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Abstract

An LD(n, k., p, £:5) Lotto design is a set of b k-sets (blocks) of an
n-set. such that any p-sel intersects at least one block in / or more
elements. Let. L{n.k.p.1) denote the minimun munber of blocks for
any LD{n k. p.t;b) Lotto design. This paper describes an algorithm
used to construct Lotto designs by combining genetic algorithms and
simulated annealing and provides some experimental results.

1 Introduction

Let X be a set of n distinet eloments (called an n-set). An LD(n. k. p. t:b)
Lotto design (X. B) with is a collection B of b k-scts (blocks) from X such
that any p-set intersects at least one block of B in ¢ or more clements.
Let L(n.k.p.t) denote the minimun size of any (n.k.p.t) Lotto design.
Given parameters ndipd. a p-set P s said to be represented by a k-sot
Kif [KNDB| 21 A pset P is said to be represented by o collection of
k-sets. i there exists some set K in the collection that represents P. It is
clear that any LD(n. k. p. t;b) Lotto design is a collection of b k-sets that
represent every p-set of X. Figure 1 shows an LD(8.4,4. 3;6) Lotto design
and Figure 2 shows an example of a LD(13.6.5.3:5) Lotto design.

The most obvious application of Lotto designs is the study of lotteries.
In Canada. for example, the lottery Lotto 6/49 allows a player to buy
tickets where each ticket contains 6 munbers between 1 and 49. At a later
time. the government will randomly pick 6 munbers. If a player holds one
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5 6 7 38

Fignre 1: An LD(3. 1. 1.3:6) Lotto Design
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Figure 20 An L(13.6.5. 1:5) Lotto Design

or more tickets that matches the government’s pick in 3 or more munbers.
the plaver has won a prize. For example. a playver owning a ticket. that
matches the government’s pick in 3 munbers will received a prize of $10.
Lotto designs may be used to investigate how many (and which tickets) the
player needs to purchase to gnarantee that at least one of the purchased
tickets match the government’s pick in at least 3 numbers. The value.
L{49.6.6.3) informs the player of the minimun namber of tickets he/she
needs to purchase to ensure matching the govermment’s pick in 3 nunbers,
In order to determine what the actual tickets are. we need to be able to
construet a Lotto design with L(49.6.6.3) Dlocks. A good introdunetion 1o
Lotto designs can be found in [2].

We can construct Lotto designs using exhaustive or heuristic searches.
Given values n. k. p and ¢ and the muanber of blocks b desired. an exhaustive
search will decisively determine if an LD(n. k.p. t3b) Lotto design with b
blocks exist. 1f a design with these parameters does exist. the search will
be able to generate the blocks of the design and we can conclude that
L(n.k.p.t) < b. Otherwise. no such design exists with these paramcters
and we may conclude that L(n. k. p. t) > b. Exhaustive scarches are usually
implemented as backtracking algoritluns. While exhaustive scarches always
give you a decisive answer on whether a design with the stated parameters
exist. it may not be feasible to apply this approach except for a small
munber of choices for the parameters. where cither n or b is small. This
is due to the fact that an exhaustive search has to consider every possible
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combination of b blocks.

A heuristic search will try to construct a design with the given param-
oters. If it is able to construet such such a design. then the blocks will
typically be returned by the scarch algorithm and we can conclude that
L{n.k.p.t) <b. However, if the search fails. we cannot conclude that no
such design exists with the given parameters. This is because hewristic
searches do not traverse the entire search space. Instead. they look at a
subset of the entire search space. Examples of hewristic search algorithms
are hill climbing. tabu searel, simulated anncaling and genetie algorithmns.
Some reasons for using heuristic searches are that they finish much quicker
than exhaustive scarches. and they often find a solution that we desire. A
good introduction to exhaustive and henristic algorithms can be found in
[5]. [1] is an excellent reference on heuristic search algoritims.

