On a Minimum Cutset of Strongly k-Extendable Graphs

N. Ananchuen
Department of Mathematics
Silpakorn University
Nakorn Pathom 73000 Thailand

Abstract. Let G be a simple connected graph on 2n vertices with a perfect matching. For a positive integer k, $1 \le k \le$ n - 1, G is k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all the edges of M. For an integer k, $0 \le k \le n - 2$, G is strongly k-extendable if G - {u, v} is k-extendable for every pair of vertices u and v of The problem that arises is that of characterizing k-extendable graphs and strongly k-extendable graphs. first of these problems has been considered by several authors while the latter has been recently investigated. In this paper, we focus on a minimum cutset of strongly k-extendable graphs. For a minimum cutset S of a strongly k-extendable graph G, we establish that if |S| = k + t, for an integer $t \ge 3$, then the independence number of the induced subgraph G[S] is at most 2 or at least k + 5 - t. Further, we present an upper bound on a number of components of G - S.

1. Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [3]. Thus G is a graph with vertex set V(G), edge set E(G), v(G) vertices, $\varepsilon(G)$ edges, minimum degree $\delta(G)$, connectivity $\kappa(G)$ and independence number $\alpha(G)$. For $V' \subseteq V(G)$, G[V'] denotes the subgraph induced by V'. Similarly G[E'] denotes the subgraph induced by the edge set E' of G. $N_G(u)$ denotes the neighbour set of u in G and $\overline{N}_G(u)$ the non-neighbours of u. Note that $\overline{N}_G(u) = V(G) \setminus (N_G(u) \cup \{u\})$. The *join* $G \vee H$ of disjoint graphs G and H is the graph obtained from $G \cup H$ by joining each vertex of G to each vertex of H.

A matching M in G is a subset of E(G) in which no two edges have a vertex in common. M is a maximum matching if $|M| \ge |M'|$ for any other matching M' in G. A vertex v is saturated by M if some edge of M is incident to v; otherwise, v is said to be unsaturated. A matching M is perfect if it saturates every vertex of the graph. For simplicity we let V(M) denote the vertex set of the subgraph G[M] induced by M.

Let G be a simple connected graph on 2n vertices with a perfect matching. For a given positive integer k, $1 \le k \le n - 1$, G is k-extendable if for every matching M of size k in G, there exists a perfect matching in G containing all the edges of M. For convenience, a graph with a perfect matching is said to be 0-extendable. For an integer k, $0 \le k \le n - 2$, we say that G is strongly k-extendable or simply k*-extendable if for every pair of vertices u and v of G, G - $\{u, v\}$ is k-extendable. A graph G is bicritical if G - $\{u, v\}$ has a perfect matching for every pair of vertices u and v. Clearly, 0*-extendable graphs are bicritical and a concept of k*-extendable graphs is a generalization of bicritical graphs. Further, k*-extendable graphs are non-bipartite.

A number of authors have studied k-extendable graphs. Excellent surveys are the papers of Plummer [10, 11]. Lovasz [4], Lovasz and Plummer [5, 6] and Plummer [7] have studied k^* -extendable graphs for k = 0 (bicritical graphs). For $k \ge 1$, k^* -extendable graphs have been recently investigated by the author [1, 2]. In [1] we established a relationship between k-extendable and k^* -extendable graphs. The results are:

Theorem 1.1: If G is a $(k + 2)$ -extendable non-bipartite graph on $2n$	vertices
$0 \le k \le n - 3$, then G is k*-extendable.	□

Theorem 1.2: If G is a k*-extendable graph on 2n vertices, $0 \le k \le n-2$, then G is t-extendable for $0 \le t \le k+1$.

In [7] Plummer established the connectivity of a k-extendable graph. He proved the following result:

Theorem 1.3: Let G be a k-extendable graph on 2n vertices, $1 \le k \le n - 1$. Then

- (i) G is (k 1)-extendable;
- (ii) G is (k + 1)-connected.

He also established, in [9], that

Theorem 1.4: Suppose k is a positive integer. Suppose further that G is a k-extendable graph and S is a vertex cutset of G with |S| = k + 1, then

- (i) $G = K_{k+1, k+1}$, or
- (ii) if k = 1, then G S has at least 2 even components, but no odd components, or exactly 2 odd components, but no even components;
- (iii) if $k \ge 3$ and k is odd, then G-S has exactly 2 odd components and no even components, or exactly 2 even components and no odd components; or
- (iv) if $k \ge 2$ and k is even, then G S has exactly 2 components, one of which is odd and the other, even.

A similar result to Theorem 1.3 for k*-extendable graphs was proved by Ananchuen [1, 2].

Theorem 1.5: If G is a k^* -extendable graph on 2n vertices, $1 \le k \le n-2$, then

- (i) G is (k 1)*-extendable;
- (ii) G is (k+3)-connected.

Theorems 1.1 and 1.2 indicate that k-extendable non-bipartite graphs and k*-extendable graphs are closely related. So we expect some similar results to Theorem 1.4 for k*-extendable graphs. Hence, in this paper, we focus our attention on a minimum cutset of k*-extendable graphs.

For a minimum cutset S of a k*-extendable graph G, we establish, in Section 2, that if |S| = k + t, for an integer $t \ge 3$, then the independence number of the induced subgraph G[S] is at most 2 or at least k + 5 - t. Further, in Section 3, we present some results concerning an upper bound on a number of components of G - S. In fact, we prove that if G is a k*-extendable graph on 2n vertices, $2 \le k \le n - 3$ and S is a minimum cutset with $|S| \le 2k + 1$, then the number of components of G - S is at most |S| - |M(S)| - k - 1, where M(S) denotes a maximum matching in G[S].

We conclude this section by stating results that we make use of in our work. The following result is a very useful tool in establishing our results proved by Plummer [8].

Theorem 1.6: Let G be k-connected, $k \ge 1$, let S be a minimum cutset in G, and let C be any component of G - S. Then given any subset $S' \subseteq S$, $S' \ne \emptyset$ and $|S'| \le |V(C)|$, there exists a complete matching of S' into V(C).

