On a Minimum Cutset of Strongly k-Extendable
Graphs

N. Ananchuen
Department of Mathematics
Silpakorn University
Nakorn Pathom 73000 Thailand

Abstract. Let G be a simple connected graph on 2n vertices
with a perfect matching. For a positive integer k, 1 < k <
n - 1, G is k-extendable if for every matching M of size k in G,
there is a perfect matching in G containing all the edges of M.
For an integer k, 0 < k < n - 2, G is strongly k-extendable if
G - {u, v} is k-extendable for every pair of vertices u and v of
G. The problem that arises is that of characterizing
k-extendable graphs and strongly k-extendable graphs. The
first of these problems has been considered by several authors
“while the latter has been recently investigated. In this paper,
we focus on a minimum cutset of strongly k-extendable
graphs. For a minimum cutset S of a strongly k-extendable
graph G, we establish that if |S| = k + t, for an integer t > 3,
then the independence number of the induced subgraph G{S]
is at most 2 or at least k + 5 — t. Further, we present an upper
bound on a number of components of G - S.

1. Introduction

All graphs considered in this paper are finite, connected, loopless and
have no multiple edges. For the most part our notation and terminology follows
that of Bondy and Murty [3]. Thus G is a graph with vertex set V(G), edge set
E(G), W(G) vertices, €(G) edges, minimum degree §(G), connectivity k(G) and
independence number o(G). For V' < V(G), G[V‘] denotes the subgraph
induced by V'. Similarly G[E'] denotes the subgraph induced by the edge set E'
of G. Ng(u) denotes the neighbour set of u in G and N (u) the non-neighbours
of u. Note that N 4(u) = V(G) \ (Ng(u) U {u}). The join G v H of disjoint
graphs G and H is the graph obtained from G U H by joining each vertex of G to
each vertex of H.

A matching M in G is a subset of E(G) in which no two edges have a
vertex in common. M is a maximum matching if (M| 2 |M’'| for any other
matching M’ in G. A vertex v is saturated by M if some edge of M is incident to
v; otherwise, v is said to be unsaturated. A matching M is perfect if it saturates
every vertex of the graph. For simplicity we let V(M) denote the vertex set of
the subgraph G[M] induced by M.
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Let G be a simple connected graph on 2n vertices with a perfect
matching. For a given positive integer k, 1 <k < n - 1, G is k-extendable if for
every matching M of size k in G, there exists a perfect matching in G containing
all the edges of M. For convenience, a graph with a perfect matching is said to
be 0-extendable. For an integer k, 0 < k < n - 2, we say that G is strongly
k-extendable or simply k*-extendable if for every pair of vertices u and v of G,
G - {u, v} is k-extendable. A graph G is bicritical if G - {u, v} has a perfect
matching for every pair of vertices u and v. Clearly, 0*-extendable graphs are
bicritical and a concept of k*-extendable graphs is a generalization of bicritical
graphs. Further, k*—extendable graphs are non-bipartite.

A number of authors have studied k-extendable graphs. Excellent
surveys are the papers of Plummer [10, 11]. Lovasz [4], Lovasz and Plummer
[5, 6] and Plummer [7] have studied k*-extendable graphs for k = 0 (bicritical
graphs). For k 2 1, k*-extendable graphs have been recently investigated by the
author [1, 2]. In [1] we established a relationship between k-extendable and
k*-extendable graphs. The results are:

Theorem 1.1: If G is a (k + 2)-extendable non-bipartite graph on 2n vertices,
0 <k <n - 3, then G is k*-extendable. m)

Theorem 1.2: If G is a k*-extendable graph on 2n vertices, 0 <k <n -2, then G
is t-extendable for 0 <t <k +1. a

In [7] Plummer established the connectivity of a k-extendable graph.
He proved the following result:

Theorem 1.3: Let G be a k-extendable graph on 2n vertices, 1 £k <n- 1. Then
(i) Gis (k- 1)-extendable;
(ii) Gis (k + 1)-connected. a

He also established, in [9], that

Theorem 1.4: Suppose k is a positive integer. Suppose further that G is a k-
extendable graph and S is a vertex cutset of G with {S| =k + 1, then

(1) G=Kyup 01

(ii) ifk =1, then G — S has at least 2 even components, but no odd
components, or exactly 2 odd components, but no even components;

(iii) ifk = 3 and k is odd, then G - S has exactly 2 odd components
and no even components, or exactly 2 even components and no odd
components; or

(iv) ifk =2 and k is even, then G — S has exactly 2 components, one
of which is odd and the other, even. Qa



A similar result to Theorem 1.3 for k*-extendable graphs was proved
by Ananchuen [1, 2].

