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Abstract

de Launey and Seberry have looked at the existence of General-
ized Bhaskar Rao designs with block size 4 signed over elementary
Abelian groups and shown that the necessary conditions for the ex-
istence of a (v,4, \; EA(g)) GBRD are sufficient for A > g with 70
possible basic exceptions. This article extends that work by reducing
those possible exceptions to just a (9, 4, 18h; EA(9%)) GBRD, where
ged(6, h) = 1, and shows that for A = g the necessary conditions are
sufficient for v > 46.
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1 Introduction

The existence problem for generalized Bhaskar Rao designs signed over
elementary Abelian groups (our terminology and notation will be defined
later in Section 2) was first considered for block size 3 by Lam and Seberry,
and completed by Seberry who showed that the necessary conditions were
sufficient [39, 52]. One of the less-obvious necessary conditions for k = 3
imposes no restriction for k = 4. (We will discuss this point in more detail in
Section 3.) In [23], de Launey and Seberry looked at the existence problem
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for generalized Bhaskar Rao designs with block size 4 signed over elementary
Abelian groups and showed that the necessary conditions were sufficient
with the relatively short list of 70 possible exceptions when A > |G|; they
also provided a number of useful constructions for the case A = |G|, but
did not explore this case systematically. The main aim of this article is to
extend that work and remove as many as we can of the possible exceptions
when A > |G|, and to study the A = |G| case. Our progress is assisted by
several factors.

Firstly, more complete lists of PBDs are now available.

Secondly, Chaudhry et al. [16] showed how Wilson’s fundamental con-
struction could be adapted to deal with Bhaskar Rao designs and we con-
tinue this adaptation in Section 5. The value of the introduction of Wilson’s
fundamental construction was later demonstrated (along with a fair amount
of computation) in tackling the EA(2) case [24, 30, 34]. One important in-
cidental benefit of the introduction of Wilson’s fundamental construction
was that this provided a common structure to a number of apparently un-
related constructions that had appeared in the literature and pulling these
constructions apart (reflected by our common use later of Theorem 5.2 fol-
lowed by Theorem 5.4) allowed us to focus on the provision, and systematic
use, of components for these constructions.

Thirdly, again along with a fair amount of computation, Mathon [43]
had produced a very useful a (45, 12, 3; Z3) GBRD.

Lastly, we spend some effort in Section 6 in exploring the relationship of
GBRDs with other designs, which has the benefit of allowing us some way
of exploiting designs constructed for other purposes, for example, differ-
ence matrices which are discussed in Section 4. In fact, one of the earliest
reasons for studying GBRDs was the relationship with GDDs [51, 53, 54],
illustrated by Lemma 6.1, and a (v,k, A\;G) GBRD can be regarded as a
(k, A/|G|) GDD of type |G| with G acting regularly on the points and semi-
regularly on the lines [20]. This places GBRDs as intermediate between an
unstructured GDD and a GDD which is given by a difference family. Dif-
ference families are well-known structures of considerable interest. Purely
from the view of GBRD existence, one would like to have ways of exploit-
ing these better studied difference families. Symbiotically, one could study
GBRD:s to provide more insight into recursive construction methods for dif-
ference families. There can also be practical benefits in direct constructions
of GDDs if one proceeds via GBRDs, as then the problem can be broken
down into the two steps of constructing the underlying BIBD and signing
it. This can be a decided benefit if one step is easy or there already is
software available for it.

We have already indicated that GBRDs have been studied as difference
families. GBRDs have also proved useful in constructing RGDDs (here the
underlying design was a resolvable BIBD). The GBRDs were given in a



slightly different notation as “labelled” RBIBDs, see [44).

In Section 2 we give most of our basic definitions and notation. In
Sections 3—6 we develop our general construction methods. Although we
pay particular attention to k = 4, these constructions often have more
general applicability. Finally, our constructions of (v, 4, A; FEA(G)) GBRDs
are done in Sections 7-12, and our open cases are summarized in Section 13.
We also correct some errors in [23] in an Appendix.

2 Terms and Notation

Some of the terminology we will use is quite standard in design theory;
see [9]. For clarification of our notation (specifically how we indicate the
standard parameters), we refer to pairwise balanced designs (PBDs), (in-
cluding BIBDs), as (v, K, A) designs, where K is a list of block sizes that
possibly occur. The notation K U {h*} means we can identify one block of
size h in the design, and the other blocks have sizes in K (more blocks of
size h are allowed only if k is in K). A group divisible design is referred
to as a (K,)) GDD of group type ti* ...t~ if there are g groups of size
t; and transversal designs of order n as TDy(k, n), dropping the subscript
when X = 1; note that a TDy(k,n) is a (k, A\) GDD of group type n*. The
prefix “R” will denote a resolvable design; we say more about resolvabil-
ity in Remark 4.2. All these designs may be represented by their v by b
incidence matrices.

We should caution the reader that the “group” in a group divisible
design is just a collection (of points), and group there has only its everyday
meaning, not the special mathematical meaning that occurs when group is
used to denote an algebraic structure. Unfortunately, we shall have to use
group in both senses, but the meaning should be clear from the context.

To accomplish our aim of signing BIBDs we will also need to sign GDDs.
The generalized Bhaskar Rao versions (over the group G) of these designs
is given by “signing” the non-zero elements of the v by b incidence matrix of
the design, say N, i.e., by replacing the non-zero elements of N by elements
from the algebraic group G to give a new matrix W. If {i} and {;} were
two points of the design, and ), ninj: = A , then in the signed version the
list w,-twj‘t1 fort=1,2,...,b would contain \;;/|G| copies of every element
of G, plus some zeros (we use the convention that Og = g0=0=0""1 for
any g € G, with 0 being 2 non-group element, unchanged from N). Note
that, although it is more usual to represent the group operation as addition
in Abelian groups, we will not follow this convention rigidly (especially for
2- and 3-groups and subgroups). More importantly, our definition covers
non-Abelian signings which we will discuss in Section 6.

Such designs were introduced by Bhaskar Rao [10, 11] (under the name



“balanced orthogonal design”) and were initially just signed over Z,, or
equivalently, the 1’s in N were replaced with +1’s; the signing property
in this case just amounts to row orthogonality using the standard inner
product. Earlier, Butson [14, 15] had considered more general signings, but
as generalized Hadamard designs, where the underlying BIBD is trivial.
One usually refers to signings over the group of order 2 (usually considered
in its multiplicative form as noted above) as Bhaskar Rao signings, and
over other groups as generalized Bhaskar Rao signings; other authors have
used “generalized” to include signings of designs other than BIBDs over the
group of order 2. The order two group is implicit for Bhaskar Rao designs,
but since we prefer to make it explicit here, we will use the term generalized
for all our signed designs.

Our aim in this article is to consider signings of (v,4,\) BIBDs over
elementary Abelian groups. For clarification, by an elementary Abelian
group of order n we mean the direct product of the cyclic groups Zp; for
every prime p; in the prime factorization of n; we denote this group as
EA(n), although for n = 6 we often use the equivalent group Z,,.

3 Some necessary conditions

Clearly, the balance condition for (v, k, A\; G) GBRDs, namely that every
element of G occurs equally often in the list w,-tw_,i't1 necessitates that |G|
divide A.

Since we are concerned in this article with signings of (v,4, A\) BIBDs,
it is worth noting that the necessary conditions for existence of the BIBD

are sufficient (35], and those necessary conditions can be expressed as in
Table 1.

Table 1: Necessary conditions on v for the existence of a (v,4, A) BIBD

A (mod 6) v
1,5 1,4 (mod 12)
2,4 1 (mod 3)
3 0,1 (mod 4)
0 any v > 4

There is another necessary condition known for GBRDs, but this intro-
duces no fresh restrictions when k = 4. This condition was introduced by
Street and Rodger in a more general setting [54], and later specialized by
Seberry to BRDs (see [52, Theorem 1] for a proof) and GBRDs [39]. We
now give a new, simplified proof of [52, Theorem 1).



Theorem 8.1 If G has a normal subgroup of order 2, then it is necessary
that A(3) =0 (mod 4) if k is odd.

Proof: Consider the placement of the signings of the normal subgroup. Half
the total pairs must have the same signing, and half opposite. If there are
n; blocks containing i of the identity in the subgroup, then we have:

A(’z’) = ZZn,-i(k —3).

The theorem follows by noting that, if k is odd, i(k —1) is always even since
exactly one of the factors is. .

Remark 3.2 It is clear that the proof of [52, Theorem 1] is simplified,
but the result claimed is apparently weaker. Now we want to establish our
necessary conditions are the same as [52, Theorem 1]. Note that

v k
() =)
where b is the total number of blocks in the GBRD.

Seberry’s requirement for k odd is that d(k — 1) = 0 (mod 8), or b =
0 (mod 2) if k = 5 (mod 8) (when we have (£) = 2 (mod 4)), or b =
0 (mod 4) if k = 3 (mod 4) (when we have (§) = 1 (mod 2)) and no
restriction on b if k = 1 (mod 8) (when we have (§) = 0 (mod 4)), so
these are the same restrictions as ours when & odd.

Seberry’s requirement for k even is that d(k — 4) =0 (mod 4), or b =
0 (mod 2) if k = 2 (mod 4) (when we have (¥) = 1 (mod 2)), and no
restriction on b if k = 0 (mod 4) (when we have (£) =0 (mod 2)), so we
should explain our lack of a restriction in the k = 2 (mod 4) case.