Let M(S) denote a maximum matching in G[S]. The next result, established by the author [1], provides a necessary and sufficient condition for k^* -extendable graphs.

Theorem 1.7: Let G be a graph on 2n vertices. For $0 \le k \le n - 2$, G is k^* -extendable if and only if for all $S \subseteq V(G)$

$$o(G - S) \le \begin{cases} |S| - 2t, & \text{for } |S| \le 2k + 1 \\ |S| - 2t - 2, & \text{for } |S| \ge 2k + 2 \end{cases}$$

where $t = min \{ |M(S)|, k \}$

A characterization of $(n-2)^*$ -extendable graphs on 2n vertices was given in [2] by the author.

Theorem 1.8: G is an $(n-2)^*$ -extendable graph on $2n \ge 4$ vertices if and only if G is K_{2n}

2. The independence number of a minimum cutset

In this section, we investigate the independence number of a minimum cutset of strongly k-extendable graphs. By Theorem 1.8, the only $(n-2)^*$ -extendable graph on 2n vertices is K_{2n} which is clearly (2n-1)-connected. Hence, in the rest of this paper, we will restrict our attention to k^* -extendable graphs on 2n vertices for $0 \le k \le n-3$. It follows directly from the definition of bicritical graphs $(0^*$ -extendable) that such graphs are 2-connected. A graph $K_2 \vee 2K_{2r}$ for any positive integer r is an example of a bicritical graph which is 2-connected. For $1 \le k \le n-3$, it follows from Theorem 1.5 (ii) that k^* -extendable graphs on 2n vertices are (k+3)-connected. Our first result establishes the independence number of a minimum cutset of k^* -extendable graphs.

Theorem 2.1: Let G be a k*-extendable graph on 2n vertices with $0 \le k \le n-3$ and suppose $S \subseteq V(G)$ is a minimum cutset of G with |S| = k + t for $t \ge 3$, then $\alpha(G[S]) \ge k + 5 - t$ or $\alpha(G[S]) \le 2$.

Proof: Suppose to the contrary that there is a minimum cutset S of G with |S| = k + t, $t \ge 3$ and $3 \le \alpha(G[S]) \le k + 4 - t$. Then $k \ge t - 1$ and $2|M(S)| \ge (k + t) - (k + 4 - t) = 2t - 4$. Thus $|S| \ge 2t - 1$ and $|M(S)| \ge t - 2$. Let M be a matching of size t - 2 in G[S] and let u and v be vertices of $S \setminus V(M)$. Such vertices exist since $|S| \ge 2t - 1$. Put

$$S_1 = S \setminus (V(M) \cup \{u, v\}).$$

Then $|S_1| = (k+t) - 2(t-2) - 2 = k - t + 2 \ge 1$.

Let $S_1 = \{x_1, x_2, \dots, x_{k-t+2}\}$. Further, let C_1, C_2, \dots, C_r be components of G-S. We claim that $|V(C_i)| \le k-t+1$ for all $i, 1 \le i \le r$. Suppose to the contrary that there exists a component C_j with $|V(C_j)| \ge k-t+2$. By Theorem 1.6, there is a matching M_1 which matches vertices of S_1 into $V(C_j)$. Let $M_1 = \{x_1y_1, x_2y_2, \dots, x_{k-t+2}y_{k-t+2}\}$. Clearly, $M \cup M_1$ is a matching of size (t-2)+(k-t+2)=k. Since $G-\{u,v\}$ has a perfect matching containing all the edges of $M \cup M_1$, $C_j \setminus (V(M_1))$ is an even component of $G-(S \cup V(M_1))$. Now x_1 must be adjacent to some vertex $w_1 \in V(C_i)$ for some $i \ne j$ since S is a minimum cutset. Consider the matching $M_2 = (M \cup M_1 \cup \{x_1w_1\}) \setminus \{x_1y_1\}$. Clearly, $|M_2| = k$. Since M_2 covers $S \setminus \{u,v\}$ and $G-(S \cup V(M_2))$ contains $C_j \setminus V(M_2)$ as an isolated odd component, M_2 does not extend to a perfect matching in $G-\{u,v\}$, a contradiction. Hence, $|V(C_i)| \le k-t+1$ for all $i, 1 \le i \le r$.

Next we let $V(C_1)=\{w_1,\,w_2,\,\ldots,\,w_m\}$ where $m=|V(C_1)|$. By Theorem 1.6, there is a matching M_3 which matches vertices of $V(C_1)$ into S_1 . Let this matching be $\{x_1w_1,\,x_2w_2,\,\ldots,\,x_mw_m\}$. Clearly, $|S_1\setminus V(M_3)|=k-t+2-m\geq 1$.

Suppose $\left| \bigcup_{i=2}^{r} V(C_i) \right| \ge k - t + 3 - m$. Then, in view of Theorem 1.6, there is a

matching M_4 of size k-t+3-m which matches vertices of $\{x_m, x_{m+1}, \ldots, x_{k-t+2}\}$

into $\bigcup_{i=2}^{r} V(C_i)$. Let $x_m z \in M_4$ where $z \in \bigcup_{i=2}^{r} V(C_i)$. Now $M_5 = (M \cup M_5)$ $(M_3 \setminus \{x_m w_m\}) \cup M_4$) is a matching of size (t-2) + (m-1) + (k-t+3-m) = kin $G - \{u, v\}$ which does not extend to a perfect matching in $G - \{u, v\}$ since M_s covers $S \setminus \{u, v\}$ and $G - (S \cup V(M_5))$ contains w_m as an isolated vertex. Thus $\left| \bigcup_{i=2}^{r} V(C_i) \right| \le k - t + 2 - m$. But then $2n = \nu(G) = |S| + \left| \bigcup_{i=1}^{r} V(C_i) \right| \le k + t + m + (k - t + 2 - m) = 2k + 2 \le 2n - 4,$

$$2n = V(G) = |S| + \left| \bigcup_{i=1}^{n} V(C_i) \right| \le k + t + m + (k - t + 2 - m) = 2k + 2 \le 2n - 4,$$
contradiction. This completes the proof of our theorem

a contradiction. This completes the proof of our theorem.