Theorem 1.5: If G is a k*-extendable graph on 2n vertices, 1 <k <n-2, then
(i) Gis (k - 1)*-extendable;
(ii) Gis (k + 3)-connected. a

Theorems 1.1 and 1.2 indicate that k—extendable non—bipartite graphs
and k*—extendable graphs are closely related. So we expect some similar results
to Theorem 1.4 for k*—extendable graphs. Hence, in this paper, we focus our
attention on a minimum cutset of k*-extendable graphs.

For a minimum cutset S of a k*-extendable graph G, we establish, in
Section 2, that if |S| = k + t, for an integer t > 3, then the independence number
of the induced subgraph G[S] is at most 2 or at least k + 5 — t. Further, in
Section 3, we present some results concerning an upper bound on a number of
components of G — S. In fact, we prove that if G is a k*-extendable graph on 2n
vertices, 2 < k < n — 3 and S is a minimum cutset with |S| < 2k + 1, then the
number of components of G — S is at most [S| - [M(S)| - k — 1, where M(S)
denotes a maximum matching in G[S].

We conclude this section by stating results that we make use of in our
work. The following result is a very useful tool in establishing our results
proved by Plummer [8].

Theorem 1.6: Let G be k-connected, k = 1, let S be a minimum cutset in G, and
let C be any component of G — S. Then given any subset 8’ ¢ S, S’ # & and |S'|
< |V(Q)), there exists a complete matching of S’ into V(C). Q

Let M(S) denote a maximum matching in G[S]. The next result,
established by the author [1], provides a necessary and sufficient condition for
k*-extendable graphs.

Theorem 1.7: Let G be a graph on 2n vertices. For 0 <k <n-2, G is
k*-extendable if and only if for all S ¢ V(G)

S|-2t, for [§]<2k+1
o(G-8§)<
IS| -2t -2, for |§| > 2k +2
wheret=min{|M(S)|,k}. a

A characterization of (n — 2)*-extendable graphs on 2n vertices was
given in [2] by the author.

Theorem 1.8: G is an (n — 2)*-extendable graph on 2n 2 4 vertices if and only if
GisK,, a
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2. The independence number of a minimum cutset

In this section, we investigate the independence number of a minimum
cutset of strongly k-extendable graphs. By Theorem 1.8, the only (n — 2)*-
extendable graph on 2n vertices is K,, which is clearly (2n — 1)-connected.
Hence, in the rest of this paper, we will restrict our attention to k*-extendable
graphs on 2n vertices for 0 <k <n - 3. It follows directly from the definition of
bicritical graphs (0*-extendable) that such graphs are 2-connected. A graph
K, v 2K, for any positive integer r is an example of a bicritical graph which is
2-connected. For 1 < k < n - 3, it follows from Theorem 1.5 (ii) that
k*-extendable graphs on 2n vertices are (k + 3)-connected. Our first result
establishes the independence number of a minimum cutset of k*-extendable
graphs.

Theorem 2.1: Let G be a k*-extendable graph on 2n vertices with 0 <k <n-3
and suppose S ¢ V(G) is a minimum cutset of G with [S] =k + t for t > 3, then
o(G[S]) 2k +5-tora(G[S]) £2.

Proof: Suppose to the contrary that there is a minimum cutset S of G with |S| =
k+t,t23and3<a(G[S])<k+4~t. Thenk=t-1and 2[M(S)| = (k +t) -
(k+4—t)=2t—4. Thus|S|22t-1 and [M(S)| >t -2. Let M be a matching of
size t — 2 in G[S] and let u and v be vertices of S \ V(M). Such vertices exist
since [S| 2 2t-1. Put

S, =S\ (VM) v {u, v}).
Then [S)|=(k+t)-2(t-2)-2=k-t+221.

Let S, = {X,, X5, ... , Xy _(+2}. Further, letC,, C,, ..., C, be components
of G- S. We claim that |V(C)| <k -t+1foralli, 1 <i<r. Suppose to the
contrary that there exists a component C; with [V(C))| 2k — t + 2. By Theorem
1.6, there is a matching M, which matches vertices of S, into V(C;). Let M, =
{X\¥1s X2¥2 oo s Xg_1+2¥k-1+2}- Clearly, M U M, is a matching of size (t — 2) +
(k-t+2)=k. Since G- {u, v} has a perfect matching containing all the edges
of MU M,, G\ (V(M))) is an even component of G - (S U V(M,)). Now x,
must be adjacent to some vertex w, € V(C,) for some i # j since S is a minimum
cutset. Consider the matching M, = (M UM, U {x,w,})\ {x,y,}. Clearly, M,
=k. Since M, covers S\ {u, v} and G — (S U V(M,)) contains C; \ V(M,) as an
isolated odd component, M, does not extend to a perfect matching in G - {u, v},
a contradiction. Hence, [V(C)|<k~-t+1foralli,1<i<r.