The answer is that in our GBRD we must have \ even, and this entails
that b be even. Consider the underlying (v, 4n+2, 2t) BIBD: the replication
count is r = 2t(v — 1)/(4n + 1), which is clearly even, and the block count
is b = vr/(4n + 2). Rewriting this as

_ v(v = 1)t
T (2n+1)dn+1)’

we see that b must be even.

4 Difference and Generalized Hadamard Ma-
trices

A (|G|, k, ) difference matrizis a (k, k, A\|G|; G) GBRD, and a generalized
Hadamard matriz GH(|G|, )) is both a (|G|, A\|G|, \) difference matrix and



a (A|G|, A|G|, A|G|; G) GBRD. A (|G|, k, M) difference matrix is represented
by a k by |G| matrix whose elements are entries of G; each column of
this matrix can be taken as a base block and developed over G to yield an
RTDy (k, |G|) on the point set I; x G; the first part of each element (i.e., the
group identifier) is implicitly given by the row label. Since the development
of every column spans the point set, we also have resolvability; the group
set for the RTD is {i} x G for each i € Ix. Deleting a row from a (|G|, k, \)
difference matrix produces a (|G|, k — 1, \) difference matrix. A difference
matrix has no empty entries. One variant with some empty entries is a
quasi-difference matrix.

A GH(|G], }) yields an RTD with the maximum possible k. The follow-
ing theorem is well-known; a proof can be found in [38, Proposition 3.1J;
we will outline the proof, since it gives us a GBRD non-existence result.

Theorem 4.1 If g > 1 and an RTD)(k,g) emsts, then k < g), and so no
(k,k,\;G) GBRD exists if k < \.

Proof: 1t suffices to show no RTD, (g + 1, g) exists. Consider the points
of one block; they have no more incidences in that parallel class, and even
the most uniform placement in the remaining blocks yields too many pairs
for the points of that block. [ ]

Remark 4.2 Normally, in a (|G|, k, A\;G) difference matrix each column
generates a parallel class and gives us an RTD, (k, |G]), and we can add a s
points each to A parallel classes to get a ({k, k+ 1}, A) GDD of type |G|*s.
However, if we have converted the difference matrix into a (k, k, M\|G|; G)
GBRD, then adding points to the parallel classes does not necessarily pro-
duce a GBRD: we have to sign the added points and for the GBRD balance,
we would like not only every point to occur in the parallel class, but that
every point occur with every possible signing A times; in such a case we
can add an arbitrarily signed point. We will call a set of blocks where each

element occurs with every possible signing exactly once a signed parallel
class.

Theorem 4.3 If g is a prime power, then a (g,q9,1; FA(q)) difference ma-
triz exists.

Proof: The multiplication table for GF(g) gives the difference matrix. ®

Corollary 4.4 Ifq > 4 is a prime power, then a (q,4,1; EA(q)) difference
malriz exists.

Jungnickel (9, Theorem VII.3.14], generalizing a result of Butson’s [14],
found the following result.



Theorem 4.5 If g is a prime power, then a (q,2q,2; EA(q)) difference
malriz exists.

Any RTD,(k,2) can be represented as a (2, k,2; Z,;) difference matrix
over Za by simply taking one representative of each parallel class as a
column of the matrix. It is easy to verify that no RTD,(3, 2) exists if A is
odd. This is the key fact behind Drake’s result [25].

Theorem 4.6 A (|G|, 3,); G) difference matriz does not exist if A is odd
and |G| =2 (mod 4).

For composite numbers that are not prime powers, (|G|, k,1; EA(G))
difference matrices are known for a number of orders; for Abel’s |G| =
see [34]; for |G| € {24,48, 55} see [57]; for |G| = 36 we quote a result of
Wojtas’ [58]; for Mills’ |G| = 39, see [45] or [9, Example VIII.3.19); the rest
can be found in [2].

Table 2: Known (|G|, k, 1; EA(G)) Difference Matrices

Gl k 6l k 6l k |G k |G k |6 k
12 6 15 5 20 5 21 6 24 7 28 6
33 6 35 6 36 9 39 4 40 8 4 6
445 7 448 7 51 6 52 6 55 7 56 8

We can extend Table 2 using a result of Jungnickel’s [37, Theorem 6].

Theorem 4.7 If q is a prime power, and there exists r MOLS of order
g+ 1, then there ezxists a (¢* + g+ 1,7,1; Zg249+1) difference matriz.

Corollary 4.8 There exists a (57,7, 1; Zs7) difference matriz.

However, there is a general result due to Evans (27, Theorem 1], which
we restate in an equivalent form.

Theorem 4.9 Ifn > 3 is odd and not dzmszble by 9, then there exists an
(n,4,1;2,) difference matriz.

To discuss (4,4, \; G) we need a few basic results. One basic method
of construction is the process we call juztaposition, that is, the placing of
several signed incidence matrices side-by-side to build an example with the
desired index.

Lemma 4.10 Ifa (v, k,A1;G) GBRD and a (v,k, \2; G) GBRD both exist,
then a (v,k, M\ + \2; G) GBRD exzists also.



We next need a couple of results that we expand on later in Sections 5
and 6, but which specialize to well-known results on difference matrices [17,
Theorems IV.11.25-26].

Theorem 4.11 If a (|G|, k, \; G) difference matriz and a (|H|, k, p; H) dif-
Jerence matriz both exist, then a (|G| - |H|, k, \u; G x H) difference matriz
exists.

Theorem 4.12 If a (|G|, k, \; G) difference matriz exists and H <G, then
a (|Gl/|H|, k, M\|H|; G/H) difference matriz exists.

We can now state our results on (4,4, A\; EA(n)) GBRDs.

Theorem 4.18 A necessary condition for a a (4,4, ); EA(n)) GBRD to
exist is that n divide \. If n divides ), then a (4,4, ); EA(n)) GBRD exists
unless:

a. n is even, when we have the definite exception of n =\ =2 (mod 4),

b. n is odd, when we have the definite exception of n = )\ = 3.

Proof: The non-existence when n = 3 follows from Theorem 4.1, and from
Theorem 4.6 for n = A =2 (mod 4).

If the prime power decomposition of n contains no prime powers smaller
than 4, then a (4,4,n; EA(n)) GBRD may be constructed by repeated
application of Theorem 4.11 to the designs given by Corollary 4.4.

If n =2 (mod 4), a (4,4,2n; EA(n)) GBRD may be constructed by
starting with a (4,4,2h; EA(h)) GBRD where h = 2 and this design is
given by applying Theorem 4.12 to the (4,4,4; EA(4)) given by Corol-
lary 4.4, or h = 6 and this design is given by applying Theorem 4.12 to the
(4,4,12; EA(12)) given in Table 2, and then applying Theorem 4.11 using
the (4,4,n/h; EA(n/h)) GBRD constructed above.

If n =0 (mod 12), then a (4,4, n; EA(n)) GBRD may be constructed
by starting with a (4, 4, h; EA(h)) with k = 12 or 24 given in Table 2, and,
by choice of h we know the prime power decomposition of n/k contains no
prime powers smaller than 4, so again we may then apply Theorem 4.11
using the (4,4,n/h; EA(n/h)) GBRD constructed above.

If3<nandn =3 (mod 6) (so 3 is the highest power of 3 dividing
n), we will suppose p is some other prime dividing n and let h = 3p.
Then a (4,4,n; EA(n)) GBRD may be constructed by starting with a
(4,4, h; EA(h)) GBRD with h = 3p given by Theorem 4.9 and, by choice
of h we know the prime power decomposition of n/h contains no prime
powers smaller than 4, so again we may then apply Theorem 4.11 using the
(4,4,n/h; EA(n/R)) GBRD constructed above.
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If n = 3, then a (4,4,6; EA(3)) GBRD is given by Theorem 4.5, and
Theorem 4.12 gives a (4, 4,9; EA(3)) GBRD.

Finally, we may juxtapose the above incidence matrices if necessary to
achieve the appropriate index. u

5 Basic Constructions

There are several basic ways to construct specific examples of GBRDs.

The simplest is the direct replacement of 1’s in the incidence matrix
of a BIBD with group elements. This is called signing and we give some
examples of this method later.

However, for many of constructions, we will need to use the recursive
techniques developed in [16, 34]. These basic methods were developed or
adapted for signings over Z;, and so need further adaptation for other
groups. In Chaudhry et al. {16}, the powerful recursive construction, known
as Wilson’s fundamental construction, or WFC, was adapted from group
divisible designs, or GDDs, to the analogous Bhaskar Rao type designs,
or BRGDDs, and we now need to define generalized Bhaskar Rao group
divisible designs, or GBRGDDs.

Definition 5.1 A (K, \;G) Generalized Bhaskar Rao GDD, or GBRGDD,
is defined by its signed incidence matriz, W, in which every element takes
on the non-group value zero or the value of some member of the group G,
and which has the property that if we replace all the non-zero elements by
ones then the resulting matriz, N, is the incidence matriz of a (K, ) GDD.
If {i} and {j} were two points of the design and 3, nynj = Xij, then in
the signed version the list w,-tw:;;l fort=1,2,...,b would contain \i;/|G]|
copies of every element of G. We use the group type of the underlying GDD
as the group type of the GBRGDD.

Note that the incidence matrix, N, of a (K, ) GDD has the property
that every off-diagonal element of NNT is either A or zero; (the diagonal
need not be constant).

