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Abstract

A graph G is called an L, — graph if, for each triple of vertices
u, v, and w with d(u,v) = 2 and w € N(u) N N(v), d(u) + d(v) >
|IN(u) UN(v) U N(w)| — 1. Let G be a 2 - connected L, - graph of
order n. If ¢3(G) > n — 2, then G is hamiltonian or G € K, where
03(G) = min{d(z) + d(v) + d(w) : {v,v,w} is an independent set
in G}, K= {G : Kp,p+1 C G C K, + (p + 1)K, for some p > 2}.
A similar result on the traceability of connected L, ~ graphs is also
obtained.

1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. Notation and terminology not defined here follow that in [6]. If
S C V(G), then N(S) denotes the neighbors of S, that is, the set of all
vertices in G adjacent to at least one vertex in S. For a subgraph H of G
and S C V(G) - V(H), let Ng(S) = N(S)NV(H) and [Ng(S)| = du(S).
If S = {s}, then Ng(S) and |Ny(S)| are written as Ng(s) and dg(s)
respectively. For disjoint subsets A, B of the vertex set V(G) of a graph
G, let e(A, B) be the number of the edges in G that join a vertex in A
and a vertex in B. A graph G is 1 - tough if w(G — S) < |S]| for ev-
ery subset S of V(G) with w(G — S) > 1, where w(G — S) denotes the
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number of components in the graph G — S. For a graph G, 03(G) is de-
fined as min{d(v) + d(v) + d(w) : {u,v,w} is an independent set in G}
and K is defined as K = {G : K; 541 € G C K, + (p + 1)K, for some
p > 2}. If C is a cycle of G, let @p denote the cycle C with a given ori-
entation. For u, v € C, let 6[u, v] denote the consecutive vertices on C
from u to v in the direction specified by C. We use z— and z+ to de-
note the predecessor and successor of a vertex z on C along the orientation
of C. If A C V(C), then A~ and A" are defined as {v~ : v € A} and
{v* : v € A} respectively. The analogous notation is used when the cycle
C is replaced by a path P. A graph G is called claw - free if G has no
induced subgraph isomorphic to K 3. For an integer ¢, a graph G is called
an L; - graph if d(u) + d(v) > |[N(u) U N(v) U N(w)| — 1, or equivalently
[N(u) " N(v)] > |[N(w) — (N(u) U N(v))| — i for each triple of vertices u,
v, and w with d(u,v) = 2 and w € N(u) N N(v). It can easily be verified
that every claw — free graph is an L; — graph (see [2]).

The long time interest in claw — free graphs motivates our study of L,
- graphs. In recent years several authors already obtained results on the
hamiltonian properties of L; ~ graphs. Asratian and Khachatrian [4] proved
that all connected Lo — graphs of order at least three are hamiltonian and
Saito [9] shown that if a graph G is a 2 — connected L, - graph of diam-
eter two then either G is hamiltonian or G € K. More results related to
the hamiltonian properties of L; ~ graphs can be found in [1], [2], [3] and [5].

Recently, Li and Schelp [7] extended Matthews and Sumner’s theorems
(8] on the hamiltonicity and traceability of claw - free graphs to L; - graphs.

Theorem 1 [7] Let G be a 2 - connected Ly - graph of order n. If §(G) >
(n —2)/3, then G is hamiltonian or G € K.

Theorem 2 [7] Let G be a connected Ly, - graph of order n. If §(G) >
(n —2)/3, then G is traceable.

In this note, we observe that the above two theorems can be further
strengthened respectively as follows.

Theorem 3 Let G be a 2 - connected Ly — graph of order n. If 03(G) >
n — 2, then G is hamiltonian or G € K.

Theorem 4 Let G be a connected Ly — graph of order n. If 03(G) > n—2,
then G is traceable.

2. Proofs

The following result is used as a lemma in the proof of Theorem 3.
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Lemma 1 [2] If G is a 2 - connected Ly - graph, then either G is 1 -
tough or G € K.