Remark 2.1: Theorem 2.1 holds for 0*-extendable graphs with a minimum cutset of order 2.

The next result follows directly from the proof of Theorem 2.1.

Corollary 2.2: Let G be a k*-extendable graph on 2n vertices with $2 \le k \le n-3$ and suppose $S \subseteq V(G)$ is a minimum cutset of G with |S| = k + t for $3 \le t \le t$ k + 1, then $|M(S)| \le t - 3$.

As a consequence of Theorem 1.5 (ii) and Corollary 2.2, we have the following corollary:

Corollary 2.3: Let G be a k*-extendable graph on 2n vertices; $2 \le k \le n-3$. If $S \subset V(G)$ is a cutset of G with |S| = k + 3, then S is independent.

Theorem 1.1 together with Theorem 2.1 yields the following corollary:

Corollary 2.4: Let G be a k-extendable non-bipartite graph on 2n vertices with $2 \le k \le n-1$ and suppose $S \subseteq V(G)$ is a minimum cutset of G with |S| = k + t - 2for $t \ge 3$, then $\alpha(G[S]) \ge k + 3 - t$ or $\alpha(G[S]) \le 2$.

We conclude this section by establishing a necessary condition, in terms of connectivity, for k*-extendable graphs which are locally connected. A graph G is said to be locally connected if for every vertex u of G, the induced subgraph $G[N_G(u)]$ is connected.

Theorem 2.5: Let G be a k*-extendable graph on 2n vertices with $2 \le k \le n-3$. If G is locally connected, then G is (k+4)-connected.

Proof: Suppose to the contrary that G is not (k + 4)- connected. By Theorem 1.5(ii), $\kappa(G) = k + 3$. Let S be a cutset of order k + 3 of G. Then S is independent by Corollary 2.3. But then G[N_G(u)] is disconnected for any vertex $u \in S$, contradicting the locally connected of G. Hence, G is (k + 4)-connected as required.

Remark 2.2: (1) For an odd integer $n \ge 5$, $G_1 = K_2 \lor 2K_{n-1}$ and $G_2 = K_4 \lor (K_{n-1} \cup K_{n-3})$ are k*-extendable for k = 0 and 1, respectively. Clearly, G_1 and G_2 are locally connected but $\kappa(G_1) = 2 < 4$ and $\kappa(G_2) = 4 < 5$. Hence, the lower bound on k in Theorem 2.5 is best possible.

(2) Theorem 2.5 is best possible in the sense that there exists a graph G on 2n vertices which is k*-extendable, locally connected and $\kappa(G) = k + 4$. Such a graph is $(K_1 \vee \overline{K}_{k+3}) \vee (K_{2k} \cup K_{k+4})$.

3. The structure of G - S

In this section, we establish some results concerning an upper bound on the number of components of G - S, denoted by $\omega(G - S)$, when S is a minimum cutset of a k*-extendable graph G. We begin with a minimum cutset of order at most 2k + 1.

Theorem 3.1: Let G be a k*-extendable graph on 2n vertices with $2 \le k \le n-3$ and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If $|S| \le 2k+1$, then $2 \le \omega(G-S) \le |S| - |M(S)| - k-1$.

Proof: Clearly, since S is a cutset, $\omega(G-S) \geq 2$. Now we suppose to the contrary that $\omega(G-S) \geq |S| - |M(S)| - k$. Since G is k*-extendable and S is a minimum cutset, by Corollary 2.2, $|M(S)| \leq |S| - k - 3 \leq (2k+1) - k - 3 = k - 2$. Thus, $|S| - 2|M(S)| \geq k - |M(S)| + 3$. Let x, $y \in V(G) \setminus S$. Since $S \setminus V(M(S))$ is independent and G is k*-extendable, $\nu(G-(S \cup \{x, y\})) \geq |S \setminus V(M(S))| = |S| - 2|M(S)|$. Thus $\nu(G-S) \geq |S| - 2|M(S)| + 2$. Now let C_1, C_2, \ldots, C_r be components of G-S. Clearly, $r \geq |S| - |M(S)| - k \geq 3$.

We claim that there is a subset X of $\bigcup_{i=1}^r V(C_i)$ of cardinality $k - |M(S)| \ge 2$ which $G - (S \cup X)$ contains at least $|S| - |M(S)| - k - 1 \ge 2$ odd components. Suppose there is no such subset. Among subsets of $\bigcup_{i=1}^r V(C_i)$ with cardinality

 $\begin{array}{l} k - |M(S)|, \ let \ A \ be \ a \ subset \ of \ \bigcup_{i=1}^r V(C_i) \ with \ |A| = k - |M(S)| \ and \ o(G - (S \cup A)) \\ is \ as \ large \ as \ possible. \ Notice \ that \ v(G - (S \cup A)) \ge |S| - 2|M(S)| + 2 - (k - |M(S)|) = |S| - |M(S)| - k + 2. \ Suppose \ \omega(G - (S \cup A)) = 1. \ This \ implies \ that \ G - (S \cup A) \ is \ connected \ and \ then \ there \ exists \ a \ component \ of \ G - S, \ C_1 \ say, \ which \ V(C_1) \setminus A \neq \emptyset \ and \ V(C_i) \cap A = V(C_i); \ 2 \le i \le r. \ Since \ v(G - (S \cup A)) \ge |S| - |M(S)| - k + 2, \ |V(C_1) \setminus A| \ge |S| - |M(S)| - k + 2. \ Let \ x_1, \ x_2, \ \dots, x_{|S| - |M(S)| - k - 1} \in V(C_1) \setminus A \ and \ y_i \in V(C_i) \cap A, \ 2 \le i \le |S| - |M(S)| - k. \ Put \ A_1 = (A \cup \{x_1, x_2, \dots, x_{|S| - |M(S)| - k - 1}\}) \setminus \{y_2, y_3, \dots, y_{|S| - |M(S)| - k}\}. \end{array}$

