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Abstract

A union closed (UC) family A is a finite family of sets such that the
union of any two sets in A is also in .A. Peter Frankl conjectured that for
every union closed family .A, there exists some T contained in at least half
the members of A. This is the union-closed sets conjecture.

An FC family is a UC family B such that for every UC family A,
if B C A, then A satisfies the union-closed sets conjecture. We give
a heuristic method for identifying possible FC families, and apply it to
families in P(5) and P(6).

1 Introduction

A union closed (UC) family A is a finite family of sets, such that the union of
any two sets in A is also in A.

In 1979, Peter Frankl conjectured that for every UC family A, there exists
some z contained in at least half the members of A.

This is one of those fascinating conjectures which has a simple elementary
statement, but which has resisted (so far) all attempts to prove it. There are
many results for special cases; that is, quite a few sufficient conditions have been
established for the property “ there exists some z contained in at least half the
members of A”, but as far as I know, no necessary conditions.

The conjecture has been verified for various small values of |A| and UA (see
e.g. [5], [7], [3]). A UC family can be identified with a lattice [5], and the lattice
form of the conjecture has been verified for some special types of lattices, e.g.
lower semi-modular lattices and lower quasi-semimodular lattices ([6], [1]).

A result of a somewhat different kind is given in [4]; we showed that a UC
family A has a dual UC family of the same cardinality, and that one or the
other of A or its dual, must satisfy the conjecture.
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The most general of all the sufficient conditions I have found so far, was
given by Bjorn Poonen. Poonen gives a characterization of a special type of UC
family, which we call FC families. An FC family B is a UC family having the
property that for every UC family A containing B, it is true that one of the
elements of UB is in at least half the members of A. To state Poonen’s result,
we define: N;(.A) is the number of members of A which contain the element i,
and if A and B are UC families, then AWB = {XUY : X € A)Y € B}. We
use the notation P(n) to denote the power set of {1,2,...,n}.

Theorem 1.1 (Poonen, [5])
B € P(n) is an FC family if and only if there exist non-negative real numbers
c1,C3, -+, cn with sum 1 such that

(P) for every UC family A € P(n) satisfying AWBC A,

> aNi(A) 2 1A)/2.

i=1

Poonen's theorem provides a (theoretically computable) necessary and suf-
ficient condition for B to be an FC family; then each known FC family B yields
an infinite class of UC families satisfying the conjecture, namely the UC fami-
lies containing B. On the other hand, any family for which the conjecture fails,
cannot contain any FC families; then each known FC family supplies limiting
conditions on any family in which the conjecture fails. It is to be hoped that

some special approach would be applicable to UC families not containing any
FC families.

Condition (P) involves solving a very large number of linear inequalities,
and furthermore it is not easy to identify the families A € P(n) satisfying
Aw B C A. However, if one can find a suitable set of numbers ¢;, it is possible
to check whether or not Condition (P) holds without actually listing all the
pertinent families.

Any set of cardinality 1 or 2 is an FC-family, and Poonen shows in [5] (using
condition (P)) that a 4-set together with three of its 3-subsets is an FC family,
and a 4-set together with just two of its 3-subsets is not an FC family. In 8],
we used the special case when the ¢; are all equal, to prove that a few families
in P(n) for n =5,6,7, were FC families.

Identifying all the FC families in P(5) is a tremendous computational prob-
lem; in this paper we use a short-cut method, which does not give full informa-
tion, but which does allow the identification of most of the FC families in P(5)
(and two FC families in P(6)).

In Section 2, we describe a heuristic method for finding a reasonable candi-
date for the numbers ¢;, supposing there are any, for a given family B € P(n).
This method amounts to finding the solution z = (z,, z2,...,z,) for a particu-
lar set of n equations in n unknowns, and is very easily programmable. If the
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solution z has every z; > 0, and ) z; < 1, then we construct the numbers ¢;
using the z;; otherwise the method gives no information.

Let M(B) = M denote the coefficient matrix of the above system of equa-
tions. In all our calculations, for different families B, the matrices M(B) all
share a rather long list of common properties (e.g. they are all diagonalizable).
It is tempting to conjecture that most of these common properties are generally
true for all such M(B). We list these among the questions in Section 6.