Our adaptation of Wilson’s fundamental construction, given below as
Theorem 5.2, together with the use of Theorem 5.4, gives a uniform frame-
work to several other constructions that have appeared in the literature
(see [23, 39, 50, 51]). Although the authors in [16, 34] were only concerned
with the group Z-, others dealing with simpler direct products of Abelian
groups {23, 39] and the more complex case of non-Abelian groups [19, 47]
have given the special case of “breaking the blocks” (Theorem 5.3 below).
Although the primary concern in this article is with elementary Abelian
groups here, we have given some of our constructions for more general
groups.
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‘We now give the variant of WFC for GBRGDDs.

Theorem 5.2 Let H be a normal subgroup of G. Suppose we have a master
(K',\;G/H) GBRGDD with group type G = (|Gi|,...,|Gyl). Suppose
w(z) is a positive weighting function defined for each point of the master
design. Also, we have an ingredient (K, A2; H) GBRGDD with a group type
vector of W(B) = (Jlw(b1)|, ..., |w(bx’)|) for each block B = {b,...,bx}.
Then there is a (K, \1A2; G) GBRGDD with group type

W(G) = (E w(z),..., Z w(:z:)) .

F1e Z€EGy

Proof: If we ignore the signing aspect, this is simply the WFC for GDDs [55],
so the only aspect we need deal with is the signing.

We note that the elements of G/H are actually the cosets, which we will
denote by a system of representatives, say S = {s1,...,8gj; x|} Now the
property of being signed over G/H means that between any two points from
different groups, say i and j, the products s; - s;* form A|H|/|G| systems
of representatives considering the totality of sucﬂ products over the blocks
common to both points.

Now we replace the signing Hs; by s;. The signing rule we use is that
when we are looking at a master block containing b with a sign of s(b;),
and in a block of the appropriate ingredient design we have w;(b;) with a
sign of t(w;(b:)), then in the resultant design we give the point a sign of
s(bs) - £(5(6:)).

Now consider a master block containing the pair of points i and j with
the signing s; and s;; for each ingredient design on this pair the point
pair (wm(b;), wn(b;)) has a signing (tm,ts) in the ingredient design with
the property that, over this whole design, ¢, - t;! gives Az /|H| copies of
H. Hence the signing we generate has the property in the resultant design
that the products Sitm - (8jtn) ™! = 8i(tm-1;)s; " contain A;/|H| copies of
s;:H s;.'l =H (s,-s;.'l) from this block, and so, noting that s,-s;l is part of a
system of representatives by the GBR property of the master design, con-
sidering all the blocks in the master design, we have (A |H|/|G]) - (A\2/|H])
systems of representatives, each multiplied by the coset H; i.e., the resul-
tant design will contain A\;A2/|G| copies of all cosets, as required. u

Theorem 5.3 is a very useful special case of Theorem 5.2. It describes
a construction that is is known as “breaking the blocks”; in fact, it is so
useful that we prefer to invoke its use by referring to the more descriptive
phrase “breaking the blocks,” rather than as “Theorem 5.3”.
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Theorem 5.3 Let H be a normal subgroup of G. Suppose we have a mas-
ter (v, K,\;G/H) GBRD, and for every block size j € K, we have a
(4,k, A2; H) GBRD. Then there is a (v, k, A\1)2;G) GBRD.

Proof: Treating the master GBRD as a GBRGDD with group type 17, we

give every point of the master GBRGDD a weight of one in Theorem 5.2.
|

We next look at filling in the groups of the GBRGDD.

Theorem 5.4 Let us suppose that we have a (k,\;H) GBRGDD with
group type G = (|G1],|Ga|,-..,|Gg|), and for the first group, we have a
(IG1l +w, k, A; H) GBRD, and for the remaining groups we have a (|Gi| +
w,k,A\; H) GBRD that is missing e (w,k,\; H) GBRD subdesign, then
we have a (v + w,k,\;H) GBRD, where v = Y, |G;|, which contains a
(IG1] + w, k, A\; H) GBRD subdesign.

Proof: Augment the point set of the GBRGDD with w new points, (some-
times called the infinite points), and use the (|G;| + w, k, \; H) GBRD
missing a (w, k, A\; H) GBRD subdesign, to fill the i-th group (for i > 1),
ensuring that the missing subdesign is aligned on the w new points. Finally,
use the (|G1| + w, k, A\; H) GBRD to complete the design. ]

Remark 6.5 Every (v, k,A; H) GBRD has a (w, k, A\; H) GBRD subdesign
if w =0 or 1: these trivial subdesigns contain no blocks.

We can also derive the following variant of a result originally due to Lam
and Seberry [39]; note that we do not require that the missing subdesign
exist.

Theorem 5.6 If there exists a (v,k,\;G) GBRD, and a (u + w,k,\;G)
GBRD missing a (w,k,)\;G) GBRD, and if further there is a TD(k,u);
then there erists a (uv + w, k,\; G) GBRD missing a (w,k,\;G) GBRD.
If there also exists a (u+ w,k,A\;G) GBRD or a (w,k,\;G) GBRD, then
there exists a (uv +w, k, \; G) GBRD containing a (u + w, k,\;G) GBRD
subdesign and a (v,k,\; G) GBRD subdesign.

Proof: Take the (v,k, A\; G) GBRD as the master in Theorem 5.2, and give
each point a weight of u. The TD provides the ingredient, and generates a
(k,2; G) GBRGDD of type u*. Then fill the groups using Theorem 5.4, to
get the result. ]
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6 More Constructions

In this section we provide a link which allows us to exploit several published
designs that are important for our subsequent existence arguments.
The first result, and its proof, is taken from [31, p. 124].

Lemma 6.1 If there exists a (v,k,\;G) GBRD on the point set I, con-
taining b blocks then there exists a (k,)\/|G|) GDD of type |G|*.

Proof: For any g € G, let P, denote the permutation matrix corresponding
to the development of g over G. Now, by replacing every occurrence of g
in the incidence matrix of the GBRD by P, and every 0 by the |G| by |G|
zero maitrix, we get the incidence matrix of the GDD.

It is clear that this result can be strengthened to yield the following
theorem; this strengthening proved useful in helping mine the literature for
direct constructions of GDDs that could be converted into GBRDs.

Theorem 6.2 There exists a (v,k,\; G) GBRD on the point set I, con-
‘taining b blocks iff there exists a (k, A/|G|) GDD of type |G|* that is given
by a difference family containing b blocks developed over G with the point
setl, x G.

Corollary 6.3 Ifv € {41,61,81}, then there is a BRD(v, 5,2).

Proof: See [59, Lemmas 2.1 and 2.7); their constructions of a GDD(5,2")
are by base blocks developed over Z, x Z,. n

Given a (K, ) GDD of type ng, nga, . ..,ngm we may form a (K,n2))
GDD of type g1, 92, - - .,gm by simply collapsing points in an arbitrary n to
1 fashion, so long as we collapse n old points from the same group into a
new point in the corresponding group.

However, if a (K, A\) GDD of type (ng)" is given by a difference family
over I, x Gy, where |Gy| =ng, and N 9 G,, with [N| =n, and we collapse
within the cosets of N, then we may form a (K,n)) GDD of type g*; here
the point set will be I, x G,/N.

Now, using the relationship given in Theorem 6.2, we could derive the
following result of Gibbons and Mathon [32, Theorem 2]. We have also
given their proof, as it is so brief.

Theorem 6.4 If there exists a (v,k,A\;G) GBRD and N <1 G. Then there
ezists a (v, k,A\;G/N) GBRD.

Proof: Use the homomorphism from G to G/N with kernal N to obtain the

new design from the hypothesized one. It is easily verified that the new
design is a GBRD. [ |
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In the literature, it seems that whenever points are collapsed over a
normal subgroup the information contained in that signing within the nor-
mal subgroup is discarded, presumably as no one noticed a use for it. Now
we indicate how that signing information can be retained in a GBRGDD
setting.

We have already seen, in Theorem 6.2, that replacing the signing group
element g in a GBRD by its corresponding permutation matrix P, gives
a GDD. If (zs,y;:) is the list of the signings for points {z} and {y} in
the t-th block where both points are present, the generalized Bhaskar Rao
property is that every element of the group has \/|G| representations in
the list z4 - yj_tl; the corresponding property for the permutation matrix
representation is that 3° Pr,, P! = A/|G|J where J is the all-ones matrix
of order |G|.

Let N 9 G. What we want now is a signed permutation matrix presen-
tation for the points, where the permutation matrix is for the development
of g over G/N, and the signings are from N. We already know, from The-
orem 6.4, that we have a representation such that 3 P, P2 = A|N|/|G|J
where J is the all-ones matrix of order |G|/|N|, and where F; here is the un-
signed matrix for the development of g over G/N. So now we want to sign
this matrix over N so that each A|N|/|G| entry in A|N|/|G|J is replaced
by a collection of A/|G| copies of each element of N.

Theorem 6.5 Let G be a finite Abelian group, with N x H, i.e., G is the
direct product of N and H = G/N. If there exists a (v, K,);G) GBRD,
then there exists a (K, \; N) GBRGDD of type |H|*.

Proof: Here the group operation is given by (a,b) - (z,y) = (az,by). If
g = (n,h) = (n,1) x (1, h) we take the permutation representation of h
over H, and sign every element with n. Clearly these signed permutation
matrices are an isomorphic form of the group. Their group operation is
matrix multiplication of the matrices, with the product of two non-zero
elements being combined by the original group operation in N. (Techni-
cally, matrix multiplication is defined over a field rather than a group, and
we only have multiplication, not addition, in a group; however, as we only
use permutation matrices, the question of addition doesn’t really arise, by
adopting the convention that the non-group elements (the nominal zeros)
in the permutation matrix have an empty group product with both group
and non-group elements).