Clearly, $|A_1| = |A|$ and $G - (S \cup A_1)$ contains at least $|S| - |M(S)| - k - 1 \ge 2$ odd components. This contradicts the choice of A. Hence, $\omega(G - (S \cup A)) \ge 2$. Now we suppose that $G - (S \cup A)$ contains only odd components. Since $o(G - (S \cup A)) \le |S| - |M(S)| - k - 2$, there are at least 2 components of G - S, C_j and C_j : say, with $V(C_i) \cap A = V(C_i)$ for i = j, j'. Further, there exists an odd component of $G - (S \cup A)$, H_1 say, which $v(H_1) \ge 3$. Let $a_1, a_2 \in V(H_1)$, $b_1 \in V(C_j)$ and $b_2 \in V(C_{j'})$. Put $A_2 = (A \cup \{a_1, a_2\}) \setminus \{b_1, b_2\}$. Clearly, $|A_2| = |A|$ and $o(G - (S \cup A_2)) = o(G - (S \cup A)) + 2$, a contradiction. Thus $G - (S \cup A)$ contains at least one even component. Suppose there is a component of G - S, $C_{j''}$ say, with $V(C_{j''}) \cap A = V(C_{j''})$. Let $w \in V(C_{j''})$ and $z \in V(H_j)$ for some an even component H_j of $G - (S \cup A)$. Then $A_3 = (A \cup \{z\}) \setminus \{w\}$ has the same cardinality with A and $o(G - (S \cup A_3)) = o(G - (S \cup A)) + 2$, a contradiction. Hence, $V(C_j) \setminus A \ne \emptyset$ for all j, $1 \le j \le r$. Consequently, $\omega(G - (S \cup A)) = \omega(G - S) = r$ and $G - (S \cup A)$ contains at least 2 even components.

Let W_1, W_2, \ldots, W_t be odd components of $G - (S \cup A)$ and $W_{t+1}, W_{t+2}, \ldots, W_r$ be even components of $G - (S \cup A)$ where $t \le |S| - |M(S)| - k - 2$. Without any loss of generality, we may assume that $V(W_i) = V(C_i) \setminus A$; $1 \le i \le r$. Suppose $V(C_{t+1}) \cap A \ne \emptyset$. Let $w' \in V(C_{t+1}) \cap A$ and $z' \in V(W_{t+2})$. Put $A_4 = (A \cup \{z'\}) \setminus \{w'\}$. Then $|A_4| = |A|$ and $o(G - (S \cup A_4)) = o(G - (S \cup A)) + 2$, contradicting the choice of A. Thus, $V(C_{t+1}) \cap A = \emptyset$. Similarly, $V(C_i) \cap A = \emptyset$, $t + 2 \le i \le r$. This implies that $V(W_i) = V(C_i)$; $t + 1 \le i \le r$. Now we will show that $|V(C_i) \cap A| \le 1$, $1 \le i \le t$. Suppose there is an odd component W_j , $1 \le j \le t$, which $|V(C_j) \cap A| \le 1$, $1 \le i \le t$. Suppose there is an odd component W_j , $1 \le j \le t$, which $|V(C_j) \cap A| \ge 2$. Let $w_1, w_2 \in V(C_j) \cap A$, $z_1 \in V(W_{t+1})$, $z_2 \in V(W_{t+2})$. Then $A_5 = (A \cup \{z_1, z_2\}) \setminus \{w_1, w_2\}$ has the same cardinality with A and $O(G - (S \cup A_5)) = O(G - (S \cup A)) + 2$, a contradiction. Hence, $|V(C_i) \cap A| \le 1$, $1 \le i \le t$. Now $k - |M(S)| = |A| = \sum_{i=1}^{t} |V(C_i) \cap A| \le t \le |S| - |M(S)| - k - 2$. Thus $|S| \ge 2k + 2$. This contradicts our assumption on |S| and proves our claim.

Now let B be a subset of $\bigcup_{i=1}^r V(C_i)$ with |B|=k-|M(S)| and o(G - (S \cup B)) \geq |S| - |M(S)| - k - 1. Since |S| - 2|M(S)| \geq k - |M(S)| + 3, in view of Theorem 1.6, there is a complete matching F of size k - |M(S)| joining vertices of B to vertices of S' \subseteq S \ V(M(S)). Clearly, |S| - (2|M(S)| + |S'|) \geq 3. Let $c_1, c_2 \in$ S \ (V(M(S)) \cup S'). Then F \cup M(S) is a matching of size k - |M(S)| + |M(S)| = k which does not extend to a perfect matching in G - {c₁, c₂} since S'' = S \ (V(M(S)) \cup S' \cup {c₁, c₂}) \subseteq V(G - (V(M(S) \cup F) \cup {c₁, c₂}) of order |S| - (2|M(S)| + k - |M(S)| + 2) = |S| - |M(S)| - k - 2 and G - (V(M(S) \cup F) \cup {c₁, c₂} \cup S'') = G - (S \cup B) contains at least |S| - |M(S)| - k - 1 odd components. This contradicts the k*-extendablity of G and completes the proof of our theorem. \square

Corollary 3.2: Let G be a k*-extendable graph on 2n vertices with $2 \le k \le n - 3$. Let S be a minimum cutset of order at most 2k + 1 which S is independent. Then

$$o(G-S) \le \begin{cases} |S| - k - 2, & \text{for } k \text{ is even} \\ |S| - k - 1, & \text{for } k \text{ is odd.} \end{cases}$$

Proof: By Theorem 3.1, $o(G - S) \le \omega(G - S) \le |S| - k - 1$. Thus we only need to prove the case k is even. Suppose k is even and

$$o(G - S) = |S| - k - 1$$
.