In the computations I have done so far, whenever the method produces a
suitable set of numbers ¢; for a family B, it has always been possible to verify
that Bis in fact an FC-family. I have not been able to prove that this is generally
true.

In Section 3, we apply the method above to families B € P(5), and also to
two families in P(6).

From this work, for example, we can say that if a UC family contains three
3-sets which contain a common 2-set, then the conjecture holds for that family;
and in any UC family for which the conjecture fails, a 5-set (in the family) can
contain no more than two 3-sets (in the family), and a 6-set can contain no
more than three 3-sets. The data also suggest that a 7-set can contain no more
than three 3-sets, and an 8-set can contain no more than four 3-sets; however
we have not proved these results.

In Section 4, we work out one case (in P(5)) in detail, and in Section 5 we
outline a proof for one case in P(6).

In Section 6, we give a list of questions suggested by our calculations.

2 The Method and the Matrix M

In this section we describe a heuristic procedure which, for a given UC family
B € P(n), either produces a set {cj,ca,...,cn} suitable for checking to see if
Poonen’s condition (P) is satisfied, or else gives no information.

This procedure was developed almost accidentally. In [8] using the special
case when all the ¢; are equal, I was able to prove that a few families were in fact
FC families. In all these proofs, in trying to show that B is an FC family, by far
the most difficult verifications for the families A such that 4w B C A, involved
the families .4 which were generated by B, all but one of the singletons, and
the empty set. The difference in difficulty was really remarkable. Furthermore,
whenever the attempt to prove that B was an FC family (using equal ¢;) was
unsuccessful, there was always one of these particular families that did not work.
This led to the idea of using these families to help in determining the values of
c; to use.

If s is a finite collection of finite sets, then the UC family generated by s is
the smallest UC family containing s; this family consists of s together with all
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unions of members of s. It is proved in [4] that every UC family has a unique
minimal generating set.

Let B € P(n) be a UC family, where we suppose that UB = {1,2,...,n} = S.
For each 1 € 7 < n, let A; be the UC family generated by B and P(S - {i}).
Put M;; = N;(A;), and let M be the matrix (M;;), and let b be the column
vector b =col(by, bs, ..., bs) where b; = |A;|/2. ’

For a UC family B generated by a collection s of sets, and the corresponding
matrix equation Mz = b, put NUM(B) = NUM(s) = 3_z;. This number is
easily computable (e. g. by a Maple program) and we use it to identify possible
FC families: If NUM(s) < 1, then B is a candidate.

Now, suppose the matrix equation Mz = b has a solution z =col(z1, z2, ...,zn)
such that 3 z; <1, and all the entries z; are non-negative. Then we define the
numbers c; as follows: Put v =1 -3 z;, and for each i, ¢; = z; + u/n. Then
>-¢; = 1 and the ¢; are all non-negative; using these ¢;, it remains to verify
that Poonen’s condition (P) is satisfied.

Obviously, it would be possible to construct the numbers ¢; in other ways;
for instance, if one (or more) of the z; were negative, and the sum of the negative
z; were smaller in magnitude than 1 -3 z;, we could add on positive quantities
to the negative z; to produce non-negative c;. However, the method described
above has the advantage of being easily programmable; it also preserves any
regularity there may be in the numbers x;, which in practice is sometimes con-
venient.

3 Applications

In this section, we compute NUM(s) for some particular cases, using the
method described in Section 2.

Two UC families in P(n) are isomorphic if there is some permutation of
{1,2,...,n} which transforms one family into the other. Since each UC family
has a unique minimal generating set, we may classify UC families according to
the isomorphism class of their generating sets.

If s and t are collections of sets in P(n), and if there is a permutation ¢ of
1,2,...,n such that o(s) =t¢, then NUM(s) = NUM(2); in the table below we
list representatives of non-isomorphic collections s (n = 5, 6) containing no sets
of cardinality one or two. For simplicity, we use the notation abc... for the set
{a,b,c,...}; e.g. 14 represents the 2-set {1,4}.