Next we let V(C,) = {w,, W,, ..., W} where m = |V(C,)|. By Theorem
1.6, there is a matching M, which matches vertices of V(C,) into S,. Let this
matching be {x,w, X,w,, ..., X Wn}. Clearly, [S,\V(M,)|=k-t+2-m=>1.

Jv(c)

matching M, of size k — t + 3 — m which matches vertices of {X,, Xpnsp> -+~ » Xpp2}

Suppose 2k - t+3 - m. Then, in view of Theorem 1.6, there is a
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into UV(C;) . Let x,z € M, where z € JV(C) . Now M, = (M U

i=2 i=2
(M \ {x,w,.}) U M,) is a matching of size (t—2) + (m- 1)+ (k- t+3-m) =k
in G ~ {u, v} which does not extend to a perfect matching in G — {u, v} since M;
covers S\ {u, v} and G - (S U V(M;)) contains w,, as an isolated vertex. Thus

UV(C;)| Sk -t+2—m. Butthen
i=2

2n=vG) =[S+ | UV(C;)
i=l

a contradiction. This completes the proof of our theorem. Q

<k+t+m+(k-t+2-m)=2k+2<2n-4,

Remark 2.1: Theorem 2.1 holds for 0*-extendable graphs with a minimum
cutset of order 2.

The next result follows directly from the proof of Theorem 2.1.

Corollary 2.2: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3
and suppose S ¢ V(G) is a minimum cutset of G with |[S|=k +tfor3 <t<
k + 1, then [IM(S)| < t-3. a

As a consequence of Theorem 1.5 (ii) and Corollary 2.2, we have the
following corollary:

Corollary 2.3: Let G be a k*-extendable graph on 2n vertices; 2<k <n-3. If
S ¢ V(G) is a cutset of G with |S| =k + 3, then S is independent. Q

Theorem 1.1 together with Theorem 2.1 yields the following corollary:

Corollary 2.4: Let G be a k-extendable non-bipartite graph on 2n vertices with
2 <k <n-1 and suppose S c V(G) is a minimum cutset of G with |S| =k +t-2
for t > 3, then a(G[S]) 2k + 3 — t or a(G[S]) < 2. 0

We conclude this section by establishing a necessary condition, in
terms of connectivity, for k*-extendable graphs which are locally connected. A
graph G is said to be Jocally connected if for every vertex u of G, the induced
subgraph G[Ng(u)] is connected.

Theorem 2.5: Let G be a k*-extendable graph on 2n vertices with 2 <k <n - 3.
If G is locally connected, then G is (k+4)-connected.

Proof: Suppose to the contrary that G is not (k + 4)- connected. By Theorem
1.5(ii), x(G) =k + 3, Let S be a cutset of order k + 3 of G. Then S is
independent by Corollary 2.3. But then G[Ng(u)] is disconnected for any vertex
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u € S, contradicting the locally connected of G. Hence, G is (k + 4)-connected
as required. Q

Remark 2.2: (1) For an odd integern 25, G, =K, v 2K, _,and G, = K, v
(K, -1 VK, _;) are k*-extendable for k = 0 and 1, respectively. Clearly, G, and
G, are locally connected but k(G,) = 2 < 4 and k(G,) =4 < 5. Hence, the lower
bound on k in Theorem 2.5 is best possible.

(2) Theorem 2.5 is best possible in the sense that there exists a
graph G on 2n vertices which is k*-extendable, locally connected and x(G) =

k+4. Suchagraphis (K, v K,,3) v Ky UK,.J).
3. The structure of G — S

In this section, we establish some results concerning an upper bound on
the number of components of G — S, denoted by ©(G - S), when S is a minimum
cutset of a k*-extendable graph G. We begin with a minimum cutset of order at
most 2k + 1.

Theorem 3.1: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3
and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If
[SI<2k + 1, then2 < (G -S) <|S| - IM(S)| - k- 1.

Proof: Clearly, since S is a cutset, ®(G — S) > 2. Now we suppose to the
contrary that o(G — S) 2 |S| - [M(S)| - k. Since G is k*-extendable and S is a
minimum cutset, by Corollary 2.2, [M(S)| <|S|-k-3<(2k+1)-k-3=k~-2.
Thus, |S| - 2IM(S)] = k - [M(S){ + 3. Letx,y € V(G)\S. Since S\ V(M(S)) is
independent and G is k*-extendable, V(G - (S U {x, y})) 2 IS \ V(M(S))| =
IS| - 2IM(8)|. Thus v(G - S) 2 |S| - 2JM(S)| + 2. Now let C,, C,, ..., C, be
components of G - S. Clearly, r 2 [S| - M(S)| - k > 3.