Since $\nu(G)$ is even, |S| and |S| - k-1 must have the same parity. This implies that k+1 is even and hence k is odd, a contradiction. This completes the proof of our corollary.

Remark 3.1: Let s and k be positive integers with $k+3 \le s \le 2k+1$. Let $G_1 = \overline{K}_s \vee (s-k-1)K_{2s+1}$ for an odd $k \ge 3$ and $G_2 = \overline{K}_s \vee (K_{2s} \cup (s-k-2)K_{2s+1})$ for an even $k \ge 2$. It is not difficult to show that G_1 and G_2 are both k^* -extendable. Clearly, $V(\overline{K}_s)$ is a cutset of G_i , i=1, 2 and $G_1 - S$ and $G_2 - S$ contain exactly s-k-1 and s-k-2 odd components, respectively. Thus Corollary 3.2 is best possible.

The next corollary follows immediately from Theorem 3.1, corollaries 2.3 and 3.2.

Corollary 3.3: Let G be a k^* -extendable graph on 2n vertices with $2 \le k \le n-3$. Suppose S is a cutset of G with |S| = k+3. Then G-S contains exactly 2 components. Further,

- (i) If k is odd, then both components of G S are odd or even.
- (ii) If k is even, then one of components of G S is odd and the other is even.

We make an observation here that k+3 is the smallest order of a cutset of k^* -extendable graphs for $1 \le k \le n-3$. Corollary 3.3 presents the number of components of G-S when S is a cutset of order k+3 of a k^* -extendable graph G for $2 \le k \le n-3$. Our next two lemmas concern a similar result for k=0 and 1. Note that 0^* -extendable graphs are 2 connected and 1^* -extendable graphs are 4-connected.

Lemma 3.4: Let G be a 0*-extendable graph on $2n \ge 4$ vertices. Suppose S is a cutset of G with |S| = 2. Then G - S contains at least 2 even components and no odd components.

Proof: It follows directly from the definition of 0*-extendable graphs and the fact that |S| is even.

Lemma 3.5: Let G be a 1*-extendable graph on $2n \ge 6$ vertices. Suppose S is a cutset of G with |S| = 4.

- (i) If G[S] contains an edge, then G-S contains at least 2 even components but no odd components.
- (ii) If S is an independent set, then G-S contains exactly 2 odd components and no even components or at least 2 even components but no odd components.

Proof: Let $S = \{a, b, c, d\}$ be a cutset of G. Without any loss of generality, we may assume that $ab \in E(G)$. If G - S contains an odd component, then the edge ab does not extend to a perfect matching in $G - \{c, d\}$. This contradicts 1*-extendability of G. Hence, G - S has no odd components. Since S is a cutset of G, G - S contains at least 2 even components but no odd components. This proves (i).

Now we suppose that S is independent and G - S contains an odd component (and hence, by parity, at least 2 odd components). Further, we suppose that G - S contains H_0 as an even component. Since |S| = 4, by Theorem 1.5(ii), S is a minimum cutset. Thus there exists an edge e = xy joining a vertex x of S to a vertex y of H_0 . Without any loss of generality, we may assume that x = a. Then the edge ay does not extend to a perfect matching in $G - \{b, c\}$ since the odd components of G - S together with $H_0 \setminus y$ form at least 3 odd components of $(G - (S \cup \{y\}))$ and $|S \setminus \{a, b, c\}| = |\{d\}| = 1$, a contradiction. Hence, G - S contains only odd components. It follows from Theorem 1.7 that G - S contains exactly 2 odd components and no even components. If G - S has no odd components, then G - S contains at least 2 even components as S is a cutset. This completes the proof of our lemma.

Remark 3.2: (1) For $n \ge 3$, a graph $K_2 \lor (n-1)$ K_2 is 0*-extendable which satisfies Lemma 3.4.

(2) For $n \ge 4$, a graph $K_4 \vee (n-2)K_2$ is 1*-extendable which satisfies Lemma 3.5 (i) and for $2n \ge 12$ graphs $\overline{K}_4 \vee (K_1 \cup K_{2n-5})$ and $\overline{K}_4 \vee (n-2)K_2$ are both 1*-extendable which satisfy Lemma 3.5 (ii).

Theorem 1.1 together with Theorem 3.1 yields the following corollary:

Corollary 3.6: Let G be a k-extendable non-bipartite graph on 2n vertices with $4 \le k \le n - 1$ and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If $|S| \le 2k - 3$, then $2 \le \omega(G - S) \le |S| - |M(S)| - k + 1$.

Theorem 3.1 gives an upper bound on a number of components of G-S when S is a minimum cutset of order at most 2k+1 of a k^* -extendable graph G. One might expect a similar result for $|S| \ge 2k+2$ but this is not the case. For non-negative integers s and t, a graph $G_1 = (K_{2k} \cup \overline{K}_{t+2}) \vee (s+t+2)K_{2k+4}$ for t is even and a graph $G_2 = (K_{2k} \cup \overline{K}_{t+2}) \vee [(s+t+1)K_{2k+4} \cup K_{2k+4}]$

 K_{2k+3}] for t is odd are k^* -extendable with a minimum cutset $S = V(K_{2k} \cup \overline{K}_{1+2})$. Clearly, $\omega(G_i - S) = s + t + 2 \ge 2$ for i = 1, 2. However, if the number of odd components of G - S is sufficiently large, then an upper bound on a number of even components of G - S can be given with some restriction on the size of M(S). Our next result establishes this.

Theorem 3.7: Let G be a k*-extendable graph on 2n vertices with $1 \le k \le n-3$ and let S be a minimum cutset of G with $|S| \ge 2k+2$ and M(S) a maximum matching in G[S]. Suppose o(G-S)=|S|-2|M(S)|-2-r for some nonnegative integer r. If $2|M(S)|+r \le 2k-2$, then the number of even components of G-S is at most $|M(S)|+\left\lfloor\frac{r}{2}\right\rfloor$.