We are ultimately interested in FC families, and so, having found that some
configuration s generates an FC family, we have not listed any configuration
t containing a permutation-isomorphic copy of s. For example, any five 3-
sets in P(6) will have at least three 3-sets in a 5-set, so we do not list any
such collection. There are just two isomorphism types of four 3-sets in a 6-
set which do not contain three 3-sets from a 5-set; these are 123,124, 356,456

98



and 123,315, 246, 156; since 123,345,246 generates an FC family, we include
only 123, 124,356,456 as four 3-sets in a 6-set. There are, up to isomorphism,
only three types of three 3-sets in a 6-set and not in a 5-set: one type with no
repeated pair; one type with one repeated pair and a common element in all

three; and one type with one repeated pair and no common element.

Generating set s NUM(s)
123, 124, 125 1

123, 124, 135 .99230
123, 124, 345 99234
123, 124, 1235 1.0119
123, 124, 1345 99623
123, 145, 1234 1.0108
123, 145, 2345 1

123, 124, 1235, 1245 1.01138
123, 145, 1234, 1235 1.00692
123, 145, 1234, 1245 1.00514
123, 145, 1234, 1235, 1245 1.000848
123, 145, 1234, 1235, 1245, 1345 .99627
123, 1234, 1235, 1245, 1345 1.00251
234, 1234, 1235, 1245, 1345 .98805
1234, 1235, 1245, 1345 1.011508
1234, 1235, 1245, 1345, 2345 .990566
123, 124, 356, 456 .99363
123, 124, 156 99724
123, 345, 246 99378
123, 124, 356 1.0035

For the generating sets s listed above, we have been able to show that
NUM(s) < 1 implies that B is an FC family. We give the details of the proof
for the case s = {123, 124,135} in Section 4, and an outline of the proof for the
case s = {123,124, 356,456} in Section 5. All the proofs are similar: a case-by-
case analysis according to the numbers of sets of given cardinality, in which the
details depend on the actual values of the numbers ¢; produced by the method.

We have not been able to prove that NUM(s) > 1 implies that the family
generated by s is not FC (see Question 2 in Section 6). For P(5), if this were
true, we could then give a complete list of all the FC families in P(5), namely,
any family which contains either a singleton, a doubleton, three 3-sets in a 4-set,
or one of the 5-configurations s listed above with NUM(s) < 1.

The list above yields restrictions which must be satisfied by any UC family A
for which the conjecture fails: such a family cannot contain any FC family, and
therefore cannot contain any configuration s listed above for which NUM(s) <
1. For example, A can have no more than two 3-sets in any 5-set and no more
than three 3-sets in any 6-set.
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The list above is useful in considering 3-sets in P(7) and P(8). Suppose
that s is a collection of four 3-sets in P(7). Then one of the elements 1,2,...7
must be contained in just one of the members of s; say this element is 7. If the
three 3-sets not containing 7 do not generate an FC family, then they must be
isomorphic to 123, 124, 356. So, if the family B generated by s is not already
an FC family, then (up to isomorphism) s has the form 123, 124, 356, ab7. Then
we compute that NUM(s) <1 for all possible values of ab. This suggests that
B would be an FC family; if this is true, applying the same idea to a set s of
five 3-sets in P(8) implies that s generates an FC family.

For all cases with n = 2,3,4, it is true that NUM(s) < 1 implies that B is
an FC family.

Computing NUM(s) for assorted collections of 1 + [n/2] 3-sets in P(n), for
n=8,9,10,11, in every case we find NUM(s) < 1. ’

Applying the Maple program to the sets T}, consisting of all the (n-1)-subsets
of {1,2,...,n}, for 3 < n < 12, the values of NUM(T,) are (to four decimals):
.9545, .9600, .9906, 1.0270, 1.0574, 1.0772, 1.0870, 1.0898, 1.0882, 1.0845.

4 One case in P(5)

Let B = {123,124,135,1234,1235,12345}. In this section we give the details
of the proof that B is an FC family. Observe that B has just one non-trivial
automorphism, namely (2, 3)(4,5). We first give some general definitions, and
for convenience recall some notation: For a UC family A,

S(A) =S =UA;

N;i(A) = N; is the number of sets in A containing i;

ni(A) = n; is the number of sets in A of cardinality i;

A; is the UC family generated by .A and P(S - {i});

M;;(A) = Mi; = N;(A;) and M = (M;5);

bi(A) = b; = |A;]/2 and b = col(by, bo,...);

z = col(zy, xg, ...) is a solution to the matrix equation Mz = b.