Finally, in the signed incidence matrix of the GBRD, replacing (n, k)
by nPj produces the signed incidence matrix of the GBRGDD. L

Example 6.6 An example with Z2 <1 Z3 x Z3. The replacement matrices
are given below.
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0n (® o) o (P y) om (o ) = ()

Theorem 6.7 Let Z,,, be a finite Abelian group, with Z,, <\ Zmy, and take
Zn/Zn =2 Zy. If there ezists a (v, K, \; Zmn) GBRD, then there ezists a
(K, X; Z,) GBRGDD of type m®.

Proof: Let C be the circulant of order m whose only non-empty element
in the first row is in the last column, and let (the unsigned) M; = C* for
t1=0,1,....,m-—1.

Now sign these matrices with the group element 0 on or below the main
diagonal, and with 1 above the diagonal.

Compute Mgm+i for @ = 1,2,...,n — 1 by adding ¢ (mod n) to the
non-empty elements of M; for ¢ =0,1,...,m.

As in Theorem 6.5, these M’s form a group that is isomorphic to Zmyn
and, in the signed incidence matrix of the GBRD, replacing g by M, pro-
duces the signed incidence matrix of the GBRGDD. u

Example 6.8 An example with Z; <t Z;. The replacement matrices are
given below.

oo (o) (o) 2 (M) (1)

Example 6.9 An example with Z4 <t Zs. The replacement matrices are
given below.

oo (o) (o 1) (P 0) (0 7)
= (Pa) o= (5 %) 0= (Cs) (5 °)

Example 6.10 An example with Z3 <9 Zg. The replacement matrices are
given below.

() ) ()
() ) ()
() () ()
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Now we quote the Frobenius-Stickleberger theorem on the structure of
finite Abelian groups (see e.g., [49, Theorem 4.2.6)).

Theorem 6.11 An Abelian group is finite if and only if it is a direct prod-
uct of finitely many cyclic groups with prime power orders.

Using Theorem 6.11 with Theorems 6.5 and 6.7, and noting that the
Kronecker product of permutation matrices yields a permutation represen-
tation for the corresponding direct product group, we immediately obtain
a general result for the Abelian case.

Theorem 6.12 Let G be a finite Abelian group. If a (v, K, \; G) GBRD
ezists and N 1G, then there ezists a (K, A\; N) GBRGDD of type (|G|/|N|)®.

Example 6.13 A non-Abelian example with Z, <1 D,. where D,, is the
dihedral group (a,b : a® = b2 = (ab)? = 1). The replacement matrices are

given below.
i i
a"n—»(a a“) a‘bn—»(a_,- a )

We had intended to conjecture that Theorem 6.12 would hold for non-
Abelian groups also, so although any subgroup in an Abelian group is
obviously normal, we included normality in the hypotheses of the above
theorems as an indication of what we think the non-Abelian version ought
to be.

However, when we looked at the dihedral group we found we could give
a signed matrix representation when we chose to sign over one of the basic
normal subgroups ({a : a” = 1)) as shown in Example 6.13, but could not
over the other ({b : ¥> = 1)), nor over D,, < D;,,. We don’t intend to
prove this here, but the reader might infer the truth from consideration of
D3 =~ S3. There are only six permutation matrices of order 3, so we would
take an asymmetric one to represent a in the normal subgroup (a:a3=1),
and a? would be the other, and I the identity; now we’ld like to sign these
over (d : b = 1) to distinguish the elements of D3, but we must have
(a*b)? = 1, so a’b must be represented by a symmetric permutation matrix,
since P~! = PT for any permutation matrix P.

It is not clear to us what governs when we can sign over a normal
subgroup, and when we can’t.

One particularly useful application of Theorem 6.12 is to the difference
matrices of Theorem 4.3.

Theorem 6.14 Let 0 < n < N. If p is a prime power, and k < p", then
there exists a (k,pN~"; EA(pN~") GBRGDD of type (p")*.
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Example 6.15 A construction of a (8,4; EA(4)) GBRGDD of type 28 is
constructed from the multiplication table of GF(2%) generated by a root
of the primitive equation z° + z + 1 = 0. The original elements of the
form Cz? + Bz + A are replaced by elements of the form Cag where the
subscript represents the signing over FA(4); the 16 blocks of the design are
formed by developing C over Z; ~ GF(8)/GF(4). Each column generates
two blocks, and the group label of each point is implicitly given by the row
label.

0. 0 O O O O O O
0 O0a 0o 1o O 1p 1oy 1,
Oc Ob 1. Oab 1 lab 1c Oo
0. 1e O0ap 1p lap 1o 04 Ob
0 oab 1 lap 10 Oa Ob 1.
Oe 1 lap 1, Oa Ob le Oab
0O lav 1o Oa Ob 1le Oab 1,
Oe 1s Oa ob 13 Oab 1 Y

Another useful application of Theorem 6.12 is to Bose’s relative differ-
ence set for the punctured AG(2, g) [12]. We now state an instance of Bose’s
construction.

Theorem 6.16 If GF(q?) is the extension field of GF(q), with a typical
element of GF(q?) being az + b with a,b € GF(q), then the set of discrete
logarithms

D = {log(az +1) : a € GF(q)}

forms a relative difference set over Zga_, for a(g,1) GDD of type (g—1)9+1.
The groups are those points having the same residue modulo (g+1) in Zg2_;.
This design can be completed to AG(q) with the short block

{0,0,(g+1),2(g+1),...,(g — 2)(g + 1)}

Corollary 6.17 If q is a prime power, then a (g+1,q9,9—1;Z,_1) GBRD
exists.

Proof: If D is the set given by Theorem 6.16, and we represent a point z of
Zq2_, in the new point set Iy x Z4—1 by

z+— (z (mod (g+1)), [=/(g+1))).

Now consider the development of the relative difference set in Z,2_,.
This can be done by writing down the first (g + 1) translates, then succes-
sively adding (g + 1) to this set. Mapping this process into the new point
set, it is clear that the GDD can be represented by these (g+ 1) base blocks
in the new point set (developed over Z,_;) and the result now follows by
Theorem 6.1. u
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Corollary 6.18 If q is a prime power, and n is a factor of g — 1, then a
(g+1,n; Z,) GBRGDD of type ((g — 1)/n)9+? exists.

Proof: Apply Theorem 6.12 to Corollary 6.17. n

Example 6.19 Using tables (e.g., [5, 33]) we can apply Bose’s construction
of Theorem 6.16 to compute a relative difference set over Za4 for a (5,1)
GDD of type 4° as {0,17,21, 8,22}. We write down the first six translates
as columns, apply the mapping = +— (¢ (mod 6), |z/6]), and so form the
(essentially unique [32]) (6,5, 4; Z5) GBRD given by the following incidence
matrix.

0 18 0 0 12 - 0 3 00 2 -
- 1 19 1 1 13 - 0 3 0 0 2
8 — 2 20 2 2 .\ 1 =03 00
21 9 - 3 21 3 3 1 - 0 3 0
22 22 10 - 4 22 3 31 - 0 3
17 23 23 11 - 5 2 3 31 -0

We can now use the replacement scheme illustrated in Example 6.8 to
get a (5,2; Z;) GBRGDD of type 26.

Example 6.20 A similar example, but where the resulting GBRGDD is
not signed over an elementary Abelian group is given by the punctured
AG(9). Using tables (e.g., [33]) we find f(z) = 22 + y"z + 37 is a primitive
polynomial in GF'(81) as an extension of GF(9); y is a constant in GF(81)
and y is aroot of y? = y+1 in GF(9). Applying Boses’s construction of The-
orem 6.16, we get a (9, 1) GDD of type 80 as {0, 32, 39, 57, 63, 66, 65, 28, 44}
and, as in Example 6.19, form a (10,9, 8; Zg) GBRD given by the following
incidence matrix.

WU W' O
NI DWW OB
NOORDW ! Oh W
CORDW OB WD
DR OOW I OB WD~
ROW! OB WO~y =T
DWW OD WD~ W

T OB WO~ Bt~
P OB WO NG
O R WM =I~T T3 !

oW

We can now use the replacement scheme illustrated in Example 6.9 to
get a (9,4; Z,) GBRGDD of type 21°,

We could also generate a (9, 2; Z;) GBRGDD of type 410 as in the proof
of Theorem 6.7.
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The GBRGDDs produced by Theorem 6.14 and Corollary 6.18 prove to
be very useful. The application of Theorem 6.12 to the difference matrices
of Table 2 also give helpful GBRGDDs. The two remaining constructions
in this section were constructed directly.

There are two interesting signings over Zs of symmetric BIBDs. The
first is Baker’s (15,7, 3; Z3) GBRD [6]. Only one of the (15,7,3) BIBDs is
signable, and this signing is unique (up to isomorphism).

Example 6.21 We construct a (15,7, 3; Z3) GBRD on the point set (I x
Z7) U {oo}.

(°°0r (Oa 0)01 (01 4)2: (0; 6)1) (1’ O)Oa (11 4)1: (11 6)2)
((O$ 0)0: (Oa 4)11 (0: 6)2) (la 1)0’ (1) 2)2: (13 3)2: (11 5)2)
((01 0)01 (09 1)0’ (01 2)01 (Os 3)01 (Oa 4)0) (01 5)0’ (0) 6)0)

Only the first two blocks are developed over Z-.
The second interesting signing is Mathon’s (45, 12, 3; Z3) GBRD [43].