Proof of Theorem 3. Let G be a graph satisfying the conditions in
Theorem 3. Suppose that G is not hamiltonian and G ¢ K. Choose a
longest cycle C in G and specify an orientation of C. Then Lemma 1 im-
plies that G is 1 — tough. Assume that H is a connected component of the
graph G[V(G) — V(C)] and that N(V(H)) NV (C) := {ai, az, ..., e} with
hia; € E, where h; € V(H) for 1 <1i < l. We also assume that a,, az, ...,
a; are labeled in the order of the orientation of C. Since G is 2 — connected,
1> 2. Set A:= {a1, as, ..., 4} and let b; and d; be the predecessor and
successor respectively of a; along C, 1 < i < I. Set B := {by, by, ..., b}
and D ;= {dl, dg, ceey dl}.

Next we will prove that for each ¢, 1 < ¢ <[, b;d; € E. Suppose not,
then there exists a k, 1 < k < [, such that byd; & E. Clearly, d(hy,dy) =2
and ay € N(h) N N(dy). Since G is an L; — graph,

|N(he) N N(de)| 2 IN(ax) = (N(hi) UN(de))| = 1 > |{bx, di, he }| - 1 = 2.

By the choice of C, we have N(hx) N N(di) N (V(G) — V(C)) = 8. Then
there exists a vertex a; € N(V(H)) NV(C) such that a; € N(hg) N N(dy).

Let X be the set N(hy) N V(C) := {z1, z2, ..., T, } with the z;’s or-
dered with increasing index in the direction of orientation of C. Then
X C Aand !, > 2. Let s; and ¢; be the predecessor and successor respec-
tively of z; along C, for each i, 1 < ¢ < ;. Set S := {s1, s2, ..., 51, },
T := {1, ta, ..., t1,}. Clearly, SU {hi} is an independent set in G and
N(h) N N(s;) N (V(G) — V(C)) = 0, for each 3, 1 < i < l;. Moreover,
for each i, 1 < i < Iy, d(hg,s;) = 2 and z; € N(h) N N(s;), so by the
hypothesis of Theorem 3, we have

|N(he) N N(s:)| > |N(z:) — (N () UN(s:))| - 1.
Obviously, Ns(z;) C N(z;) — (N(ht) UN(s;) U {hi}). Thus,
|Ns(z:)] < |N(z;) — (N(hg) UN(s;))| — 1. Therefore,
|Ns(z:)| < [N(he) N N(si)| = [Nx(s:)|- Hence,
e(X,5) = TiL, INs(z:)] € Liky Nx(s:)] = e(X, S).

It follows, for each i, 1 < i <!j, that
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N(z:) — (N(he) UN(si) U {ht}) = Ns(z;) C S. (1)
Similarly, for each i, 1 < i<,
N(z;) = (N(he) UN(t:) U {ht}) = Nr(z;) € T. 2)

We claim that there exists an i such that s;4) # t;, where 1 < ¢ < [;
and s;, 41 is regarded as s;. Suppose not, then for each i, 1 < i < I,
Si+1 = t;. Clearly, for each i, 1 < i < I}, N(t;) N V(H) = 0, otherwise
C is not of maximum length, also for any pair of i, j, 1 < 7,5 < {; and
¢ # J, ti, t; do not have neighbors in the same component of the graph
G[V(G) — V(C) - V(H)], otherwise C is again not of maximum length.
Therefore, G - {z1, 22, ..., z;, } has at least !; + 1 components, contradict-
ing the fact that G is 1 — tough.

Without loss of generality, assume that s; # t;,. Observe that s; €
N(t1), otherwise from (2), we have s; € T, which is impossible. Since
sit1 € E, s; # t1. Observe again that s, € N(t2), otherwise from (2),
we have s; € T, which is also impossible. Repeating this process, we have
s;jtj € E, for each j, 1 < j <I;. This implies that byd; € E, a contradic-
tion. Hence, for each i, 1 <i <!, bid; € E.

