.
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Figure 1: The graphs F;, J(F;), J3(F;)

An infinite sequence {G\} of graphs is said to converge (see [1]) if there
exists a graph G and a positive integer N such that G}, is isomorphic to G
for all k > N. The graph G is then called the limit graph of the sequence
{Ge}. An infinite sequence that does not converge is said to diverge. A
finite sequence {Gx} is said to terminate. An infinite sequence {Gy} is
called planar if Gy, is planar for every positive integer & and nonplanar if
Gy, is nonplanar for some positive integer k. We refer to the book [4] for
graph theory notation and terminology not described here.

The planarity of iterated jump graphs was studied in (2, 5, 6]. Let
cor(K3) denote the corona of K3, which is the graph obtained by adding a
pendant edge to each vertex of K3. The following two results were estab-
lished in [5] and [1], respectively.

Theorem 1.1  Let G be a connected graph such that J*(G) is defined for
every positive integer k. Then the sequence {J*(G)} is planar if and only
if G = Cs or G = cor(K3).

Theorem 1.2  Let G be a connected graph. The sequence {J*¥(G)} ter-
minates if and only if G is a subgraph of one of the graphs G; (1 < i < 6)
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of Figure 2 or is a subgraph of H, = K1, + e for some n > 5.
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Figure 2: Graphs G for which {J*(G)} terminates

The goal of this paper is to study connected graphs G such that the
sequence {J*(G)} is nonplanar. Such sequences are necessarily infinite
then. We show that if G is a connected graph for which {J*(G)} is non-
planar, then nonplanar graphs in the sequence {J*¥(G)} are usually arrived
at quickly. In fact, we show that if {J*(G)} is a nonplanar sequence, then
J*(G) is nonplanar for all k > 4. Furthermore, there are only six connected
graphs G for which {J*(G)} is nonplanar and J3(G) is planar. In order to
do this, we review some known results and establish several useful lemmas
in Section 2. We present the main theorem of this paper in Section 3.

2 Preliminary Results

In this section, we first establish several lemmas that are necessary for the
proof of our main result. Throughout this paper we will use Kuratowski’s
famed characterization (7] of planar graphs.

Kuratowski’s Theorem A graph is plenar if and only if it contains no
subgraph isomorphic to K5 or K33 or a subdivision of one of these graphs.

Lemma 2.1 IfG is a graph coniaining two disjoint subgraphs F and H,
each of size 3, then J(G) is nonplanar.

Proof. If G is a graph containing two disjoint subgraphs F' and H, each
of size 3, then J(G) contains K33 as a subgraph with partite sets E(F)
and E(H) and so J(G) is nonplanar. n

Lemma 2.2 IfG is a graph containing two disjoint subgraphs F and H,
one of size 2 and the other of size 3, then J*(G) is nonplanar.
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Proof. Since G contains the subgraphs F' and H, it follows that J(G)
contains K> 3 as a subgraph. The jump graph J(K>3) contains a 6-cycle
as a subgraph, implying that J%(G) contains 2K3 as a subgraph, and so
J4(G) contains K3 3 as a subgraph. .

By Lemma 2.1 and the proof of Lemma 2.2, we have the following
corollary.

Corollary 2.3 Let G be a connected graph.
(a) If G contains a path of order 8 or more, then J(G) is nonplanar.
(b) If G contains a cycle of order 6 or more, then J*(G) is nonplanar.
(¢) If G contains a path of order 7, then J*(G) is nonplanar.
(d) If G contains the graph K> 4 as a subgraph, then J%(G) is nonplanar.

Proof. For (a), if G contains a path of order 8 or more, then G con-
tains two disjoint subgraphs, each of size 3, and so J(G) is nonplanar by
Lemma 2.1. The proof of Lemma 2.2 yields (b). Since 2K3 is a subgraph
of J(P), it follows from Lemma 2.1 that (c) holds. If G contains K> 4 as
a subgraph, then J(G) contains two disjoint subgraphs, each of size 3 and
so J%(@) is nonplanar by Lemma 2.1. .