Example 6.22 Here we give the incidence matrix of the (45,12, 3) BIBD
that Mathon was able to sign. We build this matrix by stages. Let

010 0 01 1 00
a=1]0 0 1 b= 1 0 0 c=102011].
100 010 010

Now let U be given by the Kronecker product U = I ® J, where I and J
have their usual meanings as 3 by 3 matrices. Let

c ¢ ¢ I a b b a I
V=] ¢ ¢ ¢ W=}|a b I X=|la I b ].
ccc b I a I b a

We can now give the incidence matrix of a signable (45,12,3) BIBD.

o<EXT
<E¥XQe
TxQox
MQo TS
oI X

Lemma 6.23 The following GBRDs ezist:
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a. a(v,{9,10},3;Z3) GBRD for 33 < v < 34.

b. a (v,{6,7,9%},3; Zs) GBRD for v = 24.

c. a(v,{9,10,11,12}, 3; Z3s) GBRD for 36 < v < 45;

d. a(v,{6,7,9,10,11,12}, 3; Z3) GBRD for 27 < v < 30;
e. a(v,{5,6,7,8,9},3; Z3) GBRD for 24 <v < 26;

f. a(v,{4,5,6,7,8,9},3; Zs) GBRD for 21 < v < 23;

Proof: For part (a), note that deleting all (or all but one) of the points of
any block of the BIBD (i.e., residualization) still gives us a signed matrix.
For part (b), we may delete all of the points in the first two blocks in
Example 6.22.

For the remaining GBRDs, delete rows of the signed incidence matrix,
starting from the top. u

7 Powers of 2

In this section we will only consider signings over EA(2"). Since A will be
even for all GBRDs, the admissible v are v = 1 (mod 3) if 3 /), and any
v > 4 if 3| A subject to the restrictions of Theorem 4.6 when v = 4.

7.1 The Group of Order 2

The case where we sign over Z; (or equivalently, the multiplicative group
{+1, —1}) is the classical case studied by Bhaskar Rao, and the existence of
(v,4,\; Z2) GBRD has previously been fairly well studied. de Launey and
Seberry solved the existence problem for A > 2 with just 7 exceptions on
the values v € {28, 34, 39}. Deleting three non-concurrent lines of PG(2,7)
gives a (36, {5,6},1) PBD, then restoring 3 deleted non-collinear points,
one from each of the three deleted lines, yields a (39, {5, 6,7},1) PBD. We
can break the blocks of this PBD to get a (39,4, 6; Z;) GBRD, as noted
in [34]. A direct construction of a (v,4,6; Z3) GBRD for v = 28 and 34
is known [34] and by juxtaposing with one or two copies of a (v,4,4; Z2)
GBRD, we can also deal with A = 10 and 14. Existence for (v,4,2;Z5)
GBRDs with v = 1 (mod 6) was also shown in [34], and for (v,4,2; Z;)
GBRDs with v =4 (mod 6) was studied in [24], where existence was shown
with at most 28 possible exceptions, plus two definite exceptions. These
possible exceptions were all constructed by Ge and Lam [30]. For v = 4,
it follows from Theorem 4.6 that no design exists unless A = 0 (mod 4).
Also, no (10,4, 2; Z;) GBRD exists [21]. We may summarize these results.
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Theorem 7.1 A (4,4,);Z2) GBRD ezists iff A = 0 (mod 4). For v >
4, the necessary conditions for a (v,4,); Z3) GBRD, namely that A = 0
(mod 2) and AM(v—1) =0 (mod 3), are sufficient with the definite exception
of a (10,4, 2; Z;) GBRD.

7.2 The Group of Order 4

For EA(4), de Launey and Seberry had shown the necessary conditions
were sufficient for a (v,4,\; EA(4)) GBRD when A > 4 with the possible
exception of a (v,4,12; EA(4)) GBRD for v € {15,23}. For (v,4,4; EA(4))
GBRDs, de Launey and Seberry were able to break the blocks of a (v,4,1)
BIBD with a (4,4,4; EA(4)) GBRD to deal with v = 1,4 (mod 12), but
found no way to generally exploit their example of a (19,4, 4; EA(4)) GBRD
to deal with the other cases where v = 1 (mod 3). It is known that no
(7,4,4; EA(4)) GBRD exists [21].

We now deal with some of these missing cases by direct construction or
by using a known PBD result.

Example 7.2 We construct a (31, 4,4; EA(4)) GBRD on point set Za;.

(000, 700, 1411,2200)  (0co, 300, 610, 1001) (000, 101, 301,511)

(00, 111,201, 1000) (000, 211, 1601,1910) (000, 1160, 2010, 3000)

(Ooo, 710, 1310,1901)  (0co, 500, 1101,1611)  (Ooo, 400, 1301, 1700)
(000, 501, 1311,2111)

We construct a (43,4,4; EA(4)) GBRD on point set Z43.

(Ooo, 500, 2200, 3300) (000, 300, 611, 1010) (000, 400, 810, 1901)
(00, 1210, 2501, 3400)  (0co, 1110, 1600, 3411)  (Ooo, 1400, 2601, 4110)
(Ogo, 100, 2410,2711)  (Ogo, 101, 3000, 3201) (0o, 110, 310, 501)
(000,1411,190,3700)  (0c0, 601,1211,1911) (0o, 711, 1410, 2201)
(000, 800, 1601, 2610)  (0co, 111, 1001, 2300)

We construct a (55, 4,4; EA(4)) GBRD on point set Zss.

(Og0, 2500, 3200, 4400)  (0oo, 1111, 2400, 3800) (000, 1711, 2000, 5210)
(00,711, 1410,2201)  (Oco, 800, 1610,4201) (000, 1211, 1860, 4500)
(000, 200, 1110,2030) (0o, 1710, 3601, 5110)  (Ooo, 1401, 2600, 4200)
(Ogo, 510, 1010, 1611)  (0go0, 2401, 3111,3711) (000, 501, 3010, 51c0)

(000, 110, 300, 511) (0c0, 100, 201,1701) (0o, 111, 2311, 2610)
(000,2301,2710,4511)  (Oco, 610,1411,2601)  (Oco, 911, 1910, 4001)

Example 7.3 We construct a (15,4, 12; FA(4)) GBRD on the point set
le.
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By = (Oea 14, e, ]-Oe) B, = (oe, 5, 7p, loab);
B; = (081 1q, 50) 106) B3 = (Oev 506) 1061 13017):
CO = (lwa 21:)41” 82)'

Now in Cp we replace (w, z,y, z) by:

(e;e.e,€)  (e,a,b,ab) (e,b,ab,a) (e,ab,a,b) (e,e,ab,ab)
(e,ab,b,a) (e,b,e,d) (e,e,e,a) (e ab,a, ab) (e, b,ab,e).

These 10 base blocks together with By, ..., B; generate our design.

Remark 7.4 Abel and Ling [4, Lemma 2.2.1] give some direct construc-
tions that can be interpreted, via Theorem 6.2, as (v,{4,5},4; FA(4))
GBRDs having u signed parallel classes on the blocks of size 4; for v = 23
and 27, we have v = 4, and for v = 63 and 97, we have u = 7.

From an Abel and Ling design we get a (23, {4, 5}, 4; EA(4)) GBRD; now
break the blocks with (k, 4,3) BIBDs for k = 4 and 5 for a (23, 4, 12; FEA(4))
GBRD.

We now state a result of Rees and Stinson [48, Theorem 8.28], incor-
porating Drake and Larson’s [26] bound for the “only if” part. Using this
result with ¢ = 19, and breaking the blocks of the PBD will later help
establish Theorem 7.6.

Theorem 7.5 Let v=7,10 (mod 12) end let t = 7,10 (mod 12); then a
(v,{4,t*},1) PBD exzists if and only if v > 3t + 1.

We summarize our EA(4) results.

Theorem 7.6 The necessary conditions for a (v,4, ; EA(4)) GBRD, i.e.,
that A = 0 (mod 4) and A(v — 1) = 0 (mod 3), are sufficient with the
definite exception of the non-ezisting (7,4,4; EA(4)) GBRD and the possible
ezception of (v,4,4; EA(4)) GBRDs for v € {10,22, 34, 46}.

Proof: We can break the blocks of a (v,4,1) BIBD to deal with the 1,4
(mod 12) cases, and get the 7,10 (mod 12) cases from the (19,4,4; EA(4))
GBRD and Theorem 7.5 if v > 58. The designs for v = 31 and 43 are given
in Example 7.2. ]
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7.3 The Groups of Order 8 or More

We now look at EA(n) where n = 2" > 8. Here de Launey and Se-
berry found the necessary conditions were sufficient for A > n; this fol-
lows essentially from the (v,4,\; Z2) GBRD result, since we can use a
(4,4,n/2; EA(n/2) GBRD to break the blocks of the (v,4, A\; Z2) GBRD.
However, now we have a stronger result for EA(2), we can also apply this
construction for A = n and state a stronger result.

Theorem 7.7 Let n > 8 be a power of 2. Then the necessary conditions
for a (v,4, \; EA(n)) GBRD, namely that A\ =0 (mod n) and A(v—1) =0
(mod 3), are sufficient with the possible exception of a (10,4,n; EA(n))
GBRD.

8 Powers of 3

In this section we will only consider signings over EA(3"). Since A will be
a multiple of three for all GBRDs, the admissible v are v =0,1 (mod 4) if
A is odd and any v > 4 if ) is even.