Let y; be the first vertex on ﬁ[dl, bs] such that b;y; & E. The existence
of y; is guaranteed by the fact that b, & N(b;). Moreover, we have y, ¢
N(a:). Suppose not, then, by the choice of C, we have hy; ¢ E otherwise
G has a longer cycle than C. Thus d(h;,:1) =2 and @, € N(h;) N N(y,).
Since G is an L; - graph,

IN(h) N N(91)] 2 IN(a1) = (N(h1) UN(y1))| = 1 2 [{br, 91, m}| -1 =2.

By the choice of C, we have N(y;) N N(hy) N (V(G) — V(C)) = 0. Then
there exists a vertex a; € No(H) such that a; € N(h)) N N(y;). Thus, G
has a cycle

h1a; Cly1, b1 C 5, 01 E 7, aa]ha

which is longer than C, a contradiction. Let y, be the first vertex in

[d2, b3] such that byys & E. As before, y, indeed exists and y2 & N(az).
Let ¢ be any vertex in H. Then the choice of C implies that {g,v1,2 } is
an independent set in G. Set

Vi = Cly, bal,

Vo = a[yz,bal,
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Vs = Clas, ba),

Vier = 6[at—1,b1],

Vi = Clas, bu),

Vir = Clat, 7],
Viez = Claz, 7], and
Vizs = V(G) = V(C).

For each vertex w in G, we simplify some notation letting N;(w) replace
Ny, (w), di(w) = |Ni(w)| and (Ni(w))~ = Ny~ (w).

Clearly, di(g) = 0. Also Ny (y1) N N1(y2) = 0, otherwise there is a cycle
in G which is longer than C. Therefore,

di(q) + di(n1) + di(y2) = INT (1) + [N1(¥2)| = [Ny (1) U Ni(32)| <
Vi = {b2}| = Vi - 1.

Similarly, d2(g) +d2(y1) + da(y2) < |V2| = 1.
For each i, 3 < 4 < [, it follows that yja; € E, y;d; € E, y;d} ¢ E,
where j = 1 or 2, otherwise there is a cycle in G which is longer than C.

For each 4, 3 < i < I, Ni(y1) N N (y2) = 0, otherwise we can again find a
cycle in G which is longer than C. Therefore, for each i, 3 <17 <,

di(g)+di(y1) +di(y2) < 1+|Ni(y1)|+IN; (y2)| = 1+|Ni(y1)UN (2)] <
Vi = {d:i}| = [Vi| - 1.

Clearly, N(y2)NVi41 =0 and N(g)NVi41 C { a1 }, for otherwise a cycle
longer than C can be found. Therefore,

di41(g) + dit1(y1) + dia1(y2) < [Vigal-
Similarly, di+2(q) + di+2(¥1) + div2(y2) < [Vis2l.

Notice that ¢ & Niys(g) UNp+3(y1) UNi43(y2). Also notice that Nyy3(q)
N Nips(y1) = 0, Niga(y1) N0 Niga(y2) = 0, and Niya(y2) N Niga(g) = 0,
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otherwise there are again cycles in G which are longer than C. Therefore,
di+3(q) + diy3(31) + di43(y2) < [Vigs| — 1.

Hence, n — 2 < d(q) + d(y1) + d(y2) < 153 (dig) + di(1) + di(y2))
<n—1-1. A final contradiction. QED.

Proof of Theorem 4. Suppose G is a graph satisfying the conditions
in Theorem 4 that is not traceable. Let P be a longest path in G with
end-vertices a, b and the orientation of P is specified from a to b. Since G
is not traceable, V(G) — V(P) # 0. Assume that H is a connected compo-
nent of the graph G[V(G) — V(P)] and that N(V(H) N V(P) := {a, a2,
..y a1} with h;a; € E, where h; € V(H) for 1 < i < 1. We also assume that
a1, @z, ..., a; are labeled in the order of the orientation of P. Set 4 := {a,
az, ..., ai}. Clearly,l > 1 and a, b ¢ A. Let b; and d; be the predecessor
and successor respectively of a; along P, 1 <4 < I. Set B := {by, by, ...,
b[} and D := {dl, dg, aeey dl}.

