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Abstract
In this note, we present many uniquely n-colorable graphs with
m vertices and new constructing ways of uniquely colorable graph
by using the theory of adjoint polynomials of graphs. We give new
constructing ways of two uniquely colorable graphs which are chro-
matically equivalent also.
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1 Introduction

All graphs considered are finite and simple. Undefined notation and termi-
nology will conform to those in [1]. Let G be a graph. We denote by V(G),
E(G), G, p(G) and ¢(G) the set of vertex , the set of edge, the complement,
the number of vertices and the number of edges of G, respectively. Let A
be a positive integer. An A—coloring of G is a partition of V(G) into A color
class such that the vertices in the same color class are not adjacent. By
x(G) we denote the chromatic number of G, i.e., x(G) = min{A}. If every
x(G)~-coloring of G gives the same partition of V(G), then G is said to be a
uniquely x(G)-colorable graph. Let P(G, ) denote chromatic polynomial
of G, two graphs G and H are said to be chromatically equivalent if and
only if P(G,)\) = P(H,)).
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In [2-4], the unique n—colorablily of graphs was studied. Some results of
the unique n-colorablity of graphs were obtained. In this paper, we obtain
some new results on the unique colorablily of graphs by using new theory
of the adjoint polynomials of graphs (see[8]), which was introduced by Liu
in [7]. In the search for chromatically unique graph, it turned out that
many new results could be obtained by applying the adjoint polynomials
of graphs (see[8]).

By K, and P, we denote the complete graph with m vertices and the
path with n vertices, respectively. D,(n > 4) denotes the graph obtained
from K3 and P,_2 by identifying a vertex of K3 with a vertex of degree 1
of P,—_2. T(l1,l2,13) denotes the tree with a vertex v of degree 3 such that
T(ly,l2,l3) —v= P, UP,UP,, wherel; >1,i=1,2,3.

2 Definitions and Basic Lemmas

Let G be a graph with p vertices. If Gy is a spanning subgraph of G and
each component of Gy is complete, then Gy is called an ideal subgraph of G.
By b;(G) we denote the number of ideal subgraph with p — ¢ components,
where 0 < 2 < p— 1. By Theorem 15 in [9], we can easily obtain the
following formula

r—1
PG, ) =) b:i(G)(Np-i,

i=0

where (A); = AA—1)(A=2)--- (A =i+ 1)(A = 1) (see [8]).
Definition 1. [8]. If the chromatic polynomial of G is
p—-1
P(G:’\) = Zbi(G)()‘)p—-ia
=0

then the polynomial
p—1
h(G,z) =Y bi(G)aP~
i=1
is called the adjoint polynomial of G.
In [6], the o—polynomial of G can be written as follows:

k
o(G,z) = Z a'imk-ia

=0

where k£ = p(G) — x(G) and a; is the number of ways of partition V(G)
into p — i disjoint independent sets.
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Let h(G,z) = 2(9hy(G,z) such that hi(G,z) is a polynomial in z
with a nonzero constant. It is easy to show that h;(G,z) = 0(G,z). In
particular, 3(G, z) = h1(G, z) in [5], where (G, z) = o(G, z).

Let ¢(G) be the lowest term of A(G, ). Lemmas 1 and 2 can follow from
the above argument and Definition 1.

Lemma 1. Let G be a graph. Then G is uniquely n—colorable if and only
if ¢(G) = z™.

Lemma 2. Let m be a positive integer. Then t(K,) = z.

Lemma 3. [8]. Let G be a graph with £ components G1,Ga,...,Gk.
Then

k
h(G,z) = [[ h(G:, ).
i=1
Lemma 4. [8]. Let G be a graph with edge uv. If uv is not an edge of
any triangle of G, then

h(G,z) = h(G — wv, ) + zh(G — {u,v},2).

Definition 2. [5]. Let G be a graph with vertex v, and Ng(v) =
AUBand ANB = 0. H = (G,v,4,B) is the graph defined as fol-
lows: V(H) = (V(G) - {v}) U {v1,v2}(v1,v2 € V(G)) and E(H) = {e €
E(G)|e is not incident with v} U {vjulu € A} U {voulu € B}. Then H is
called the graph obtained from G by splitting vertez v, and write H = G|,.
H is said to be a vertez splitting graph of G if H is obtained from G by a
sequence of vertex splitting.

Definition 3. [5]. Let G be a graph and A,B C V(G). A and B is said
to be adjacent in G if for any = € A and y € B, we have zy € E(G).

Lemma 5. [5]. Let G be a graph with vertex v and H = (G,v, 4, B).
Then h;(H,z) = hi1(G, z) if and only if A and B are adjacent in G.

We consider a graph G containing K3 as a subgraph. Let {u,v,w} =
V(K3) C V(G). If there exists a vertex of degree 2 in V(K3) , without loss
of generality, say dg(v) = 2. Let A = {u} and B = {w}. It is clear that A
and B are adjacent in G. By Lemma 5, we know that hy (G, z) = h1(Gly, z).
In particular, hy(Dp,z) = b1 (T(1,2,n — 3), ).