In this paper. we present another heuristic scarch technigue that may
be used to construct Lotto designs.  These heuristics work with feasible
solutions. In the ease of Lotto designs. a feasible solution is siinply any col-
lection of b A-sets. This hybrid search algorithin combines the two henristic
techniques:  genetie algorithins and simulated aunealing. The genetic al-
gorithm. simulated anncaling and the hybrid genetic siimulated annealing
algorithins will be described in the next section. We will provide some
experimental results for this hybrid algovithm.

2 Algorithms

In this scction we will state and deseribe each of the following hewristic
algorithms for constructing Lotto designs:

e Simulated Annealing

o Genetice Algorithm

e Genetie Simulated Annealing

2.1 Simulated Anncaling

Simulated annealing is a combinatorial optimization method. Simulated
anncaling is based on the physical process of mmealing where a crystal is
cooled down from the liguid phase to the solid phase in a heat bath. By
performing the cooling process in a careful manner. the energy state of
the solid at the end of the cooling process is verv near or at it minimm.
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The idea of similated annealing is taken from the Metropolis algorithm [9)].
An important component of simulated annealing is its ability to accept a
higher cost solution with some probability. This allows the algorithm to
possibly escape from local minimas. For a comprehensive treatiment of the
simulated ammealing algorithm, sce , [1], [8]. Algorithm 2.1 is a simulated
annealing algorithm for constructing and LD(n, &, p, ;) Lotto design. It
is based on the algorithm found in [10].

Algorithm 2.1: SIMULATEDANNEALING(n, k.p.t.b)

Generate initial solution S and temperature 7.
while not frozen
(while inner loop criterion not satisfied
Scleet a neighbor S* of S.
& — cost(S*) — cost(S).
ifa<o

then S ~ S*
ifd>0

then S « S* with probability ¢%/7.
 Reduce temperature T
return (Best Solution Found and its Cost)

do { do

The input parameters to Algoritlun 2.1 are the values of n. &, p, ¢t and
b for the Lotto design in question. The goal of the simulated anncaling
algorithm is to try to construct a LD(n. k. p. t;b) Lotto design. The cost
fmetion in Algorithin 2.1 is dependent on the problemn being solved. For
Lotto designs. we chose the cost of a solution §. denoted by cost(S), to
be the nanber of psets that are not represented by the solution S. If all
p-sets are represented by the solution, then the solution has cost 0 and the
solution a Lotto design. The temperatwre 77 is used to implement a cooling
schedule which is typically decreased in an exponential fashion. that is.
Tipy = rT; where r is a constant between 0.95 to 0.99. As the temperature
decreases., the probability of accepting a worse-ofl solution (that is, one with
higher cost) decreases. The neighbors for a solution is also dependent on
the problem being solved. For Lotto designs. we define 8* to be a neighbor
of S if and only if § and §* differ in only one block and these two block
differ in only one clement. Using this neighborhood systemn. it is clear that
cach solution has exactly bk(n — &) neighbors. We say that the annealing
process is frozen if the cost fanction at the end of the inner while loop
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is the same for a given mmnber of consecutive temperatures. The inner
while loop is typically executed a constant number of times, based on the
size of the neighborhood. Finally. the selection of the initial temperature is
important. Nurmela and OQstergard [10] described a method of selecting an
initial temperature based on the number of cost increasing moves around
the initial solution. We have implemented this method for computing the
initial temperature.

it is clear that Algoritlhun 2.1 works with a single feasible solution at a
time and its ability to make “large” jumps in the solution space is limited.
None the less. experiments have shown that this algorithun works quite well
for finding Lotto designs.

We have implemented our siimnlated anncaling algorithm similar to that
found in [10]. There are many implementation details that we will not
discuss here. but instead refer the reader to [10].