8.1 The Group of Order 3

For A > 3, de Launey and Seberry solved the existence problem for signings
over Z3. For A = 3, no (4,4, 3; Z3) GBRD exists, but de Launey and Seberry
showed v = 1 (mod 4) was sufficient, and gave examples of (v,4,3;Z3)
GBRD:s for v =0 (mod 4) with 4 < v < 28. We will use these to deal with
the A = 3 case more generally.

We first state a result of Abel et al. [1, Theorem 4.5].

Theorem 8.1 Let Ho 4y = {n:n=0,1 (mod 4)}N {n:n > 8}, and let
Hyg8)={n:n=4,5 (mod 8)}N{n:n>8}. Alsolet A= HgiqN{n:
n <56}, B = HygsN{n:60<n<93} and K =AUBU {88,101}.
Then K is a PBD basis for Hy(q) i.e., a (v,K,1) PBD exists for every
v € Hg 1(q). All the elements of K are essential with the possible exception
of 101.

Bennett et al. [7] examined the PBD closure of {5, 8,9}, and determined
that 12, 13, 16, 17, 20, 24, 28, 29, 32, 33, and 44 were definite exceptions,
and the possible exceptions were 52, 60, 68, 84, 92, 96, 100, 104,...,308,
312. For our purposes, it would suffice to exhibit a (v,4, 3; Z3) GBRD for
the values v = 5, 8 and 9, and all values in the intersection of Abel et al.’s
basis set and Bennett et al.’s exception set.

24



Theorem 8.2 The necessary conditions for a (v,4,; Zs) GBRD, namely
that A = 0 (mod 3) and Mv(v — 1) = 0 (mod 4) are sufficient with the
definite exception of a (4,4, 3;Z3) GBRD.

Proof: We need to establish a (v,4,3; Z3) GBRD exists for v € {32, 44,
52, 60, 68, 84, 92, 96}. For v = 32, 52 or 68: there are 4 by g difference
matrices known over EA(g) for g = 24, 39 or 51. Applying Theorem 6.12,
we get (4, 3; Z3) GBRGDDs of types 8%, 13* or 174, which we may then
fill by Theorem 5.4. For v = 44, a solution (as a (4,1) GDD of type 3%4)
is given in [28, Lemma 2.1]. For v = 60 or 96: we may truncate a TD of
order 12 or 11 to get a GDD of type 125 or 1187* and then £l the groups,
possibly using an extra point, to get a (v, {5,8, 9, 12}, 1) PBD; we can break
the blocks of these PBDs with (k, 4,3; Z3) GBRDs. For v = 84: take a 4-
GDD of type 47 (i.e., a (28,4,1) RBIBD missing a parallel class) and give
points a weight of 3 using a (4, 3; Zs) GBRGDD of type 3* as ingredient in
Theorem 5.2 to get a (4,3; Z3) GBRGDD of type 127 which we may then
fill by Theorem 5.4. For v = 92 = 13(8 — 1) + 1: apply Theorem 5.6.

The existence for A > 3 was shown in [23). [ |

8.2 The Group of Order 9

For EA(9), de Launey and Seberry had shown the necessary conditions were
sufficient for a (v,4, A\; EA(9)) GBRD when A > 9 with the possible excep-
tion of a (v,4, 18; EA(9)) GBRD for v € {6, 14, 15, 18,23, 26, 27, 38,42,47};
note we included v = 14 and 15. For (v,4,9; EA(9)) GBRDs, de Launey
and Seberry were able construct v € {4, 5,9}.

Example 8.3 We construct an (8,4,9; EA(9)) GBRD on point set Z; U
{00}

(Ooo, 100,201,412) (0o, 112,202,402)  (Ooo, 111, 400, 620)
(000,010, 101,320) (0000, 000, 212, 311) (0000, 022, 202, 321)

We construct a (12, 4,9; EA(9)) GBRD on point set Z;; U {o0}.

(0co, 300,500, 701) (00, 212,301,400) (000, 121, 510, 801)
(Ooo, 222,421,511)  (Ooo, 211, 720,820)  (Oco, 411, 520, 601)
(0000, 010, 322,820) (0000, 000, 101,311) (0000, 021, 602, 712)

After a preliminary lemma, we will deal with some of these missing cases.
Lemma 8.4.a is claimed in (8, Table II.3.17), citing [9], and is claimed in [46,
Result 3.2], where the result seems to be attributed to Wilson, although
the citation is [9]. Lemma 8.4.cis due to Hanani [36] and is cited by Wilson
in [56]. Beth et al. give a proof of Lemma 8.4.c (only) in [9, Proposition
IX.4.6).
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Lemma 8.4 Letv=0,1 (mod 4).
a. Ifv & {8,9,12}, then a (v, {4,5},1) PBD exists.
b. Ifv & {5,8,9,12}, then a (v, {4,5,4*},1) PBD exists.
c. A (v,{4,5,8,9,12},1) PBD egists.

Proof: For part (a), we can use a (v,4,1) BIBD to deal with v = 1,4
(mod 12), and adding 1, 4, 5 or 20 points to a (v, 4, 1) RBIBD deals with the
other residue classes modulo 12, but that only deals with v =0 (mod 12)
for v > 84. For v = 24, 36 or 60, we can delete d = 1, 5 or 1 collinear points
from a (v + d,5,1) BIBD. Lamken et al. construct directly a (48, {4,5},1)
with the property that its 4-blocks form nine parallel classes [40]. For
v = 72, we fill in the groups of a TD(4,17) using 4 extra points; the filling
(21, {4,5,4*},1) PBD can be constructed by deleting 4 collinear points from
AG(2,5).

For v = 21, our original construction amounts to completing AG(2, 4)
to PG(2,4), but we have given an alternative construction which exhibits
a block of size 4. Apart from v = 21, adding points to the RBIBD always
leaves some blocks of size four, so we have already proved part (b).

Part (c) follows immediately from part (a). =

Theorem 8.5 The necessary conditions for a (v,9,\; EA(9)) GBRD, i.e.,
that A = 0 (mod 9) and \v(v — 1) = 0 (mod 4), are sufficient with the
possible exception of a (18,4,18; EA(9)) GBRD.

Proof: The result for A = 9 follows from Lemma 8.4.a and Example 8.3 and
breaking the blocks of the PBD.

For A > 9, we only have to deal with de Launey and Seberry’s possible
exceptions for A = 18 noted above.

For all but v = 23 (and v = 18), we have a (v,4, 18; EA(18)) GBRD
(given below in Theorem 9.10); collapse points over the normal subgroup
of order 2, using Theorem 6.4. For v = 23, a (v, K, 3; Z3) GBRD (with
K cC {4,5,6,7,8,9,10,11,12}) is given by deleting points from Mathon’s
design; we may break their blocks using (k, 4,6; Z3) GBRDs. u

8.3 The Groups of Order 27 or More

We now look at EA(n) where 27 < n = 3". Here de Launey and Se-
berry found the necessary conditions were sufficient for A > n; this fol-
lows essentially from the (v,4, A; Z3) GBRD result, since we can break the
blocks of the (v,4, ); Z3) GBRD with a (4,4,n/3; EA(n/3)) GBRD. How-
ever, de Launey and Seberry did not discuss the case A = n.
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Theorem 8.6 Let n > 27 be a power of 3. Then the necessary conditions
for a (v,4,); EA(n)) GBRD, namely that A =0 (mod n) and dw(v—1) =0
(mod 4), are sufficient.

Proof: It only remains to deal with A = n. We have a (4,4,n; EA(n))
GBRD and a (4,4,n/3; EA(n/3)) GBRD. We may use the latter design to
break the blocks of a (v,4, 3; Z3) GBRD for v = 5, 8, 9 or 12, and so have
the necessary ingredients to break a (v, {4,5, 8,9, 12},1) PBD, thence the
result follows by Lemma 8.4. u

9 Some 2 mod 4 cases

Here we consider EA(n) groups of order n = 2-3% > 6. The only general
restriction on v is given by Theorem 4.6 when v = 4.

9.1 The Group of Order 6

For the group EA(6) (or equivalently, Zg), de Launey and Seberry solved
the existence problem for A > 6 with 21 exceptions in the range 8 < v < 34.
de Launey and Seberry constructed a number of small designs with A = 6,
in fact, all values of v < 20, except 4, 5, 6, 8, 17 and 19. For v = 4, it is
known that no design exists unless A = 0 (mod 4). Also, no (5,4, 6; Zs)
GBRD exists [21]. .

Our first step is to augment de Launey and Seberry’s direct construc-
tions of (v,4,6; Zg) GBRDs. By exploiting Theorem 6.2, we obtained Ex-
amples 9.1 and 9.4 from (13, Lemmas 6.14-15].

Example 9.1 We construct a (6,4, 6; Zg) GBRD on the point set I3 x Z3.

(000, 013,106, 11;) (00, 015,110,125) (000, 015, 105, 124)
(000,012,020, 103) (00g, 103,115, 124)

Example 9.2 We construct a (17,4, 6; Zg) GBRD on the point set Z;7.
This example was adapted from [18, Lemma 2.4].

(707 1001 111: 64) (90: 801 21: 154) (130, 40) 311 144) (1201 501 11 ] 164)
(140) 30) 51) 124) (160: 10) 131, 44) (601 110: 91: 84) (20) 150y 711 104)

Example 9.3 We construct a (29, 4,6; Zg) GBRD on the point set Zog.
Bo = (10,20,31,54) Co = (1o,30,04,28,)

Multiply By and Cp by 1, 16, 24, 7, 25, 23 and 20>to generate 14 base
blocks.
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Example 9.4 Let v = 3 mod 4 be a prime power. A (v,4,6;Zs) GBRD
may be constructed on the point set GF(v). Let = be a primitive generator,
and let & be chosen so that z2* — 1 is not a square; (exactly one of a = 1
or a = g — 2 will work since z2 — 1 = —z?(z~2 — 1).) Our base blocks are:

(00, xgﬁ'zis mgiv _zgi) for i =0,1,..., (q - 3)/2
Example 9.5 We construct a (21, 4, 6; Zg) GBRD on point set Z3;.