Proof: Let $\eta(G-S)$ be the number of even components of G-S. Suppose to the contrary that $\eta(G-S) \geq |M(S)| + \left\lfloor \frac{r}{2} \right\rfloor + 1 = t$. Let H_1, H_2, \ldots, H_t be even components of G-S. Choose $x_i \in V(H_i), 1 \leq i \leq t$. Since $2|M(S)| + r \leq 2k-2$, $t = |M(S)| + \left\lfloor \frac{r}{2} \right\rfloor + 1 \leq k$ and $|S| \geq 2k+2 \geq t+2$. Let $y_1, y_2, \ldots, y_t, y_{t+1}, y_{t+2} \in S$. In view of Theorem 1.6, there is a matching M' of size t joining vertices of $\{x_1, x_2, \ldots, x_t\}$ to vertices of $\{y_1, y_2, \ldots, y_t\}$. Clearly, $G-(V(M') \cup S)$ contains $|S| - 2|M(S)| - 2 - r + t = |S| - |M(S)| - \left\lceil \frac{r}{2} \right\rceil - 1$ odd components. Further $|S \setminus (V(M') \cup \{y_{t+1}, y_{t+2}\})| = |S| - (t+2) = |S| - |M(S)| - \left\lfloor \frac{r}{2} \right\rfloor - 3$. If M' extended to a perfect matching in $G-\{y_{t+1}, y_{t+2}\}$, then each odd component of $G-(V(M') \cup S)$ would be joined to at least one vertex of $S \setminus (V(M') \cup \{y_{t+1}, y_{t+2}\})$. But this is impossible since $o(G-(V(M') \cup S)) = |S| - |M(S)| - \left\lceil \frac{r}{2} \right\rceil - 1$ while $|S \setminus (V(M') \cup \{y_{t+1}, y_{t+2}\})| = |S| - |M(S)| - \left\lfloor \frac{r}{2} \right\rfloor - 3$. Hence, $\eta(G-S) \leq |M(S)| + \left\lfloor \frac{r}{2} \right\rfloor$ as required.

Our next result concerns an upper bound on a number of odd components of G-S when S is an independent cutset of a k^* -extendable graph G with $|S| \ge 2k+2$.

Corollary 3.8: Let G be a k*-extendable graph on 2n vertices with $2 \le k \le n-3$ and let S be a minimum cutset of G with $|S| \ge 2k+2$. If S is independent, then $o(G-S) \le |S|-4$. Further, if $k \ge 3$ and $|S|-5 \le o(G-S)$, then G-S has no even components.

Proof: Suppose to the contrary that $o(G - S) \ge |S| - 3$. It follows from Theorem 3.7 that G - S has no even components. Let C_1, C_2, \ldots, C_t be odd components of G - S. If $|V(C_i)| = 1$; $1 \le i \le t$, then G is bipartite which is impossible since G is k^* -extendable. Hence, there is a component of G - S, C_1 say, with $|V(C_1)| \ge 3$. Let $x, y \in V(C_1)$ and $a, b, c, d \in S$. In view of Theorem 1.6, there is a matching M of size 2 joining vertices of $\{x, y\}$ to vertices of $\{a, b\}$. But then M does not extend to a perfect matching in $G - \{c, d\}$ since $G - (S \cup \{x, y\})$ contains at least |S| - 3 odd components while $|S \setminus \{a, b, c, d\}| = |S| - 4$. This contradicts the k^* -extendability of G and proves that $o(G - S) \le |S| - 4$.

Further, we assume that $k \ge 3$ and $|S| - 5 \le o(G - S)$. Since v(G) is even, |S| and o(G - S) have the same parity. This implies that o(G - S) = |S| - 4. By Theorem 3.7, G - S has at most one even component.

Suppose H is an even component of G - S. We will show that v(H) = 2. Suppose to the contrary that $v(H) \ge 4$. Let $z_1, z_2, z_3 \in V(H)$ and $w_1, w_2, w_3, w_4, w_5 \in S$. By Theorem 1.6, there is a matching M_1 of size 3 joining vertices of $\{z_1, z_2, z_3\}$ to vertices of $\{w_1, w_2, w_3\}$. Applying a similar argument used above establishes that M_1 does not extend to a perfect matching in $G - \{w_4, w_5\}$, a contradiction. Hence, v(H) = 2. Since G has a perfect matching and S is independent, $v(G - S) \ge |S|$. Because v(H) = 2 and o(G - S) = |S| - 4, there is an odd component of G - S, C say, with $v(C) \ge 3$. Now let $a_1, a_2 \in V(C)$ and $b \in V(H)$. Then, in view of Theorem 1.6, there is a matching M_2 of size 3 joining vertices of $\{a_1, a_2, b\}$ to vertices of $\{w_1, w_2, w_3\}$. Again, M_2 does not extend to a perfect matching in $G - \{w_4, w_5\}$, a contradiction. This proves that G - S has no even components and completes the proof of our corollary.

Remark 3.3: For a positive integer $s \ge 4$, a graph $G_1 = \overline{K}_s \lor (s-2)K_{2s+1}$ is 1*-extendable containing $V(\overline{K}_s)$ as a minimum cutset. Clearly, $G_1 - V(\overline{K}_s)$ contains s-2 odd components. Further, for a positive integer $s \ge 5$, a graph $G_2 = \overline{K}_s \lor [(s-4)K_{2s+1} \cup K_{2s}]$ is 2*-extendable which $V(\overline{K}_s)$ is a minimum cutset and $G_2 - V(\overline{K}_s)$ contains s-4 odd components and an even component. Thus the bound on k in Corollary 3.8 is best possible.

Our next result concerns a minimum cutset of a k*-extendable graph which its induced subgraph has a small independence number. We begin with the following lemma.