2.2 Genetic Algorithms

Genetie algoritluns (GAs) are hawristic scarch methods that may be used
to solve search and optimization problems. Genetic algorithms were intro-
duced by Holland [4] in 1975. They are based on the process of Darwinian
evolution: over many generations. the “fittest” individuals tend to dom-
inate the population. Genetic algorithins are often more attractive than
gradient search methods because they do not require complicated differen-
tial equations or a smooth search space. A GA simulates this evolutionary
process by manipulating information encoded as chromosomes. Bach chro-
mosome is ade up of picces of information, known as genes. A collection
of genes wmakes up a chromosome and a collection of chromosomes makes
up a population. Feasible solutions of the problem being solved are en-
coded as chiromosomes. ‘There are varions ways to represent. a chromosome.
Typically. integers are used to represent a chromosome. The representation
of chromosomes is very problem-dependent. since a chromosome is used to
encode a feasible solution for the problem being solved. In the case of Lotto
designs. each chromosome has length b, where each gene in a chromosome
contains an integer between 00 and the nunber of k-sets, indicating the rank
(or ordering) of a k-set in the feasible solution encoded by the chromosome.
A rank can be assigned to a k-set in various ways (5. We have chosen to
assign ranks to k-sets using lexicographic ordering of the A-sets [2]. Hence
a chromosome encodes the colleetion of blocks in the feasible solution by
storing the blocks™ ranks (sorted in ascending order). A population of chro-
mosomes is then a collection of feasible Lotto designs or solutions, ecach
with & blocks.
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A GA evolves a population by mixing the genes of the chromosomes in
the population with some probability. using a crossover operator. and by
wanipitlating the individual genes of cach chiromosome with some probabil-
ity. using a mutation operator. If gy = {y. e, o p} and g2 = {y1. yoe oot}
are two chromosomes. then the crossover operator used in your implementa-
tion GA will generate two chiromosomes by = {1, 29, o i i1 Yiv2s - Up }
and Iy = {y1. yo. oo Wi i g1 i g e}, where i s a random number he-
tween 1 and b — 1L.This is often called a single point crossover”™. The
mutation operator that we nsed in our GA is one which moves a gene to a
neighbor (if we think of the gene as a A-set). using the standard neighbor-
hood system for a Lotto design which is described in Section 2.1.

Lach cliromosome is assigned an objective value and a fitness value. The
objective value (or cost) of a chromosome g is the value returned by your
objective function: it is the raw performance evaluation of a chromosome.
We will use cost(g) to denote this value, For Lotto designs. we define the
objective value of a chromosome to be the munber of p-sets not. represented
by the solution encoded in the chromosome.  This is the cost function
used in Algorithm 2.1, The fitness score. on the other hand. is a possibly-
transformed rating used by the genetie algorithin to determine the fitness
of individuals for mating. The fitness value of a chromosome is typically
linearly scaled over all the fitness values in the population. The GA will nse
the fitness value of the ciromosowmes in the population to determine which
chromosomes will proceed to the next generation, either in its original formn
or in some imntated form. It should be noted that the choice of a fitness
function is problem-dependent. However. cliromosomes with higher fitness
alues are more likely evolve to the next generation while chromosomes
with low fitness values tend not to evolve to the next generation. Many
methods exist to determine which genes move onto the next generation.
We will give a detail description of the fitness and objective functions in
Section 2.3,

Several parameters may determine the outcome of a GA: the nnmber
of chromosomes in the population, the number of generations. the prob-
ability of performing a crossover operation. the probability of performing
a umtation operation. During each generation. we have decided that the
muuber of genes in the population should be the same. The probability of
crossover determines how often two chosen chromosomes should exchange
genetic information. The probability of mutations determines how often
a chromosome should mutate or change its value. For more information
about. genetic algoritlims. sce [1].[3].

We now state a generic GA for constructing Lotto designs:
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Algorithm 2.2: GA(n. k. p.t.b.pCross. pMut. popSize. marGen)

G — initial solution with popSize chiromosomes
for i — 1 to marGen
(Compnte cost and fitness values for cach chromosome in G
Create a new empty population pool G*
while |G*| < |G|
Select g1, g2 € G based on fitness values
do (¢ Apply crossover with probability pCross to get Iy hy
do < Mutate cach gene of iy with probability pAfwd
Mutate each gene of ha with probability pAfut
G* — G U {hy. s}

(0 —G"

return (Best solution founed)

Algoritlnn 2.2 operates on many feasible solutions at the same time. whereas
siumtdated annealing works with only one feasible solution at a thne. It is
also clear the crossover operator allow the algorithm to enforce clromo-
somes to make a “big” jump in the solution space. while the mutation
operator allow the algorithin to enforce chiromosomes to make a “swmall”
localized jump in the solution space. Unfortunately. the genetic algorithin
does not allow for local searching. The mntation operator does move a
chiromosome in small steps. but it is applicd at most once on each gene of
the chwomosome.  To alleviate this shortcoming. we will incorporate sim-
ulated annealing into Algoritlun 2.2, This algorithmm is described in the
following sub-section.