Lemma 2.4 Let G be a graph containing two disjoint subgraphs F' and
F" of sizes 3 and 2, respectively, and additionally having three independent
edges, which may or may not be incident to the vertices of F' and F". Then
J(G) is nonplanar.

Proof. Let the three edges of F' be e, ez, and e3, and let the two edges
of F” be ey and es. Let eg,e7, and eg be the three independent edges. If
even one of eg,e7, eg is adjacent to no edge of F”, then, by Lemma 2.1,
J(G) is nonplanar. Hence we may assume that each of eg,e7, and eg is
adjacent to at least one edge of F'. We consider two cases.

Case 1. One of eg, ez, es, say eg, is adjacent to ezactly one edge of F',
say e;. Hence, in J(G), e¢ is adjacent to ez and e3. Since es, €7, and eg
are independent, at least one of e; and eg, say e7, is adjacent to e; and eg
in J(G). Consequently, J(G) contains the subgraph (shown in Figure 3),
which is isomorphic to a subdivision of K3 3. Hence J(G) is nonplanar.

Case 2. Each of eg,e7, and eg is adjacent to ezactly two edges of F'.
Hence, we may assume that eg is adjacent to ez and es, ey is adjacent to e;
and e3, and eg is adjacent to e; and e;. Consequently, J(G) contains the
subgraph (shown in Figure 4), which is isomorphic to a subdivision of K33
and so J(G) is nonplanar. [
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Figure 3: The subgraph in Case 1

Figure 4: The subgraph in Case 2

Lemma 2.5 IfG is a graph obtained by adding a pendant edge to K 3,
then J2(G) is nonplanar.

Proof. The graph G is one of the graphs X; and X, shown in Figure 5.
The jump graphs J(X;) and J(X3) are also shown in Figure 5. If G = X;,
then J(G) contains two disjoint subgraphs of size 3. By Lemma 2.1, J%(G)
is nonplanar. If G = X,, then J%(G) contains a subdivision of K3 3. Thus
J%(G) is nonplanar as well. .

The following two lemmas were established in [6] and [5], respectively.

Lemma 2.6 Let G be a connected graph. If G is nonplanar, then J(G) is
nonplanar.

Lemma 2.7 Let G be a connected graph having a pendant edge e = uv,
where degg v = 1, and let H be the graph obtained by identifying v with a
vertex of G that is not adjacent to u. If J¥(H) is nonplanar, then J*(G)
is nonplanar, where k > 1.
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Figure 5: Two graphs in the proof of Lemma 2.5

3 Main Result

We are now prepared to present the main result of this paper. In the proof
of this result, the length of a longest cycle in a connected graph that is not
a tree is called the circumference of G and is denoted by ¢(G).

S
Theorem 3.1  Let G be a connected graph for which {J*(G)} is infinite.
IfG # Cs and G # cor(K3), then J*(G) is nonplanar for all k > 4.
Furthermore, J3(G) is planar if and only if G is one of the siz graphs F;
(1 £ < 6) in Figure 6.

F;: Fy: Fs:

e R

Figure 6: Graphs F; (1 <i < 6) in Theorem 3.1

‘Proof. By Lemma 2.6, it suffices to show that if G # Cs and G #
cor(K3), then J¥(G) is nonplanar for some k < 4. We proceed by cases,
according to whether G is a tree or according to the value of ¢(G) if G is
not a tree. First, suppose that G is not a tree.
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Case 1. ¢(G) > 6. By Corollary 2.3, J?(G) is nonplanar in this case.