We claim that there is a subset X of LrJV(Ci) of cardinality k - [M(S)| 2
=1
2 which G - (S U X) contains at least [S| - [M(S)| - k — 1 = 2 odd components.

Suppose there is no such subset. Among subsets of OV(Ci) with cardinality
i=1

k - IM(S)], let A be a subset of le(Ci) with [A| =k - [M(S)| and o(G - (S U A))
i=)

is as large as possible. Notice that WG - (S U A)) = [S| - 2]M(S)| + 2 -

(k - IM(S)) = [S] - IM(S)| - k + 2. Suppose o(G — (S v A)) = 1. This implies

that G — (S U A) is connected and then there exists a component of G - S, C,

say, which V(C) \ A # @ and V(C) n A = V(C); 2 £i <1 Since

VG -(SUA))2|S[-M(S) -k +2,[V(C)\A] 2 S| - M(S)| - k + 2. Letx,, X,

e X mesy-k-1 € V(C)VAand y; € V(C) N A, 2<i<[S] - IM(S)| - k. Put
A= (AU {X, X oo s Xigamsiok-1 1) VY20 Y30 o+ 5 Yisr- sy -k }-
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Clearly, |A,| = |A| and G — (S U A,) contains at least [S| - [M(S)| -k -1 22 odd
components. This contradicts the choice of A. Hence, (G - (S U A)) 2 2.
Now we suppose that G — (S v A) contains only odd components. Since
o(G - (S U A)) < S| - IM(S)| - k — 2, there are at least 2 components of G - S, C;
and C; say, with V(C;) n A = V(C) for i =, j'. Further, there exists an odd
component of G — (S U A), H, say, which v(H,) > 3. Leta, a, € V(H,), b, €
V(C)) and b, € V(C;). Put A, =(A U {a,, 3,})\ {b), b,}. Clearly, |A,| =|A| and
o(G - (S U Ay)) =0o(G - (S U A)) + 2, a contradiction. Thus G - (S U A)
contains at least one even component. Suppose there is a component of G - S,
G- say, with V(C;) n A = V(C;.). Let w € V(C;) and z € V(H,) for some an
even component H; of G — (S U A). Then A, = (A U {z}) \ {w} has the same
cardinality with A and o(G - (S U A;)) = o(G - (S U A)) + 2, a contradiction.
Hence, V(C)\ A # @ for all j, 1 <j <r. Consequently, (G - (S U A)) =
o(G - S)=rand G - (S U A) contains at least 2 even components.

Let W,, W,, ..., W be odd components of G— (S U A) and W,,|, W,,,
..., W, be even components of G — (S U A) where t < |S| - IM(S)| - k - 2.
Without any loss of generality, we may assume that V(W) =V(C)\A:1<i<r.
Suppose V(C.,) " A=, Letw € V(C,))nAand z' € V(W,,,). Put A, =
(Au {z’})\ {w'}. Then|A, =|Aland o(G - (S U A,)) =0o(G - (S U A)) + 2,
contradicting the choice of A. Thus, V(C,;) N A =&. Similarly, V(C) " A =
@, t+2 <i<r. This implies that V(W;) = V(C); t + 1 <i <r. Now we will
show that [V(C)) " A| <1, 1 <i<t. Suppose there is an odd component W;, 1 <
j < t, which [V(C) N A2 2. Letw, w, € V(C) N A,z € V(W,,), 2 €
V(W,,,). Then A; = (A U {z,, z,}) \ {w,, w,} has the same cardinality with A
and o(G - (S U A;)) = o(G — (S U A)) + 2, a contradiction. Hence, [V(C) N A

t

<L 1<igt Nowk-|MS)=1Al= ZIV(C)NA| <t<|S|-IM(S)| -k - 2.
i=l

Thus |S| = 2k + 2. This contradicts our assumption on |S| and proves our claim.

Now let B be a subset of UV(C,) with [B] = k - |M(S)| and
=1

o(G - (SwB))2|S|- |M(S)| - k- 1. Since |S]| - 2]M(S)| 2 k - |M(S)| + 3, in view
of Theorem 1.6, there is a complete matching F of size k - [M(S)| joining vertices
of B to vertices of S' < S\ V(M(S)). Clearly, |S| - (2IM(S)| + |S/]) = 3. Letc,, ¢,
€ S\ (V(M(S)) v §'). Then F U M(S) is a matching of size k - [M(S)| + {M(S)|
= k which does not extend to a perfect matching in G - {c,, c,} since §" =
SV(VIM(S)) U S’ U {c,, ¢,}) € V(G — (V(M(S) v F) L {c,, c,}) of order [S] -
(2IM(S)| + k - [M(S)] + 2) =S| - IM(S)| - k-2 and G - (V(M(S) W F) L {c,, ¢,}
v S'") =G - (S U B) contains at least [S| - [M(S)| - k — 1 odd components. This
contradicts the k*-extendablity of G and completes the proof of our theorem. O

Corollary 3.2: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3.