Suppose that A is a UC family in P(n), with UA = {1,2,...,n}, for which
the method of Section 2 produces non-negative numbers ¢; with ) ¢; = 1.

Definition 4.1 For any set X in P(n), define f(X) = 3, x ¢ and h(X) =
f(X)—=1/2. Then, if T is any collection of sets in P(n), let f(T) = 3_xcr f(X)
and h(T) = 3y B(X).

Note that if A is a UC family in P(n), then h(A) = 37, c:N;(A) — |A|/2;

hX)+ h(S — X) =0 for every X € P(n), and h(P(n)) = 0. The first result is
an easy consequence of this observation.

Theorem 4.2 If A C P(n), and h(A) > 0, then A satisfies the Frank! Con-
jecture.
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Proof: We have h(A) = Y0, e;Ni(A) — |A|/2 >0, that is 37, e;Ni(A) 2
|Al/2. Since Y ¢; =1, at least one of the N; must be greater than or equal to
[A]/2, i.e. i is contained in at least half of the members of \A.

The converse is certainly not true; in P(5), the UC family consisting of one
singleton will always have h < 0.

Definition 4.3 Let A be any family of sets in P(n). For 0 < k < n, let E; be
the collection of sets of cardinality i in A, n; = |E;|, and e; = h(E;) (if E; = 0,
we put e; =0).

Now let B = {123,124,135,1234,1235,12345} (the UC family generated
by s = {123,124,135}). The family A;, for example, is generated by B and
P({2,3,4,5}). Thus A; contains B, P({2,3,4,5}), and two extra 4-sets, 1345
and 1245, and so |[A;| = 16 + 6 + 2 = 24; by counting, we find no =1, n; = 4,
ng =6, ng =7, ng =5and ns =1; Ni(4;) = My; =8, Na(Ay) = M2 =
N3(A;) = M3 = 14, Ny(A,) = N5(A,) = 13, giving the first row of the matrix
M. We get

8 14 14 13 13
14 6 12 12 11
M=|14 12 6 11 12
12 12 10 4 10
12 10 12 10 4

and b = [|4:1]/2,]A2)/2, |A3|/2, |A4l/2,145|/2] = [12,11,11,10, 10]. The solution
z to Mz = b is [173/650, 14/65, 14/65, 48/325, 48/325 ], and the sum of the
x; is 129/130. The corresponding vector ¢ is found by adding (1/5)(1/130) to
each entry of z: ¢ = [87/325, 141/650, 141/650, 97/650, 97/650 ], and the sum
of the entries of ¢ is 1. In decimal notation, truncated here to four digits, we
get ¢ = [.2676, .2169, .2169, .1492, .1492].

Now, for each 1 < k < 4, arrange the k-sets of P(5) in lexicographic order
X1,Xo,... (e.g. for 2-sets, X; = 12 is on the far left, and X0 = 45 is on the
far right), and compute the entries of the vectors vy = [h(X}), h(X2),...]. We
get

vy = [-.2323, —.2830, —.2830, —.3507, —.3507|
vy = [—.0153, —.0153, —.0830, —.0830, —.0661, —.1338, —.1338, —.1338, —.1338, —.2015]
vs = [.2015,.1338, .1338, .1338, .1338, .0661, .0830, .0830, .0153, .0153]

vy = [.3507,.3507, .2830, .2830, .2323].

We also have h(@) = —.5 and h(12345) = .5. It is convenient that the
members of B have the largest possible h-values (but this is not generally true).
Now suppose that A is a UC family in P(5) satisfying AW B C A. To avoid
trivialities, we assume that A contains some non-empty sets. Evidently if X € B

101



and X ¢ A, then A cannot contain any of the subsets of X, and in particular
A does not contain 0.

Put e = h(A) = e5 + €4 + €3 + €2 + €1 + ep; we will show that e > 0. Note
that if ey + e3 + ey + e; > 0 then also e > 0.