(00,10,21,70)  (00,30,91,144) (0o,13,85,10,) (0o, 8o, 111,143)
(00) 45a 831 151) (001 40) 81) 124) (00) 121 20) 35) (00) 241 51) 103)
(00: 22) 50; 145) (001 42: 901 152)

We construct a (22, 4, 6; Zs) GBRD on point set Z2; U {c0}.

(0o, 30, 61, %) (0o, 40, 82, 132) (0o, 45, 83, 15;) (0o, 62,125, 173)
(0o,64,110,165) (0o, 22, 41, 75) (00,11,29,32) (0o, 13, 23, 93)
(00,14,95,122) (000, 00, 24,103) (009,01, 72, 145)

We construct a (26,4, 6; Zs) GBRD on point set Z35 U {oo}.

(0o, 50,101,170)  (0o0,70,122,193) (0o, 72,12,,18;) (0o, 20, 43, 73)

(00,12,25,34)  (00,10,24,103)  (0o,91,102,19;) (0o, 83,104, 190)
(00,44,84,132)  (00,41,105,13;)  (0o,3s,62,144)  (c00, Op, 31, 142)
(0001 03s 45) 84)

We construct a (28,4,6; Zg) GBRD on point set Z27 U {c0}.

(00, 20, 100, 169)  (0o,40,161,202) (0o, 30,152,203) (0o, 52, 131, 263)

(00,22,33,83)  (0o,42,203,213) (0o, 4s,143,192) (0o, 81,102, 113)
(00, 641 72: 252) (001 35; 541 91) (001 15: 1501 184) (001 44: 70| 163)
(0003 00: 23: 94) (°°0a 05’ 52, 141)

We construct a (32, 4, 6; Zg) GBRD on point set Z3; U {c0}.

(00,100,110,12;)  (0o,80,130,221) (0o, 81,111,29)

(00) 1811 250) 264) (001 45) 172) 231) (00$ 74) 93! 105)

(001 621 1541 182) (001 155a 1841 193) (00’ 23: 194) 220)

(00,102,150,275)  (0o,24,64,71) (0o, 51,114,163)

(00,42,212,255)  (0o,72,94,240) (000,00, 33,115)
(°°0y 02) 1611 234)

We construct a (34, 4, 6; Zg) GBRD on point set Z33 U {c0}.

(00, 10,160,19:)  (00,100,120,22;) (0o, 11,23, 122)

(00,14,21,30) (00, 24,43, 70) (00, 32, 61, 203)
(00,34,140,232)  (00,41,81,123) (0o, 4s, 83, 130)
(0o, 62,125,263)  (Op, 72,152,265) (0o, 90, 164,25;)
(c00,00,14,,273)  (o0g, 05, 54,113)
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We construct a (35, 4, 6; Zg) GBRD on point set Zas.

(001 301 160) 221) (00) 701 901 141) (001 101 271) 343)
(00$ 40) 210’ 321) (00’ 1001 1321 144) (OOa 801 123) 334)
(00, 73,242,345) (0o, 52,94,133) (0o, 93,185, 323)
(00,24,200,325) (0o,134,232,29) (0o, 63,214,24,)
(00,21,83,240) (00,154, 201,300) (0Op,91,255,274)
(00, 15,74,122) (0o, 14,120, 161)

We construct a (38, 4,6; Zg) GBRD on point set Z37 U {c0}.

(00,60,130,301) (0o, 10,71,133) (0o, 9,170, 25;)
(00, 100,173,28;)  (0o,210,252,292) (0o, 94,19, 332)
(0o, 12,224, 355) (0o, 13, 24,125) (0o, 25,193,223)
(00,32,41,191)  (00,113,145,233) (0o, 35, 92,293)
(00,52,110,230)  (00,50,103,15;) (0o, 143,242,29,)
(00, 302,325,333) (0o, 20, 65,214) (000, 0, 14;,213)
(000,02,24, 115)

([29]): We construct a (44, 4,6; Zg) GBRD on point set Z;3 U {c0}.

(131,204,29,,35,) (61,164,210,362) (15,,223,25;,33;)
(134,243,284, 300) (64, 81,91,27,) (104,199, 355, 404)
(101,14,,232,393) (41,204, 23,,372) (31,382,415, 13)
(31) 141) 154, 252) (71a 124) 192) 324) (21)415) 432: 10)
(21 ) 1151 163’ 314) (71) 122: 1801 334) (1811 305: 343: 425)
(51,113,342,385)  (24:,262,375,434) (91,175, 264,270)
(51 ) 170) 365) 404) (81 ’ 221) 2941 424) (mli 41a 2121 283)
(001, 314, 320, 395)

We construct a (45, 4,6; Zg) GBRD on point set Z;s.

(0o, 1o, 21, 30) (0o, 50, 72, 24¢) (0o, 11¢, 133, 23p)
(00,151,175,42;)  (0o0,14,280,422) (0o, 113,123,13p)
(0o, 31,90, 32) (00,40,95,172) (0o, 44,122,415)
(00,52,114,171)  (0o,60,343,382) (0o, 32,295, 33,)
(00,105,253,30;)  (00,61,214,312)  (0Op, 164, 19;,392)
(00, 75,140,221)  (0o,200,273,365) (0o, 70,262, 315)
(00,94,215,311)  (00,181,274,405)  (Oo, 82, 162,27,)
(00,109, 212, 313)

Lemma 9.6 A (4,6;Zs) GBRGDD of type 2" exists for n € {4,5,6}.

Proof: For n = 4, apply Theorem 6.12 to the (12,4,1) difference matrix
of Table 2. For n = 5, break the blocks of a (5,4, 3;Z3) GBRD with a
(4,2; Z;) GBRGDD of type 2¢ constructed in Theorem 6.14. For n = 6,
use a (5,4,3; Z3) GBRD to break the blocks of a (5,2; Z;) GBRGDD of
type 28 constructed in Example 6.19. u
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Corollary 9.7 A (37,4,6; Zg) GBRD exists.

Proof: Take the (4, 6; Zg) GBRGDD of type 2° constructed in Lemma 9.6,
and give all points a weight of 3, and using a TD(4, 3) as the ingredient
design to get a (4, 6; Zg) GBRGDD of type 6°; fill the groups of this design
using an extra point in Theorem 5.4, to get a (37,4, 6; Zg) GBRD. u

Theorem 9.8 A (4,4,); Zg) GBRD exists iff A\ =0 (mod 12). Forv > 4,
the necessary condition for a (v,4,); Zg) GBRD is that A =0 (mod 6).

a. This condition is sufficient when A = 6 with the definite ezception
of a (5,4,6; Zg) GBRD and the possible exception of an (8,4, 6; Zg)
GBRD:s.

b. This condition is sufficient when A > 6.

Proof: We look first at A = 6. The non-existence for v = 4 is from Theo-
rem 4.6, and was shown for v = 5 in [21].

Applying Theorem 6.12 to the (n, 4, 1) difference matrices given in The-
orem 4.3 for n = 9 and given in Table 2 for n = 12 or 15 gives (4, 3; Z3)
GBRGDDs of types 34, 4* or 5%; use these as the master design in Theo-
rem 5.2 giving all points a weight of 2, and using a (4,2; Z;) GBRGDD of
type 2% as the ingredient design to get (4, 6; Zs) GBRGDDs of type 64, 8¢
or 10%; fill these designs, possibly using an extra point in Theorem 5.4, to
get a (v,4,6; Zg) GBRD for v € {24, 25,33, 40,41}.

Similarly, starting with (n, 5,1) difference matrices for n € {12, 20, 32}
noted in Table 2, we get (5,2; Z,) GBRGDDs of type 6%, 105 or 165; now
break these designs with a (5, 4, 3; Z3s) GBRD to get (4, 6; Zg) GBRGDDs
of type 6%, 10° or 16°; fill these designs by Theorem 5.4 to get a (v, 4, 6; Z)
GBRD for v € {30, 50, 80}. _

Combining these with the direct constructions of de Launey and Seberry
for v = 7, 9-16, 18 and 20 and with our v = 6, 17, 21, 22, 26, 28, 29, 32,
34, 35, 38, 44, 45 and prime power ¢ =3 (mod 4) from Examples 9.1, 9.2,
9.5 9.3 and 9.4 covers v < 35 plus 38, 44, 45, 47, 50, 59 and 80.

We next turn to PBDs with nice block sizes which we may break with
(k,4,6;Zg) GBRDs. We may truncate one group of a TD(7,g), then fill
the groups using w extra points.

g w v q w v

7 0 42,43,48,49 8 1 57

9 0,1 54,55,60,6l1, 63,64 11 0,1 66,67, 73, 75-78
13 0,1 79, 87-92 16 0 96,97

We may spike one block of a TD(6, g) to size 9 through ¢ + 1, then fill
the groups.
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g9 v g v qg v
11 69-72 13 81-86 16 99-106
We next aim to truncate one group of a TD(5,n) or two groups of a

TD(6, n) to produce a ({4,5,6},1) GDD with a nice group type on a total
of (v — w)/2 points, use this GDD as the master design in Theorem 5.2
giving all points a weight of 2, and use the GBRGDDs from Lemma 9.6
as the ingredient designs to get (4,6; Zg) GBRGDD; we fill these designs,
using w extra points in Theorem 5.4, to get a (v, 4, 6; Zg) GBRD.

v w GDD group type v w  GDD group type
39 1 4331 52/563 0/1 5%32

62 0 7431 65 1 744

68 0 746! 74 0 845!