2.3 Genetic Simulated Annealing

As mention in Section 2.2, genctic algorithins does not. allow for detailed
examination of a the search space around a feasible solution. Thus. it is
possible that a feasible solution is close to a global miniimun, but can-
not reach it due to the inability of a genetic algorithim to perforin a local
search. On the other hand. simulated annealing does not have the abil-
ity to consider multiple feasible solutions or perform “large™ jumps in the
search space. The deficiencies simnlated annealing and genctie algorithms
led us to develop a hybrid algorithm that may overcome these deficiencies.
[7] describes a hybrid genetic simnlated annealing algorithm for non-slicing
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Hoor-plan design. We will present a similar algoritinn for constructing Lotto
designs.

Algoritlun 2.3 states our genetic simulated annealing algorithm for con-
structing Lotto desigus. which is similar to the algorithm in [7]. It should
be noted that it is slightly different from Algorithm 2.2, Algoritlm 2.3
applies the crossover operator (with probability pCross) to exactly two
chromosomes during each generation. In addition. the mutation process in
Algorithm 2.2 has been replaced by the application of simulated annealing
to the two chromosomes ereated by the crossover operation.

Algorithm 2.3: GSA(u. k. p.1.b. pCross. pMut. popSize.maxGen)

G «— initial solution with popSize chiromosomes
Compute cost and fitness values for cach cliromosome in G
for i — 1 to maxGen
[ ¢ — chiromosome in G with lowest. fitness value
Select g1, g2 € G based on fitness values such that

91 # Yu 92 # Yu
Apply crossover on g;.ga with probability pCross

to gew hy by
Apply Algoritlun 2.1 with initial solution 7,
Record best solution $; constructed by Algoritiun 2.1
Apply Algoritlun 2.1 with initial solution /.
Record best solution so constructed by Algorithm 2.1
| Replace g, with either s) or s2 based on fitness value
return (Best solution found)

do

If we let numPSels denote the total munber of possible p-sets. then we
defined the fitness value of a chromosome g as

cost(g)
numPSets

cost(h) '
Zheg (1 = numpP: 'nln)

where G is the current population pool of size popS. It is clear that the
lower the cost. (or objective value) of a chiromosome g, the higher its fitness
value. In addition. 0 £ fitness(g) < 1 and

Z Sfitness(g) = 1.

Y

fitness(g) =
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Using a wniformly distributed random munber generator. the choosing of
the two chromosomes g and go in step 2b will be biased toward those
chromosomes with higher fitness values.

The simulated anncaling part of Algorithm 2.3 is described in Section
2.1 and has the same inplementation. The details of the actual implemen-
tation of the hybrid algoritlin will not be discussed here. as it could be
implemented in many different ways.

3 Experimental Results and Observations

The experimental results show that owr hybrid genetic simulated annealing
method is actnally quite effeetive. These tests have been performed using
the set of Lotto design parameters in Table 1. The settings for the genetic
simulated annealing algorithin are given in Table 2.

.