If I = 1, then b; € N(d;). Otherwise since d(hi1,d1) =2, a; € N(h;) N
N(d;) and G is an L; — graph, we have

|N(h1) N N(d1)| 2 [N(a1) = (N(h1) UN(d1))| =1 > |{d1, h1, b1 } —1=2.

By the choice of P, we have N(h;) N N(d1) N (V(G) — V(P)) = 0. Thus
N(h)NN(d)NV(P) # 0, contradicting to the assumption of [ = 1. Since
P is longest path in G, b1b € E, otherwise G has a path which is longer
than P. Let v be the first vertex on ?[al,b] such that byv € E.

Next we will count the degree sum of vertices a, v and h) and arriving
at a contradiction. Set

Vi = Pla, b1],
‘/2 = ﬁ[alyv_]a
Vs = By, b],

Vi=V(G)-V(P).
Since ! = 1, we have ah; ¢ F and vh; ¢ E. Moreover, av € E, otherwise

G has a path which is longer than P. Thus {a,v,h; } is an independent
set in G.
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Clearly, d; (h1) = 0. Also Ny (a) N N1(v) = 0, otherwise there is a path
in G which is longer than P. Therefore,

di(a) + di(v) + di(h1) = INT (a)] + |Mi(v)] = [Ny (a) UNi(v)] <
i = {b1 }| =] - 1.

Clearly, d2(hy) = 1. Also dz(a) = 0, otherwise G has a path which
is longer than P. Notice that a; ¢ N(v). Otherwise since d(h1,v) = 2,
a1 € N(hy) N N(v) and G is an L, — graph, we have

IN(h)) N N(®)| > [N(a1) = (N(h)) UN®))| = 1 > [{v,hy, by }| = 1= 2.

By the choice of P, we have N(h1) N N(v) N (V(G) — V(P)) = 0. Thus
N(h) N N(@w)NV(P) # 0, contradicting again to the assumption of I = 1.
Therefore,

dz(a) + d3(v) + d2(h1) < [V2l.
Clearly, d3(h;) = 0. Notice that b € N(a), otherwise G has a path

which is longer than P. Moreover, N3(a) N N3 (v) = 0, otherwise G again
has a path which is longer than P. Therefore,

ds(a) + d3(v) + d3(h1) = |Ns(a)] + |Ny (v)| = [Na(a) U Ny (v)| <
[Va—{b}| =|V3| - 1.

Clearly, Ny(a), N4(v), and Ny(h,) are pairwise disjoint and hy & Ny(a)u
N4(v) U Ny(hy). Therefore,

di(a) + ds(v) + da(hy) < V4] - 1.

Hence, n—2 < d(a)+d(v)+d(h1) < Ti_, (di(e)+di(v)+di(h1)) < n-3,
a contradiction.

If | > 2, using arguments similar to that in the proof of Theorem 3, we
have, for each 7, 1 < 1 <!, that b;d; € E. Furthermore, there exists a vertex
v in P[dy, bs) such that v & N(b;), v & N(a;), and Play,v~] C N(by). Set

I/l = ﬁ[aa bl])
V2 = ?‘[al,v‘],
Vs = Pv,b),
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Va =V(G) - V(P).

Clearly, ah; ¢ E and vh; ¢ E. Moreover, av ¢ E, otherwise G has a
path which is longer than P. Thus { a,v, h; } is an independent set in G.

By similar arguments as in the case of | = 1, we have
di(a) +di(v) +di(h) < W3] - 1.

da(a) + da(v) + dz(h1) < |Val.

ds(a) + ds(v) +dy(hy) < V4| = 1.

Clearly, b & N(a). We also have N3(a)NN; (v) = 8, N; (v)NNa(hy) = 0,
and N3(h1) N N3(a) = 0. Otherwise there are paths in G' which are longer
than P. Therefore,

d3(a)+ds(v)+d3(h1) = |N3(a)|+|N5 (v)|+|Ns(ha)| = |N3(@)UN; (v)U
N3(h)l < |Vs — {b}| = V5] - L.

Hence, n—2 < d(a)+d(v)+d(h1) < Y5, (di(a) +di(v)+ds(h1)) < n—-3,
a contradiction, which completes the proof. QED.
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