Let S be a minimum cutset of order at most 2k + 1 which S is independent.
Then
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S|~ k-2, forkiseven
o(G-9)<
|S|- k-1, forkisodd.

Proof: By Theorem 3.1, o(G - S) < @(G -S) <[S| - k — 1. Thus we only need to
prove the case k is even. Suppose k is even and

o(G-S)=|S|-k-1.
Since W(G) is even, [S| and |S| - k — 1 must have the same parity. This implies
that k + 1 is even and hence k is odd, a contradiction. This completes the proof
of our corollary. Q

Remark 3.1: Let s and k be positive integers withk + 3 <s <2k + 1. LetG, =

KsVv(s~k—=1K,,, foranoddk 23 and G, = Ksv (K, U(s—k ~2)K,,,,) for
an even k = 2. It is not difficult to show that G, and G, are both k*-extendable.

Clearly, V( Ks )is a cutset of G;, i =1, 2 and G, — S and G, — S contain exactly
s —k -1 and s — k -2 odd components, respectively. Thus Corollary 3.2 is best
possible.

The next corollary follows immediately from Theorem 3.1, corollaries
2.3 and 3.2.

Corollary 3.3: Let G be a k*-extendable graph on 2n vertices with2 <k <n - 3.
Suppose S is a cutset of G with |[S| =k + 3. Then G — S contains exactly 2
components. Further,

(i) Ifkis odd, then both components of G — S are odd or even.

(ii) If k is even, then one of components of G — S is odd and the other
is even, a

We make an observation here that k + 3 is the smallest order of a cutset
of k*-extendable graphs for 1 <k <n - 3. Corollary 3.3 presents the number of
components of G — S when S is a cutset of order k + 3 of a k*-extendable graph
G for 2 £k < n - 3. Our next two lemmas concern a similar result for k = 0 and
1. Note that 0*-extendable graphs are 2 connected and 1*-extendable graphs are
4-connected.

Lemma 3.4: Let G be a 0*-extendable graph on 2n 2 4 vertices. Suppose S is a
cutset of G with {S| = 2. Then G - S contains at least 2 even components and no
odd components.

Proof: It follows directly from the definition of 0*-extendable graphs and the
fact that |S| is even. Q

Lemma 3.5: Let G be a 1*-extendable graph on 2n > 6 vertices. Suppose S is a
cutset of G with [S| = 4.
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(i) If G[S] contains an edge, then G — S contains at least 2 even
components but no odd components.

(ii) If S is an independent set, then G — S contains exactly 2 odd
components and no even components or at least 2 even components but no odd
components.

Proof: Let S = {a, b, c, d} be a cutset of G. Without any loss of generality, we
may assume that ab € E(G). If G - S contains an odd component, then the edge
ab does not extend to a perfect matching in G — {c, d}. This contradicts
1*-extendability of G. Hence, G — S has no odd components. Since S is a cutset
of G, G - S contains at least 2 even components but no odd components. This
proves (i).

Now we suppose that S is independent and G - S contains an odd
component (and hence, by parity, at least 2 odd components). Further, we
suppose that G — S contains H, as an even component. Since [S| = 4, by
Theorem 1.5(ii), S is a minimum cutset. Thus there exists an edge € = xy joining
a vertex x of S to a vertex y of H,. Without any loss of generality, we may
assume that x = a. Then the edge ay does not extend to a perfect matching in
G — {b, c} since the odd components of G — S together with H, \ y form at least 3
odd components of (G- (S v {y})and S\ {a, b, c}| =|{d}| = 1, a contradiction.
Hence, G - S contains only odd components. It follows from Theorem 1.7 that
G - S contains exactly 2 odd components and no even components. If G — S has
no odd components, then G — S contains at least 2 even components as S is a
cutset. This completes the proof of our lemma. Q

Remark 3.2: (1) For n 2 3, a graph K, v (n — 1) K, is 0*-extendable which
satisfies Lemma 3.4.
(2) For n = 4, a graph K, v (n — 2)K, is 1*-extendable which

satisfies Lemma 3.5 (i) and for 2n > 12 graphs K, v (K, U K,, .5) and K, v
(n - 2)K, are both 1*-extendable which satisfy Lemma 3.5 (ii).