3 Uniquely n—colorable graph

Denote by G(Kp,, Ps) the graph obtained from K, and P; by identifying
a vertex of K, with a vertex of degree 1 of P,. Clearly G(Kp, P,) = Kn,.
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Lemma 6. Let s > 3. Then
(1) M(G(Km, Ps), z) = 2(h(G(Km, Ps—1),z) + h(G(Km, Ps—2),T));

ol if s is odd,
2) H{G(Km,P)) =4 E.0,
(2) ¢(&( )= { =iy '33, if s is even.

Proof: (1) Let uv € E(G(Km, Ps)) such that d(v) = 1, and d(u) = 2 and
uv € E(Ps). When s > 3, by Lemma 4 we have

hMG(Km, Ps),z) h(G(Km, Ps) — uv, z) + zh(G(Km, Ps) — {u,v},z)

: z(M(G(Km, Ps—1),z) + h(G(Km, Ps—2), T))-

(2) Proof by induction on s.
From Lemma 4, we have

MG(Km, P2), 7) = 2(h(Km, T) + h(Km—1,7))

and
h(G(Km, P3), z) = 2(h(G(Km, P2), T) + h(Km, 7).

Hence, by Lemma 2 we know that
t(G(Km, P2)) = 22° and t(G(Km,Ps)) = z°.

Suppose that (2) holds when s < k, where k& > 4. From the first part of
the proof, we have

WG (Km, Pr), z) = 2(A(G(Km, Pr-1), %) + h(G(Kom, Pez), T))-

If k is even, then (G(Km, Ps-1)) = 2% and t(G(Km, Px—2)) = £z% by
the induction hypothesis. Hence t(G(Kp, Pr)) = -’“—"22:1:"—'2’"2 .

If k is odd, then ¢(G(Km,Pi-1)) = 512" and ¢(G(Km, Pe—2)) =
o7 by the induction hypothesis. Therefore ¢(G(Km, P)) = .

This completes the proof of the theorem.

By Lemmas 1 and 6, Theorem 1 and Corollary 1 is easily proved.

Theorem 1. Let s be an odd integer. Then G(Kp, P;) is uniquely 21—
colorable graph with m + s — 1 vertices.

Corolla_rl 1. For any n > 1 and m > 2, we have
(1) P», is uniquely n—colorable graph with 2n vertices,
(2) Dom+1 is uniquely n—colorable graph with 2m + 1 vertices.

Theorem 2. Let G be a graph with k components G1,Ga, - -+, Gk. Then
G is uniquely n—colorable if and only if each complement G; is uniquely
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m;—colorable and n = Zle m;, wherei =1,2,.-- k.

Proof: By Lemma 3, t(G) = ]'[:.;l t(Gi). The theorem can be easily proved
by Lemma 1.

By applying Theorems 1 and 2, we can find many families of uniquely
n—colorable graphs with m vertices, where n > 3 and m > 3. Hence we
have the following corollary.

Corollary 2. There exist infinite uniquely n—colorable graphs with m
vertices, wheren > 3, m > 3 and m > n.

Let v € V(G(Km, Ps)) such that v € V(K,,) and d(v) = m — 1. By
G'(Km, P;) we denote the graph obtained from G(K,,, P;) by splitting ver-
tex v (see Definition 2).

Theorem 3. Let s be an odd integer. Then G’ (K, Ps) and G(Kpm, Ps) U K
is uniquely '—’-’%ﬁ—colorable graph which are chromatically equivalent.

Proof: Choose A and B such that ANB =@ and AU B = V(Kp)\v,
where A # 0 and B # 0. Note that A and B are adjacent in G(Kp,, Ps).
By Lemma 5, we have hy (G (K, Ps),z) = h1(G(Km, Ps),z). Since

P(G,(Kma Ps)) = p(G(Kma Ps) U Kl)s

we have
h(G' (Km, Ps),z) = h(G(Km, Ps) U Ky, ).

From Lemma 6, we know that

'a_ﬂ . .
if s is odd
tGlK ’P = :L"Z,' '
(G'(Km, Ps)) {s_-;ix-?“, if s is even.

Theorem 3 holds by Lemma 1.

Note that there are many ways of choosing A and B such that A and
B are adjacent in G(Ky,, Ps) . Hence there exist many graphs which are
chromatically equivalent with G(Kp, Ps) U K. Let v be splitted into two
vertices vy and vy. If d(vy) # 1 or d(v2) # 1, then vy or vp can be splitted
in G’(Km, Ps). Hence, we can obtain many graphs which are chromatically
equivalent with G(K,,,P;) U2K;. By repeating the above process and
Theorem 2, we can obtain the following corollary.

Corollary 3. Let n > 3. There exist infinite uniquely n-colorable graphs
which are chromatically equivalent.
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