Test Case fn [ kfp]t]D
1 AR ERERED
2 12715559
3 1541413152
: 1413143 144
h 1916121215
6 HM16]5 431
7 12151313129
3 WBH[3]37]34
9 Wlal3[3]78
10 W55 [4]49
11 12166 ([5]38

Table 1: Designs Parameters Used For Experiments

Population size 20

Crossover probability | 0.6

Crossover operator single crossover
Maximun generations | 2000

Table 2: Genetie Sinmilated Annealing Parameters

For comparison purposes. we report results for each test case gener-
ated by sinmlated annealing and genetic simulated annealing. These two

117



algorithms were implemented using a common set of rontines and data
structures. For both algoritluns. we ran trials of up to 2000 generations for
cach test case. For sinmlated anncaling. this meant running the algorithn
up to 2000 thnes for cach test case,

In Table 3. the first cohunn refers to the designs tested.  Column 2.
list. the two algorithms. Columns 3 states if the desired design was fonnd.
Column 1 gives the munber of generations required to obtain the that design
respectively. If the value of colunn 3 is “No™. then the value of cohunn 1
will be filled with the value 2000.

Case || Methods | Desived Design Found | Generations Taken
1 3SA Yes 1514
SA No 2000
2 GSA Yes 109
SA No 2000
3 GSA Yos 8906
SA No 2000
1 GSA Yes 3
SA Yes 2000
[ GSA Yes 1
GSA Yes 1
G SA No 2000
GSA No 2000
7 GSA Yeos 5
SA Yes 10
3 GSA Yes 420)
SA No 268
9 GSA No 2000
SA No NA
10 GSA Yes 150
SA Yes 1523
11 GSA Yes 14
SA Yes 234

Table 3: Results of Test Rams

For test case L. the genetie simulated annealing algorithun discovered a
new upper bound (24) for L(15.5.4.3). This was obtained at generation
1514, It is interesting that this Lotto desigh was obtain from the combining
of two other chromosomes. The previously best known upper bound for -
L(15.5.4.3) was 25 blocks.
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For cases 2 and 3. we see that the genetie simulated annealing algorithi
was able to generate a design with the specified parameters faster than
siimulated annealing. In fact. simnlated annealing was not able to generate
a Lotto design for either cases in 2000 generations.

For case 4 and 7. both algorithms were able to generate the desired
design in roughly the smne nuber of generations.

For case 5. both simlated annealing and genetic simulated anncaling
was able to generate the desired Lotto design in the first generation.

For cases 6 and 9. neither algorithin was able to generate the desired
design within 2000 generations,

For case 8. simulated anncaling was able to generate the desired design
in less generations than the hvbrid algorithm.

For cases 10 and 11. both algoritlins were able to generate the de-
sired design. The hiybrid algorithin was able to generate the designs in
loss generations than the simulated annealing algorithm. In addition. both
algorithms found a betier upper bound (49 blocks) for L(13.5.5.4) than
previously known. which was 50 blocks.

From these tests., we see that the hybrid algorithm can typically find a
design with cost at least. as good as that found by simulated annealing alone,
The hvbrid algorithm also finds designs faster than simulated anmealing in
many eases. Another observation from our experiments is that the objective

alues of the chromosomes in the final generation tend to be roughly the

saune,  This is reasouable. since as the algorithun progresses. the weaker
chiromosomes are thrown away and replaced with chiromosomes that have
hetter objective values.

4 Conclusions and Future Work

We have deseribed and implemented a simple algorithin based on genetie
algoritlun and simulated anncaling for constructing Lotto designs.  This
algorithun operates on a colleetion of feasible solutions. and promotes the
sharing of inforination between these solutions. From running some limited
experiments. we were able to see that the algoritlun does as well as siinu-
Iated annealing in most cases. when the performance analysis is based on
the cost of the hest design found and the munber of generations required to
fowd a desired design. In somne cases. for example LD(15.5.4.3: 24). it was
able to construct a Lotto design where simulated anncaling was not able to
construct (in owr tests runs). with about the same number of iterations.
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We have not studied how the sharing of information between chromo-
sonies in a population would aid in the construction of Lotto desigus. We
would like to investigate this sharing of information in the near future. In
addition. we wonld like to investigate the use of other crossover and mu-
tation operators in the hybrid algorithi. It is known that. the choice of
the crossover and mutation operators greatly affect the performance of ge-
netic algorithins. Finally, we have only considered one way of representing
a Lotto design as a chromosome. We need to investigate if there are othoer
representations exist and if so, how does it affect the performance of the
algorithun.
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