Theorem 1.1 together with Theorem 3.1 yields the following corollary:

Corollary 3.6: Let G be a k-extendable non-bipartite graph on 2n vertices with
4 £k £n-1 and let S be a minimum cutset of G and M(S) a maximum
matching in G[S]. If|S| <2k -3, then2 < (G- S)<|S|- IM(S)|-k + 1. a

Theorem 3.1 gives an upper bound on a number of components of
G - S when S is a minimum cutset of order at most 2k + 1 of a k*-extendable
graph G. One might expect a similar result for |S| > 2k + 2 but this is not the

case. For non-negative integers s and t, a graph G, = (K, v Izp,z) v

(s +t+ 2)K,, ., for tis even and a graph G, = (K, v Kus2 IVIs+t+ DKy

r)



Ko 3] for tis odd are k*-extendable with a minimum cutset S = V(K, U K42 ).
Clearly, o(G; - S) =s +t+ 222 fori=1, 2. However, if the number of odd
components of G — S is sufficiently large, then an upper bound on a number of
even components of G — S can be given with some restriction on the size of
M(S). Our next result establishes this.

Theorem 3.7: Let G be a k*-extendable graph on 2n vertices with 1 <k <n - 3
and let S be a minimum cutset of G with |S| > 2k + 2 and M(S) 2 maximum
matching in G[S]. Suppose o(G - S) = |S| - 2]M(S)| - 2 - r for some non-
negative integer r. If 2]M(S)| + r < 2k — 2, then the number of even components

of G - S is at most [M(S)| + l%J

Proof: Let n(G - S) be the number of even components of G - S. Suppose to
the contrary that n(G — S) > [IM(S)| + B—J +1=t LetH,H,, ..., H, be even
components of G — S. Choose x; € V(H;), 1 <i<t. Since 2]M(S)| +r <2k -2,
t=|M(S)] + BJ +1<kand|S|22k+22t+2. Lety, ¥p ..., Yo Yeors Yooz € S.

In view of Theorem 1.6, there is a matching M’ of size t joining vertices of
{X1 Xy, ..., X,} to vertices of {y,, y,, ..., y,}. Clearly, G- (V(M') U S) contains

ISI - 2IM(S)| -2 —r +t =S| - IM(S)| - [%-l - 1 odd components. Further

IS\ (VM) U {Yours Y]l = IS] - (£ +2) = [S] - IM(S)] - BJ -3. If M’ extended

to a perfect matching in G — {y,.,, Y..,}, then each odd component of G - (V(M')
U S) would be joined to at least one vertex of S\ (V(M') U {Y..., Y;}). But this

is impossible since o(G - (V(M') U S)) = |S| - [M(S)] - [—;--‘ - 1 while [S\ (V(M")

U {Yin Yeb)l = IS] - IM(S)| - EJ - 3. Hence, 1(G - S) < IM(S)| + BJ as

required. Q

Our next result concerns an upper bound on a number of odd
components of G — S when S is an independent cutset of a k*-extendable graph
G with [S} 2 2k + 2.

Corollary 3.8: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3
and let S be a minimum cutset of G with |S| 2 2k + 2. If S is independent, then
o(G - S) < |S| - 4. Further, ifk >3 and [S| - 5 < o(G - 8), then G - S has no
even components.
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Proof: Suppose to the contrary that o(G — S) > |S} - 3. It follows from Theorem
3.7 that G - S has no even components. Let C,, C,, ..., C, be odd components
of G- 8. If [V(C)|=1;1 <1 <t, then G is bipartite which is impossible since G
is k*-extendable. Hence, there is a component of G - S, C, say, with [V(C,)| = 3.
Letx,y € V(C))and a, b, c,d € S. In view of Theorem 1.6, there is a matching
M of size 2 joining vertices of {x, y} to vertices of {a, b}. But then M does not
extend to a perfect matching in G — {c, d} since G - (S U {x, y}) contains at
least |S| - 3 odd components while |S\ {a, b, ¢, d}| =S| - 4. This contradicts the
k*-extendability of G and proves that o(G — S) < |S| - 4.

Further, we assume that k 2 3 and S| - § < o(G - S). Since v(G) is
even, [S] and o(G — S) have the same parity. This implies that o(G — S) = (S| - 4.
By Theorem 3.7, G - S has at most one even component.