Lemma 3.9: Let G be a simple graph with $\alpha(G) \le 2$ and M a maximum matching in G. Then $|M| = \frac{\nu(G) - 1}{2}$ for $\nu(G)$ is odd and $|M| \ge \frac{\nu(G)}{2} - 1$ for $\nu(G)$ is even.

Proof: Let $\nu(G)$ be odd. Suppose $|M| < \frac{\nu(G)-1}{2}$. Clearly, $|M| \le \frac{\nu(G)-3}{2}$ and G-V(M) is independent since M is a maximum matching. Then G-V(M) contains at least $\nu(G)-2|M| \ge 3$ independent vertices, contradicting the fact that $\alpha(G) \le 2$. Hence, $|M| = \frac{\nu(G)-1}{2}$. Similarly, $|M| \ge \frac{\nu(G)}{2} - 1$ for $\nu(G)$ is even.

Theorem 3.10: Let G be a k*-extendable graph on 2n vertices with $0 \le k \le n-3$ and let $S \subseteq V(G)$ be a minimum cutset of G. Suppose $\alpha(G[S]) \le 2$. Then $|S| \ge 2k+2$ and $o(G-S) \le |S|-2k-2$.

a

Proof: By Theorem 1.7 and the fact that 0^* -extendable graphs are 2-connected, our theorem follows immediately for k = 0. So we only need to consider the case $k \ge 1$. Since G is (k + 3)-connected, $|S| \ge k + 3 \ge 4$. Suppose $|S| \le 2k + 1$. Let M be a maximum matching in G[S]. We will show that G - S contains only even components.

Suppose to the contrary that G - S contains an odd component. Assume that G - S contains exactly one odd component. Then |S| is odd by the fact that v(G) is even. Further, since S is a cutset, G - S contains an even component, H say. By Lemma 3.9, $|M| = \frac{|S|-1}{2} \le k$. Let $x \in S \setminus V(M)$ and $y \in V(H)$. Then M does not extend to a perfect matching in $G - \{x, y\}$ since $G - (V(M) \cup \{x, y\})$ contains o(G - S) + 1 = 2 isolated odd components, a contradiction. Hence, G - S contains at least 2 odd components. Clearly, |S| is odd otherwise G is not k*-extendable since $\frac{|S|}{2} - 1 \le |M| \le k$ and $|S \setminus V(M)| = 0$ or 2. Consequently, G - S contains at least 3 odd components. Let C₁ be an odd component of G - S and let $z \in V(C_1)$. By Lemma 3.9, $|M| = \frac{|S|-1}{2} \le k$ and there is a vertex $x \in S \setminus V(M)$. Now M does not extend to a perfect matching in $G - \{x, z\}$ since $G - (V(M) \cup \{x, z\})$ contains $o(G - S) - 1 \ge 2$ isolated odd components, again a contradiction. This proves that G - S contains only even components. Consequently, |S| is even and $|S| \le 2k$. Further, G - S contains at least two even components, H_1 and H_2 say. By Lemma 3.9, $\frac{|S|}{2} - 1 \le |M| \le k$. Let $a \in V(H_1)$ and $b \in V(H_2)$. If $|M| = \frac{|S|}{2} \le k$, then M does not extend to a perfect matching in $G - \{a, b\}$ since $G - (V(M) \cup \{a, b\})$ contains $H_1 - a$ and H₂ - b as isolated odd components. This contradicts the fact that G is k*-extendable. Thus $|M| = \frac{|S|}{2} - 1 \ge 1$ since $|S| \ge 4$.

Let $a_1b_1 \in M$, a_2 and b_2 belong to $S \setminus V(M)$. Since S is a minimum cutset, in view of Theorem 1.6, there is a matching $M_1 = \{a_1x_1, b_1x_2 \mid x_1 \in V(H_1)\}$ and $x_2 \in V(H_2)\}$. Then $M_2 = (M \cup M_1) \setminus \{a_1b_1\}$ is a matching of size $(\frac{|S|}{2} - 1) + 2 - 1 = \frac{|S|}{2} \le k$. Clearly M_2 does not extend to a perfect matching in $G - \{a_2, b_2\}$ since $G - (V(M_2) \cup \{a_2, b_2\})$ contains $H_1 - x_1$ and $H_2 - x_2$ as isolated odd components. This contradiction proves that $|S| \ge 2k + 2$. It follows immediately from Theorem 1.7 that $o(G - S) \le |S| - 2k - 2$. This completes the proof of our theorem.

Remark 3.4: Theorem 3.10 is best possible in the sense that there is a k^* -extendable graph G with a cutset S satisfying the conditions of the theorem and G - S contains a number of odd components up to |S| - 2k - 2.

Let
$$G_1 = K_{2k+2+r} - \{an \ edge\}, \ G_2 = \bigcup_{i=1}^q K_{2a_i+1} \ and \ G_3 = \bigcup_{j=1}^m K_{2b_j} \ where \ r,$$

q, m, a_i , b_j are non-negative integers, $q + m \ge 2$, $q \le r$ and $q \equiv r \pmod{2}$. Put $G = G_1 \lor (G_2 \cup G_3)$. Figure 3.1 depicts the graph G. Throughout the paper we adopt the convention that a double line in our diagram denotes the join between the corresponding graphs. It is not too difficult to show that G is k*-extendable

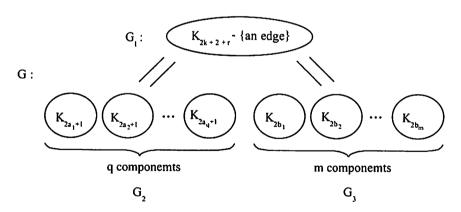


Figure 3.1

containing $V(G_1)$ as a cutset of order 2k + 2 + r. Notice that the number of components of $G - V(G_1)$ can be any integer which is at least 2.

Theorem 1.1 together with Theorem 3.10 yields the following corollary:

Corollary 3.11: Let G be a k-extendable non-bipartite graph on 2n vertices with $2 \le k \le n - 1$ and let S be a minimum cutset of G. Suppose $\alpha(G[S]) \le 2$. Then $|S| \ge 2k - 2$ and $o(G - S) \le |S| - 2k + 2$.