We observe that if X is a 3-set or a 4-set, then h(X) > 0; if X isa 1-set or a
2-set, then h(X) < 0, and if X is a 4-set and Y is a 2-set, then h(X)+h(Y) > 0.
We also have h(X) + h(S — X) = 0 for every X, and then the following Lemma
is obvious.

Lemma 4.4 (a) Ifny =ny =0, thene 2 0.
(b) If ng =5 and ng = 10, then e > 0.
(¢c) If ACC, h(C) >0, and n;(A) =n;(C) for i =3,4, thene > 0.
(d) f ACC, h(A) 20, and n;(A) = n;(C) fori=1,2, thene > 0.

If ny = 5, then h(A) is either 0 or .5, so we assume that n; < 4. We first
prove that e(A) > 0 if n; = 4, and then, assuming n; < 3, we consider cases
according to the value of n4.

Theorem 4.5 Ifny =4, then e(A) > 0.

Proof: Since n; = 4, then A contains one of the families A;. Suppose that A
contains As. The vector Mc gives the values of h(A;) (which are all positive),
and we observe that h(As) = e(As) is approximately .07.

The sets not in Ag are: 5, 15, 25, 35, 45, 125, 145, 235, 245, 345, 1245, 2345. If
A contains 15 then it also has 125, 145,1245; if it has 25, then it also has
125, 235, 245, 1245, 2345; if it has 35, it also has 235, 345, 2345; if it has 45, then
it also has 145,245, 345, 1245, 2345. Suppose A has just one 2-set which is not
in As, say 15. Put X = {15,125, 145,1245}, and observe that e(X) > 0 since it
has just one 2-set, and a 4-set. Then e(As U X) = e(As) + e(X) >0, and it
follows from Lemma 1(d) that e(.4) > 0. If A has exactly two 2-sets not in As,
then it will also have two 4-sets not in Ag, and by the same reasoning, e(A) > 0.
If A has three or four of the 2-sets not in As, then A has all the 3-sets and 4-sets

of P(n), and e(A) > 0. The arguments are similar for the remaining families
A;,1=1,23,4.

Lemma 4.6 Suppose that A does not contain one of the {-sets of B. Then
e>0.

Proof: Without loss of generality, suppose that 1234 is not in A. Then A can-
not contain any subset of 1234, so eg = 0, E; C {5}, and E, C {15, 25, 35, 45}.
We compute h({5,15,25,35,45}) = —.9028; so e) + e > —.9028. If A contains
either 5 or 45, then it also contains 1245,1345 and then es4 + e5 2> 1.566, and
e > 0. If A does not contain either 5 or 45, then e; + eq > h({15,25,35}) =
—.3507 and then eg +e; +e3 >0 andsoe > 0.
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From now on, we assume that n; < 3, and organize the work according to
the value of n4.

If ng = 0,1 then A does not contain both of the 4-sets of B and then e > 0,
by Lemma 4.6.

If ngy = 2, we assume, in view of Lemma 4.6, that A contains both 4-sets of
B, so ey = .7014; E, C {1,2,3} (ey = —.7983), and E, C {12,13,23, 24, 35};
furthermore F can contain at most one of 24,35 (else we get 2345, a contra-
diction), so ea > —.2305. If n; = 2,3, or if ny = 4, then B C A and then
eg > .4691, and e(A) > 0. If n; = 1 (e; > —.2830), then A contains at least two
of the 3-sets of B so that ez > .2676 and e(A) > 0. If ny =0, then ey +e2 >0
and e > 0.

Now suppose that ny = 3 (and A contains both 4-sets of B). Up to iso-
morphism there are two possibilities for the missing 4-sets: 1245,1345 and
1245, 2345. |

If A misses 1245,1345 (eq = .9337) then E, C {1,2,3} (e; > —.7983), and
E, C {12,13,23, 24,35} (ex > —.3643). If ny > 2, then A contains all the 3-sets
of B, and then ez > .4691 and e(A) > 0. If n; < 1, then e¢; > —.2830 and
es+e2+e >0, s0e(A) >0.