Case 2. ¢(G) = 5. Since G # Cs, it follows that G contains at least one
of the graphs H; and H, = J(H;) shown in Figure 7 as a subgraph. The
graph J2(H;) = J(H,) is also shown in Figure 8. Let F' be the subgraph
of J2(H,) induced by {e1, ez, e2} and F" the subgraph induced by {e4, es}.
By Lemma 2.4, J3(H;) = J?(H,) is nonplanar and so J*(G) is nonplanar

in this case.
O
€4 €5
O Q
O
€3

H; J(Hy) = Hy JZ(HI) = J(H,)

Figure 7: Graphs H,, J(H,) = Ha, and J?(H,) in Case 2

Case 3. ¢(G) = 4. By Theorem 1.2, G must contain a subgraph that is
isomorphic to one of the graphs Y;,Ys, - -, Y5 shown in Figure 8, where ¥}
is the graph F} in Figure 1 (and Figure 6).

o B TI T

Figure 8: Graphs Y; for 1 <1 < 5 in Case 3

The planar graphs ¥; = Fy,J(Y1), J2(Y1), and J3(Y;) are shown in
Figure 1. Since J3(Y)) contains two disjoint subgraphs, each of size 3, it
follows from Lemma 2.1 that J4(Y;) is nonplanar.

The planar graph J(Y2) is shown in Figure 9. Observe that J2(F)
(shown in Figure 1) is a subgraph of J(Y2). Applying Lemma 2.4 to J?(F),
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we see that J*(F3) is nonplanar, and so J3(Y2) is nonplanar.

J(Y2) :

Figure 9: The graph J(¥2) in Case 3

The graphs J(Y3) and J?(Y3) are shown in Figure 10. Since J?(Y3)
contains 2K, it follows from Lemma 2.1 that J3(Y3) is nonplanar.

J(Y3) :

Figure 10: Graphs J(Y3) and J%(Y3) in Case 3

Since J(Y3) = Y3, it follows that J*(Y,) = J3(Y3), which is nonplanar.
However, J3(Y;) = J?(Y3) is planar, as shown in Figure 10. The graph Y;
is also the graph F3 shown in Figure 6.

The graph J(Ys) is shown in Figure 11. Since J2(Y5) contains the
path e, es, €2, €7, €3, €g, eg of order 7, it follows that J*(¥5) is nonplanar by
Corollary 2.3.

€ €2
J(Ys) : €6 €3
€7 €g
€5 €4

Figure 11: The graph J(Y;s) in Case 3
Case 4. ¢(G) = 3. There are two cases.

Subcase 4.1. G contains more than one triangle. If G contains two
disjoint triangles, then, by Lemma 2.1, J(G) is nonplanar. Otherwise,
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since G is not the graph G, of Figure 2, it follows that G contains at least
one of the graphs G' and G" = F; of Figure 12 as a subgraph. The graph
J(G") is shown in Figure 12. Since J2(G') contains the path e;,ez,--,eg
of order 9, it follows that J3(G') is nonplanar by Corollary 2.3. On the
other hand, J3(G") is planar as shown in Figure 12. Since J3(G") contains
two disjoint subgraphs, each of size 3, J4(G") is nonplanar by Lemma 2.1.

J(G") J2(G”) Js(Gn)
Figure 12: The graphs G’ and G" in Subcase 4.1

Subcase 4.2. G contains ezactly one triangle. Since G # cor(K3) and
G is not a subgraph of any of Gs,Gsg, H, of Figure 2, it follows that G
contains at least one of the graphs A; (1 < i < 8) shown in Figure 13 as a
subgraph.

We show that each graph J3(4;) (1 < ¢ < 8) is nonplanar. Since J(4;)
is the graph obtained by adding a pendant edge to K> 3 at a vertex of degree
3, it the follows from Lemma 2.5 that J3(A4,) is nonplanar. Moreover, for
each i with 2 < i < 6, the graph J(4,) is a subgraph of J(A4;) and so J3(4;)
is nonplanar as well. The graphs J(A7), J%(A7), and J(Ag) are shown in
Figure 14. Thus J3(A7) is nonplanar by Lemma 2.4. Since J(As) contains
two disjoint subgraphs of size 3, it follows from Lemma 2.1 that J2(A4g) is
nonplanar. Therefore, J3(G) is nonplanar in this subcase.