Suppose H is an even component of G — S. We will show that v(H) =
2. Suppose to the contrary that v(H) = 4. Let z,, z,, z; € V(H) and w,, w,, w,,
w,, W € S. By Theorem 1.6, there is a matching M, of size 3 joining vertices of
{z,, Z,, Z,} to vertices of {w,, w,, w;}. Applying a similar argument used above
establishes that M, does not extend to a perfect matching in G — {w,, ws}, a
contradiction. Hence, v(H) = 2. Since G has a perfect matching and S is
independent, v(G - S) > |S|. Because v(H) =2 and o(G - S) = |S| - 4, there is an
odd component of G - S, C say, with v(C) =2 3. Now leta,,a, € V(C)and b €
V(H). Then, in view of Theorem 1.6, there is a matching M, of size 3 joining
vertices of {a,, a,, b} to vertices of {w,, w,, w,}. Again, M, does not extend to a
perfect matching in G - {w,, w;}, a contradiction. This proves that G — S has no
even components and completes the proof of our corollary. a

Remark 3.3: For a positive integer s > 4, a graph G, = Ks v (s = 2)Ky 1s
1*-extendable containing V(K;) as a minimum cutset. Clearly, G, - V(Ks)
contains s — 2 odd components. Further, for a positive integer s > 5, a graph G,
=Ks v [(s ~ 4)K,4., v K] is 2*-extendable which V( Ks ) is a minimum cutset

and G, - V( K ) contains s — 4 odd components and an even component. Thus
the bound on k in Corollary 3.8 is best possible.

Our next result concerns a minimum cutset of a k*-extendable graph
which its induced subgraph has a small independence number. We begin with
the following lemma.

Lemma 3.9: Let G be a simple graph with o(G) < 2 and M a maximum
v(G)-1 v(G)
2 2

matching in G. Then M| = -1 for

for v(G) is odd and M| 2

v(G) is even.
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Proof: Let v(G) be odd. Suppose |M| < @

. Clearly, M| < nd

G - V(M) is independent since M is a maximum matching. Then G — V(M)

contains at least v(G) — 2|M]| 2 3 independent vertices, contradicting the fact that

v(G)
2

v(G)-3 a
2

o(G) < 2. Hence, M| = @ . Similarly, M| 2 - 1 for v(G) is even.

Q

Theorem 3.10: Let G be a k*-extendable graph on 2n vertices with0 <k <n-3
and let S ¢ V(G) be a minimum cutset of G. Suppose o(G[S]) £ 2. Then |S| 2
2k +2and o(G-S) < |S|-2k-2.

Proof: By Theorem 1.7 and the fact that 0*-extendable graphs are 2-connected,
our theorem follows immediately for k = 0. So we only need to consider the
case k = 1. Since G is (k + 3)-connected, |S| = k + 3 > 4. Suppose |S| < 2k + 1.
Let M be a maximum matching in G[S]. We will show that G — S contains only
even components.

Suppose to the contrary that G — S contains an odd component.
Assume that G — S contains exactly one odd component. Then |S| is odd by the
fact that v(G) is even. Further, since S is a cutset, G — S contains an even

component, H say. By Lemma 3.9, M| = %S k. Letx € S\ V(M) and
y € V(H). Then M does not extend to a perfect matching in G — {x, y} since
G - (V(M) U {x, y}) contains o(G - S) + 1 = 2 isolated odd components, a
contradiction. Hence, G — S contains at least 2 odd components. Clearly, |S] is

odd otherwise G is not k*-extendable since Izﬂ -1<M|<kand|S\V(M)|=0

or 2, Consequently, G - S contains at least 3 odd components. Let C, be an odd

component of G — S and let z € V(C,). By Lemma 3.9, M| = 'S‘T_] <k and

there is a vertex x € S\ V(M). Now M does not extend to a perfect matching in
G - {x, z} since G - (V(M) U {x, z}) contains o(G - S) - 1 = 2 isolated odd
components, again a contradiction. This proves that G — S contains only even
components. Consequently, |S] is even and [S| < 2k. Further, G — S contains at

S|

least two even components, H, and H, say. By Lemma 3.9, 5 1 < M| <k

Leta e V(H)and b € V(H,). If M| = % < k, then M does not extend to a
perfect matching in G — {a, b} since G — (V(M) U {a, b}) contains H, — a and
H, - b as isolated odd components. This contradicts the fact that G is
151
2

k*-extendable. Thus [M|= -1=21since|S|=4..
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Let ajb, € M, a, and b, belong to S\ V(M). Since S is a minimum
cutset, in view of Theorem 1.6, there is a matching M, = {a,x,, b;x, | x, € V(H,)

and x, € V(H,)}. Then M, =(M U M)\ {a,b,} is a matching of size (% -1)

+2-1= %l < k. Clearly M, does not extend to a perfect matching in
G —{a,, b} since G — (V(M,) U {a,, b,}) contains H, — x, and H, - x, as isolated
odd components. This contradiction proves that |S| > 2k + 2. It follows
immediately from Theorem 1.7 that o(G — S) < |S] - 2k — 2. This completes the
proof of our theorem. a