If A misses 1245,2345 then E,; C {1,2,3,4}, E» C {12,13,23,24, 35, 14, 34},
and A can have at most one of 24,35 (ea > —.4473). If ny = 2,3 (e; > —.9167),
then A contains all the 3-sets of B, and ez > .4691, so that e(4) > 0. If n; <1,
then e; > —.3507 and e4 + e3 + €; > 0, so e(A) > 0.

Now suppose n4 = 4. If A misses 1245 (e4 = 1.217), then E; C {1,2,3,4}
and Ep C {12,13,23,14,24, 34,35} (ea 2 —.5811). If n; = 3 (e; > —.9167),
then A contains all the 3-sets of B, and e3 > .4691 and e(A) > 0. If ny = 2
(e1 > —.6337), then A contains at least two of the 3-sets of B, and e3 > .2676
and e(A) > 0. If ny <1 (e; = -.3507), then e4 + €2 + €; > 0, so e(A) > 0.

If A misses 2345 (eq = 1.2677), then A must also miss either 23,24, 25 or
23,34, 35 or 24, 34,45 or 25, 35,45; so ep > —.6663. The rest of the argument is
similar to the case when A misses 1245.

Now suppose that ny = 5 (ey = 1.5). If ny = 3 (e; > —.9844) then A
contains all the 3-sets of B, and ez > .4691; then ey +e3+¢€; > .9847 = 1—-.0153.
If ng <9, thene; > —(1-.0153), and then e(A) > 0. If ny = 10, then A contains
all the 3-sets and 4-sets, so e(A) > 0. If n; = 2, then A contains at least two of
the 3-setsof Band es +e3+e; >1 > |ez];if ny < 1thenes+e; > 12> |es]. In
all cases, e > 0.

5 One case in P(6)

In this section, we give an outline of the proof that B is an FC family, where B
is

{123,124, 356, 456, 1234, 3456, 12356, 12456, 123456 }
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The automorphism group G of B is generated by: (3,4), (1, 2), (5,6), (1,5,2, 6).

From the method, we get ¢ = [73/471,73/471,179/942,179/942, 73/471,73/471),
and there are comparatively few distinct values for h(X); we compute them sep-
arately.

For 1-sets, 5-sets: put z; = .3450106157, z, = .3099787686. Then h({i}) =
—x, for i = 1,2,5, 6, and the other two are —z,. Also h(12356) = z5 = h(12456)
and the others are z;.

For 2-sets, 4-sets: Put y; = .1900212314, y» = .1549893843, and y3 =
.1199575372. Then h(ij) = —y; for 12,15,16,25,26,56, and h(ij) = —y, for
13, 14,23, 24, 35, 36,45,46, and h(ij) = —ys for 34 only, and h(ijkm) = y, for
1234, 3456, 1345, 1346, 2345, 2346, h(ijkm) = ys for 1256 only, and all the others
have h(ijkm) = y,. Note that kys > (k — 1)y for k =2, 3,4,5.

For 3-sets: Put z = .0350318471. Then h(ijk) = —z for 125,126, 156, 256;

h(ijk) = z for 134,234, 345,346, and h(ijk) = 0 for all other 3-sets. Notice
that 4z = .1401 < ys.

If A; and Ay are isomorphic via a permutation from the automorphism group
G of B, then A1 W B C A, if and only if Ay WB C A, , and h(A;) = h(A2).
Thus, in carrying out an argument as in Section 4, we can group together sets
which are transformed into each other by G, e.g. the 2-sets 12, 56. Since (except
for sign) the h-values match for 2-sets and 4-sets, and for 1-sets and 5-sets, this
gives an additional convenient grouping. For instance, 12, 56, 1234, 3456 is fixed
by G, and the h-values are —y,, —y1,¥1,%1, and we will consider these four sets
as belonging to one group. To simplify notation, we use colors.

Color the 2-sets and 4-sets: 12,56,1234, 3456 are colored red, 34, 1256 are

colored yellow, 15,16, 25,26, 1345, 1346, 2345, 2346 are colored green, and all the
others are colored blue.

Color the 1-sets and 5-sets: 3,4, 12356, 12456 are colored purple, and all the
rest are colored white.