Case 5. G is a tree. Since every star is a subgraph of H, of Figure
3 for some n > 4 and {J*(G)} does not terminate, the tree G is not a
star and therefore its diameter is at least 3. Since the jump graph of every
path of length 5 or more contains the graph H; of Figure 7 as a subgraph,
it follows from Case 2 that J*(G) is nonplanar if diam G > 5. Moreover,
J(P,) (n > 8) and J3(P;) are nonplanar, while J3(Ps) is planar. Moreover,
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Figure 13: Graphs A; (1 <i < 8) in Subcase 4.2

A b D

J(A7) J?(A7) J(4s)
Figure 14: The graphs J(A7), J2(A7), and J(Ag) in Subcase 4.2

if diam G = 5 and G # Ps, then J(G) contains a 6-cycle and so J3(G) is
nonplanar by Corollary 2.3. The graph Fj is also the graph F; in Figure 6.

What remains then are trees G with 3 < diamG < 4. Assume first
that diam G = 3. Then G is a double star. Let u and v be the vertices
of G that are not end-vertices. Since G is not a subgraph of G5 or H,, of
Figure 2, we may assume that degv > 3 and degu > 4. By Lemma 2.2,
J4(Q) is nonplanar. If degv = 3 and degu > 4, then J(G) contains K 4
and so J3(G) is nonplanar. If degv > 3 and degu > 4, then J(G) is
nonplanar by Lemma 2.1. If degv = 3 and degu = 4, then J(G) = Ku 3,
J2(G) = J(K2,3) = Cs, and J3(G) = J(Cs) = K3 x Ko, which is planar.
Hence the graph G is the graph Fy of Figure 6.

Next, assume that diamG = 4. Let P : vy, vs,vs,vs,0s be a path of
length 4 in G. We consider three subcases.
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Subcase 5.1. degvs = 2. Assume first that exactly one of v» and v4 has
degree 3, while the other has degree 2. Then J(G) is a subgraph of the
graph Gj of Figure 2 and so {J*(G)} terminates. If (1) degv. > 3 and
degvy > 3 or (2) degvy > 4 or degvs > 4, then J4(G) is nonplanar by
Lemma 2.2. In fact, J3(G) is nonplanar, as we next show. If degv, = 3
and degvy = 3, then J(G) contains a 6-cycle and so J3(G) is nonplanar
by Corollary 2.3. If degve > 4 or degwvs > 4, then G contains a subgraph
obtained from K> 3 by adding a pendant edge at a vertex of degree 3. Then
J3(G) is nonplanar by Lemma 2.5.

Subcase 5.2. degvs = 3. Assume first that degve = degvs = 2. Then
G is a subgraph of the graph G¢ of Figure 3 and so {J*(G)} terminates.
Otherwise, degvz > 3 or degwvy > 3. In this subcase, J(G) contains K> 3
with a pendant edge. Thus by Lemma 2.5, J3(G) is nonplanar.

Subcase 5.3. degvs > 4. Then G contains the subgraph F' shown in
Figure 15. Identifying v and w gives us a graph containing the graph G,
of Figure 8 as a subgraph. By Lemma 2.7 and Case 3, J*(G) is nonplanar.
On the other hand, J3(F) is planar as shown Figure 15. If degvs > 5, then
J(G) contain a subgraph obtained from K>3 by adding a pendant edge.
Thus J3(G) is nonplanar by Lemma 2.5. The graph F shown in Figure 15

is the graph Fg of Figure 6. This completes the proof. (]
F: \Vi TR N
o N
v U w

JA(F): E:Ij J3(F) : M
)

Figure 15: The subgraph F in Subcase 5.3 and its jump graphs
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