We conclude our paper by establishing a lower bound on an order of k*-extendable graphs in terms of an order of a minimum cutset.

Theorem 3.12: Let G be a k^* -extendable graph on 2n vertices with $2 \le k \le n-3$ and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If

- (i) $|S| \le 2k + 1$, or
- (ii) $|S| \ge 2k + 2$ and $|M(S)| \le k$, then $2n \ge 2|S| + 2k - 2|M(S)| + 2$.

Proof: Clearly, by the assumption on |S| and Corollary 2.2, $|S| - 2|M(S)| \ge 2$. Let x and y be vertices of $S \setminus V(M(S))$. Since G is k*-extendable, there is a perfect matching F in $G - \{x, y\}$ containing all the edges of M(S). Put

$$F_1 = \{ab \in F \mid a \in S \setminus (V(M(S)) \cup \{x, y\}), b \notin S\}$$

and

$$F_2 = \{ab \in F \mid a, b \notin S\}.$$

Then

$$|F_1| = |S| - 2|M(S)| - 2 \ge 0$$

and

$$|F_2| = \frac{1}{2} [2n - |S| - |F_1|]$$

$$= \frac{1}{2} [2n - |S| - (|S| - 2|M(S)| - 2)]$$

$$= n - |S| + |M(S)| + 1.$$

If $|F_2|=0$, then M(S) does not extend to a perfect matching in G since G-V(M(S)) contains $S\setminus V(M(S))$ as an independent set of order |S|-2|M(S)| and $\nu(G-V(M(S)))=|S|-2|M(S)|+(|S|-2|M(S)|-2)=2|S|-4|M(S)|-2$, contradicting the k^* -extendability of G. Thus $|F_2|\ge 1$. Let $zw\in F_2$. Suppose $|F_2|\le k+1$. Then $F_2\setminus \{zw\}$ does not extend to a perfect matching in $G-\{z,w\}$ since $G-V(F_2)$ contains $S\setminus V(M(S))$ as an independent set of order |S|-2|M(S)| and $\nu(G-(S\cup V(F_2))=|F_1|=|S|-2|M(S)|-2$, again a contradiction. Hence, $n-|S|+|M(S)|+1=|F_2|\ge k+2$. Thus $2n\ge 2|S|+2k-2|M(S)|+2$ as required. This completes the proof of our theorem.

As a corollary we have:

Corollary 3.13: Let G be a k-extendable non-bipartite graph on 2n vertices with $4 \le k \le n - 1$ and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If

(i)
$$|S| \le 2k - 3$$
, or

(ii)
$$|S| \ge 2k - 2$$
 and $|M(S)| \le k - 2$
then $2n \ge 2|S| + 2k - 2|M(S)| - 2$.

Remark 3.5: Theorems 3.1 and 3.12 are best possible in the sense that for $k \ge 2$ there is a k*-extendable graph G on $2n \ge 2|S| + 2k - 2|M(S)| + 2$ vertices containing a minimum cutset S of order at most 2k + 1 with $2 \le \omega(G - S) \le |S| - |M(S)| - k - 1$. For non-negative integers k, s, t, q, r, m with

- (i) $k + 3 \le s \le 2k + 1$
- (ii) $0 \le t \le s k 3$
- (iii) $0 \le 2q + r \le s t k 3$,

let $G = (K_{2t} \cup \overline{K}_{s-2t}) \vee [K_{s-2q} \cup K_{2k+2-2r-2t+2m} \cup (2q)K_1 \cup rK_2]$. Figure 3.2 illustrates the graph G. It is not too difficult to show that G is k^* -extendable.

Clearly, $S = V(K_{2t} \cup K_{s-2t})$ is a cutset of order s, v(G) = 2s + 2k - 2t + 2 + 2m and $2 \le \omega(G-S) = 2q + r + 2 \le s - t - k - 1$.

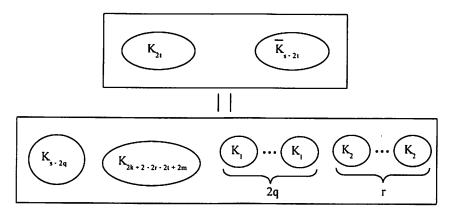


Figure 3.2

Acknowledgement

This work has been supported by a grant (RSA 3980009) from The Thailand Research Fund.

References

- [1] N. Ananchuen, On Strongly k-Extendable Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38 (2001), 3-19.
- [2] N. Ananchuen, On Minimum Degree of Strongly k-Extendable Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38 (2001), 149-159.

- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, The Macmillan Press, London, (1976).
- [4] L. Lovasz, On the Structure of Factorization graphs, Acta Mathematica Academiae Scientiarum Hungaricae, 23 (1972), 179-195.
- [5] L. Lovasz and M. D. Plummer, On Bicritical graphs, Colloquia Mathematica Societatis Janos Bolyai, 10 (1973), 1051-1079.
- [6] L. Lovasz and M. D. Plummer, On A Family Of Planar Bicritical graphs, *Proc. London Math. Soc.*, 30 (1975), 160 176.
- [7] M. D. Plummer, On n-Extendable graphs, Discrete Mathematics, 31 (1980) 201 210.
- [8] M. D. Plummer, Matching Extension and Connectivity in Graphs, Congressus Numerantium, 63 (1988) 147 160.
- [9] M. D. Plummer, Matching Extension and Connectivity in Graphs ii, in Y. Alavi, G. Chartrand, O.R. Oellermann and A. J. Schwenk (eds), Graph Theory, Combinatorics, and Applications Vol 2 (1991) 651 – 664.
- [10] M. D. Plummer, Extending Matchings in Graphs: a survey, *Discrete Mathematics*, 127 (1994), 227-292.
- [11] M. D. Plummer, Extending Matchings in Graphs: An update, Congressus Numeratium, 116 (1996), 3-32.