For a given set X (1 < |X| < 5), let g(X) be the collection of 4-sets and 5-sets
in the UC family {X}wB. E.g., g(1) = {1234, 1356, 1456, 12356, 12456, 13456}.
We will describe these by colors: g(1) has one red,two blues, two purples, one
white, or for short, r, 2b, 2p, w. Observe that if X is a blue 2-set, then g(X)
contains just one blue 4-set; each red (green) 2-set is contained in a red (green)
4-set, and the yellow 2-set is contained in all the red and green 4-sets, but not in

any of the blue 4-sets. Detailed listings of the sets g(X) produce the following
observations, which we list as a Lemma.

Lemma 5.1 If|X| =1, and X is white, then g(X) has r, 2b, 2p,w; and if X
s purple then g(X) has 2r, p.

If|X| =2 and X is red, then g(X) has r,2p. If X is green, then g(X) has
4b, 2p, 2w. If X is blue, then g(X) has r,b,p,w. If X is yellow, then g(X) has
2r, 2p.
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The mapping from blue 2-sets to blue 4-sets given by assigning a blue 2-set
X to the blue 4-set in g(X), is I-1.

The mapping from red (resp. green) 2-sets to the red (resp. green) 4-sets
given by assigning a red (resp. green) 2-set to the red (resp. green) 4-set which
contains it, is 1-1.

For a set of 2-sets of a given color pattern, P, we let C(P) denote the color
pattern of the (minimal collection of) 4-sets which must also be there. Using
the Lemma above, and when necessary the listing of the sets g(X), one can
establish many relations between different patterns P and their corresponding
C(P), for instance, C(y) = 2r, C(2r) = 2r,y, C(5b) = 2r,2g,5b, C(g) = 4b,
C(2g) = 6b, 0(39) = 8b,y, C(g) y) == 2r,g,4b, 0(29, y) = 2r, 2g, 6b.

The idea is, if X and Y are two sets of the same color, or if X is red and
Y is green, then |h(X)| = |h(Y)|; if X is a 4-set, h(X) > 0 and if X is a 2-set,
h(X) < 0. Thus, the Lemma and the various relations of a color pattern P to
C(P), allow a comparison between the values of e5 and e3. For example, if E;
contains just eight blue 2-sets, then Ey4 contains 8 blue 4-sets, four green 4-sets,
and two red 4-sets; from the blue sets alone we can say that es > e2. If X is
blue, then |h(X)| = yo; if X is red or green then |h(X)| = y;, so we can use the
fact that kyo > (k — 1)y in cases when there are more blue sets than red or
green sets. This allows considerable streamlining of the arguments needed for
the proof.

Overall, the proof is arranged like the proof in Section 4. The case when
ny = 5 is very similar, although a little more delicate. Then assuming n; < 4,
the work is organized according to the value of ns. In a few cases, the color
pattern idea alone is not sufficient, and then it is necessary to consider the sets
g(X) in more detail.

Theorem 5.2 Ifn; =5, thene 2 0.

Proof: If n; = 5, then A contains one of the families A;. We give a summary
of the argument for Ag C A. Let X = A — Ag. We need to show that h(X) >
—h(Ag) = .14012.... It is easy to compute that if X contains two or more
of 16,26, 36,46, 56, then .A contains all but at most one of the 4-sets of P(6)
and e > 0. Suppose X contains just one of these 2-sets. If X contains one of
16,26, 36, 46, then X also contains at least three 4-sets and one 5-set, and e > 0.
Suppose that X contains 56; then X also has 156, 256,1256. We compute that
h(56, 156, 256,1256) = —h(Ag), and if X contains any 3-set other than 125, 256,
then it also has another 4-set. So in all cases, h(X) > —h(Ag), i.e. €2 0.

Lemma 5.3 If A does not contain one of the 5-sets of B, thene > 0.
Proof. Suppose A does not contain one of the 5-sets of B, say 12456. Then
ng =0, E C {3}, E; C {13,23,34, 35,36}, and E3 cannot contain any 3-sets X
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with A(X) < 0, so e3 > 0. Since {13,23, 34, 35,36} contains four blue sets and
one yellow set, it follows from Lemma 5.1 that if |E,| = k, then |Ey| > b+ 1
and e4 + ez > 0. Since 12356 € g(3), and 3 and 12356 are both purple, then
es+e; >0,s0e>0.