Remark 3.4: Theorem 3.10 is best possible in the sense that there is a
k*-extendable graph G with a cutset S satisfying the conditions of the theorem
and G - S contains a number of odd components up to |S| - 2k - 2.

q m
Let G, = K., — {an edge}, G, = UKy, and G; = Uth,. where r,
i=] j=1

q, m, a;, b; are non-negative integers,q+ m=>2,q<randq=r(mod 2). PutG=
G, v (G, U Gy). Figure 3.1 depicts the graph G. Throughout the paper we adopt
the convention that a double line in our diagram denotes the join between the
corresponding graphs. It is not too difficult to show that G is k*-extendable

G,: K,.,,, {anedge}
G: / N\
— - _
—_— —~—
q componemts m componemts
G2 GJ
Figure 3.1

containing V(G,) as a cutset of order 2k + 2 + r. Notice that the number of
components of G — V(G,) can be any integer which is at least 2.

Theorem 1.1 together with Theorem 3.10 yields the following
corollary:
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Corollary 3.11: Let G be a k-extendable non-bipartite graph on 2n vertices with
2<k<n-1and let S be a minimum cutset of G. Suppose a(G[S]) < 2. Then
IS| 22k -2 and o(G - S) <|[S| - 2k + 2.

We conclude our paper by establishing a lower bound on an order of
k*-extendable graphs in terms of an order of a minimum cutset.

Theorem 3.12: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3
and let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If
(i) ISts2k+1,or
(ii) S| 22k + 2 and |M(S)| <k,
then 2n 2 2|S| + 2k — 2|M(S)| + 2.

Proof: Clearly, by the assumption on S| and Corollary 2.2, |S| - 2]M(S); = 2. Let
x and y be vertices of S\ V(M(S)). Since G is k*-extendable, there is a perfect
matching F in G — {x, y} containing all the edges of M(S). Put

F ={abeF|aeS\(VIM(S)) U {x,y}),b & S}

and

F,={abeFla,beS}.
Then

[Fy|=1S|-2[M(8)|-220
and

1
|F,| = 3 [2n- S| - F\]]

(20 - 8] - (IS} - 2/M(S)] - 2)]

=n- S|+ M(S)| + 1.
If |[F)| = 0, then M(S) does not extend to a perfect matching in G since
G - V(M(S)) contains S \ V(M(S)) as an independent set of order |S| - 2]M(S)|
and V(G - V(M(8))) = {S| - 2IM(S)] + (|S] - 2IM(S)| - 2) = 2|S]| - 4IM(S)| - 2,
contradicting the k*-extendability of G. Thus |F,| = 1. Let zw € F,. Suppose
[Fil £k + 1. Then F,\ {zw} does not extend to a perfect matching in G - {z, w}
since G — V(F,) contains S \ V(M(S)) as an independent set of order |S; - 2]M(S)
and v(G - (S U V(F,)) =|F,| =S| - 2IM(S)| - 2, again a contradiction. Hence,
n-|S[+|M(S)| + 1 =|F,| 2k + 2. Thus 2n > 2{S| + 2k - 2|M(S)| + 2 as required.
This completes the proof of our theorem. a

[ SR

As a corollary we have:

Corollary 3.13: Let G be a k-extendable non-bipartite graph on 2n vertices with
4 <k £n-~1andletS be amnimum cutset of G and M(S) a maximum
matching in G[S]. If

(i) S| <2k -3,0r
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(ii) S| = 2k - 2 and [M(S)| < k - 2
then 2n > 2[S| + 2k - 2]M(S)| - 2. Q

Remark 3.5: Theorems 3.1 and 3.12 are best possible in the sense that for k > 2
there is a k*-extendable graph G on 2n 2 2[S| + 2k - 2|M(S)| +~ 2 vertices
containing a minimum cutset S of order at most 2k + 1 with 2 < o(G - S) <[S| -
IM(S)| - k - 1. For non-negative integers k, s, t, q, r, m with

(i) k+3<s<2k+1

(i) 0<t<s-k-3

(iii))0<2q+r<s-t-k-3,
let G = (Ky U Ks-2t) v [Kigq U Kpzarawam Y (29K, U 1K,].  Figure 3.2
illustrates the graph G. It is not too difficult to show that G is k*-extendable.

Clearly, S = V(K,, v Es—Zt) is a cutset of order s, v(G) = 2s + 2k - 2t + 2 + 2m
and2<w(G-S)=2q+r+2<s-t-k-1.

CORERCD

() ORI OROD

r

Figure 3.2
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