From here on, the idea is to assume that n; < 4, and A contains both of
the 5-sets of B, and consider cases according to the value of ns. The approach
used is like Section 4, somewhat simplified by the use of the colors and the sets

9(X).

6 Questions

Question 1. If the equation Mz = b does have a non-negative solution z with
S x; <1, does it follow that B is an FC-family?

Question 2. If the equation Mz = b does not have a non-negative solution
z with 3. z; <1, does it follow that B is not an FC-family?

For n = 3,4, 5, the answer to Question 1 is always Yes. I have not been able
to prove anything general relative to Questions 1 and 2. I have not found any
cases where any of the z; were negative.

The matrix M associated with the family B displays many interesting prop-
erties. This matrix may be singular (for instance, if B = P(n), the corresponding
M has rank one). From the assumption that UB = {1,2,...,n}, it follows that
every entry of M is a positive integer, and in particular M has a positive eigen-
value and a matching non-negative eigenvector. In my calculations so far, the
non-singular matrices M also have the following properties:

(i) All the eigenvalues are real. There is just one large positive eigenvalue,
and all remaining eigenvalues are negative, rather small compared to the positive
eigenvalue, and rather close together.

(ii) In the characteristic polynomial, all coefficients except the leading coef-
ficient are negative.

(iii) If B contains no smaller (in a smaller powerset) FC family, then Mz = b
has a positive solution z with )_ z; very close to 1 (all within .05). In all cases
where Mz = b had a non-negative solution with some entry equal to zero, the
family B contained a smaller FC family.

(iv) The minimum polynomial of M has distinct real roots (so M is diago-
nalizable), and all coefficients except the leading coefficient are negative. In all
factorizations so far, all but one of the factors have all non-negative coefficients,
and one factor has all but the leading coefficient negative (or zero).

(v) The determinant of M is large (in magnitude) and has (mostly) compar-
atively small prime factors. (The furthest off this was: 29 x 617 * 354973.)

(vi) I found a couple of examples where the minimum and characteristic
polynomials were not the same; the repeated factor was linear. I found a couple
of examples where the characteristic polynomial was irreducible.
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Question 3. Which (if any) of the properties (i)-(v) are generally true? If
M is singular, what does this say about the corresponding UC family?

I have no explanation for the effectiveness of the method. I have not been
able to find any meaningful connection between the matrix properties of M,
and the UC family B, although my calculations so far indicate that there must
be such connections.

Suppose that A is a UC family with UA = {1,2,...,n}.

Question 4. Suppose NUM(A) < 1. Is it true that the entries of x =
[z1,z3, ..., zn] are all non-negative? If not, is it true that the sum of the negative
z; is less in absolute value than 1 — 3 z;? Le., if NUM(A) < 1, is it always
possible to find non-negative ¢; with sum 1, by adding on appropriate amounts
to the negative z;? (This would allow some generalization of the method of
Section 2.)

Question 5. Suppose the method of Section 3 produces non-negative numbers
¢; with sum 1. Is it true that for n > 4, every ¢; < 1/2?7 More generally, is it
true that h(X) > 0 for every set X with |X| > n/2? What if the numbers c;
were produced by some alternate method?

Question 6. Suppose that A C C where UA = UC = {1,2,...,n}. Is it true
that NUM(C) < NUM(A)? If so, is it true that the inequality holds if and
only if the containment is proper?

Question 7. Suppose the method of Section 3 produces non-negative numbers
¢; with sum 1. Suppose there is an automorphism o of A with o(i) = j. Is it
true that ¢; = ¢;7 (Probably). Is the converse true? (Probably not).

Question 8. It is easy to see that NA; = A, and in all calculations so far,
h(.A) is not only positive, but is comparatively large. Is this generally true?
What can be said about h(C) if C is the intersection of two or more of the
families A;?

Question 9. If A is generated by more than [n/2] 3-sets, does Mz = b have
a positive solution z with ) z; <17
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