93 1 9%4! 94/95 0/1 9%6'5!

An application of Theorem 5.6 gives v € {36,46,51,56}, since v =
n(6—1)+1, and v = 98 = 14 . 7, and we note that v = 37 is given in
Corollary 9.7.

Applying Theorem 6.12 to the (24,5,1) difference matrix given in Ta-
ble 2 gives a (5,6; Zs) GBRGDD of type 45, and thence a ({4, 5}, 6; Zs)
GBRGDD of type 4*3?; use this as the master design in Theorem 5.2 giving
all points a weight of 3, and using (4, 1) GDDs of type 3% and 3° (obtained
from a TD(4, 3) or punctured AG(2,4)) as the ingredient designs to get a
(4,6; Zs) GBRGDD of type 1249%; £l this design using an extra point in
Theorem 5.4, to get a (58, 4, 6; Zg) GBRD.

To deal with v > 105, we may truncate k—9 groups of a TD(k, g), where
k = min(16, g + 1), then fill the groups; the truncated group sizes used are
0, 1,6, 7, 9-16, 18-20, 23-25, remembering a truncated group size cannot
exceed g. This construction covers the ranges given below.

q v q. v
11 [105-132] 13 [123-182)
16 [150-256] 25 [231-400]

Finally, for v > 387, we may truncate one group of a TD(7, ) to a size
in the range 9-14, then fill the groups. Here the condition n > 63 ensures
that the TD exists.

We look now at A > 6. de Launey and Seberry showed that designs
exist for all v when A = 12; when A > 6 de Launey and Seberry’s problem
was with nine particular (v,4, 18; Zg) GBRDs (for v = 8 and eight larger
v’s). We only need concern ourselves with v = 8 since we have just shown
that a (v,4,6; Zs) GBRD exists for those other eight problematical v’s.
Now we have an (8,4, 18; EA(18)) GBRD (given below in Theorem 9.10);
collapse points over a normal subgroup of order 3, using Theorem 6.4, for
an (8, 4,18; Zg) GBRD. |
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9.2 The Group of Order 18
Example 9.9 We construct a (5,4, 18; Z3 X Zg) GBRD on point set Zs.

(00, 100,201, 304)  (0co, 102,210,314)  (0c0, 115, 205, 323)
(000, 110,203,325)  (0Ogo, 111,223,300)  (0Ooo, 125, 224, 315)

We construct a (6,4, 18; Z3 x Zg) GBRD on point set Zg U {o0}.

(00, 100, 201,304) (000, 102,200,315)  (Ooo, 110, 203, 325)
(c000,000, 111,223) (000,001, 121,218) (0000, 012, 103, 202)
(0000, 010, 105, 324)  (0000,013, 120,325) (0000, 014, 122, 304)

We construct an (8,4, 18; Z3 X Zg) GBRD on point set Z7 U {o0}.

(000, 160,201,300)  (Oco, 102,215,301)  (Ooo, 115, 203, 323)
(0o, 103,211,401)  (Oco, 111,204,420) (0o, 125, 223, 411)
(0000,014, 124,412) (0000, 00s, 120,423) (0000, 0o, 202, 415)
(0000,001,211,525)  (c000,003,222,413) (0000, 010, 321, 604)

We construct a (9, 4, 18; Z3 x Zg) GBRD on point set Zg.

(000, 200, 401,600)  (Oco, 100, 402,615)  (Ogo, 202, 410, 601)
(Oc0, 101,203,310) (Oco, 103,211,423)  (Ogo, 111,404, 622)
(0go, 303, 525,612)  (0co, 422, 512,801) (0o, 110, 225, 602)
(Oco, 112, 204,322)  (Oco, loa, 223,524)  (Oco, 121,311, 624)

Theorem 9.10 A (4,4, \; EA(18)) GBRD exists iff A\ =0 (mod 36). For
v > 4, the necessary condition for a (v,4,); EA(18)) GBRD is that A= 0
(mod 18).

a. This condition is sufficient when A = 18 with the possible exception
of v=10, 11, 12, 18, 20 and 23.

b. This condition is sufficient when A > 18.

Proof: We look first at A = 18. The non-existence for v = 4 is from
Theorem 4.6.

We note that a (k,4,9; EA(9)) GBRD exists for k = 4. We may use
this GBRD as the ingredient to break the blocks of any (v,4, 2; Z3) GBRD,
in particular, for v = 7, 13, 16, 19 and 22, where the design is given by
Theorem 7.1. We may also use this GBRD as the ingredient to break the
blocks of any (4, 2; Z) GBRGDD, in particular, for GBRGDD:s of types 4*
and 8%, where the design is given by Theorem 6.14.

Bennett et al. [7] determined the PBD closure of K = {5, 6, 7,8, 9}, and
determined that 10-20, 22-24, 27-29, 32-34 were the definite exceptions.
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Since we constructed v = 7 above, and gave v = 5, 6, 8 and 9 in Exam-
ple 9.9, we may break the blocks of the (v, K,1) PBD to get the GBRD, so
we only have to deal with this PBD exception set.

Start with Baker’s (15,7, 3; Z3) GBRD or from Mathon’s (45, 12, 3; Z3)
GBRD and remove some points. If we avoid getting blocks of size 4, 5
or 8, we may then break the resulting design using (k, 4, 6; Zg) GBRDs;
in particular, we obtain (v,4,18; EA(18)) GBRDs for v = 14 or 15, and
v = 24, 27-29, 33, 34.

For v = 17 and 32, we may take the (4, 18; EA(18)) GBRGDDs of types
4* and 48 constructed above, and fill the groups, possibly using an extra
point in Theorem 5.4.

This establishes the A = 18 case.

We now look at A > 18. Here de Launey and Seberry had 25 open
parameter sets, but we will establish our result for A > 18 directly.

For A = 36, if a (v,4,6;Zs) GBRD exists, we may break the blocks
with a (4,4, 6; Z3) GBRD for a (v, 4,36; EA(18)) GBRD, so we only need
consider the exceptions in Theorem 9.8, i.e., just v = 4, since we have
a (v,4,18, FA(18)) GBRD for v = 5 and 8. For v = 4, we have a
(4,4,9; EA(9)) GBRD; we may break the blocks with a (4, 4, 4; Z;) GBRD
for a (4,4,36; EA(18)) GBRD.

For A = 54, we note that a (v, 4, 6; Z3) GBRD exists for all v > 4; break
the blocks with a (4,4,9; EA(9)) GBRD for a (v, 4, 54; EA(18)) GBRD for
allv > 4. n

9.3 Some Groups of Order 54 or More

In this subsection we consider elementary Abelian groups of order n = 2-3%
with n > 54.

Theorem 9.11 Let n = 2-3° > 54. A (4,4,); EA(n)) GBRD exists iff
A=0 (mod 2n). For v > 4, the necessary condition for a (v,4, \; EA(n))
GBRD is that A =0 (mod n).

a. If n = 54, this condition is sufficient when A = n with the possible
exception of v =8.

b. If n > 54, this condition is sufficient when \ = n.

c. For n 2 54, this condition is sufficient when A > n.

Proof: For most of these results, we can take the (v,4, A; Zs) GBRD given
by Theorem 9.8, and break its blocks with a (4,4,n/6; EA(n/6)) GBRD,
noting that /6 > 9, so our only problems arise from the exceptions and
possible exceptions in Theorem 9.8.
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Again, we have non-existence for v = 4 from Theorem 4.6 if A is an odd
multiple of n.

So we only need consider A = n. For v = 5, we can take the (8,7, 6; Z¢)
GBRD given by Corollary 6.18, remove 3 points and break the blocks of
the resulting (5, {4, 5}, 6; Zg) GBRD with (k, 4, n/6; EA(n/6)) GBRDs with
k=4 and 5 to get a (5,4,n; EA(n)) GBRD.

For v = 8, we can take the (8,4,18; EA(18)) GBRD given by Theo-
rem 9.10 and break its blocks with a (4,4,n/18; EA(n/18)) GBRD provxded
nf18 > 9.

10 Some 4 mod 8 cases

Here we consider EA(n) groups of order n = 4-3* > 12. There is no general
restriction on any v > 4.

10.1 The Group of Order 12

For the group EA(12) de Launey and Seberry solved the existence problem
for A > 12, but gave no examples of (v,4, 12; EA(12)) GBRDs for v = 2,3
(mod 4).

We begin with some GBRDs with block size 5.

Example 10.1 We construct a (31,5,4; EA(4)) GBRD on the point set
Z31.

Bo = (0¢, le, 3¢, 44, 125)  Co = (0¢, 24, 94, 56, 28).
Multiply Bo and Cyp by 1, 26 and 25 to generate six base blocks.

Theorem 10.2 If ¢ = 1 (mod 10) is a prime (sic) and 41 < g < 1151,
then a (q,5,4; EA(4)) GBRD ezists.

Proof: In (3], these designs were given as frame resolvable (5,1) GDDs of
type 49 constructed over GF(4) x Zg. Their conversion to GBRDs fol-
lows from Theorem 6.2. No frame resolvable solution of with the structure
considered in [3] was found for q=31, and no (45, 5,1) BIBD has an auto-
morphism of order 11 [32, pp. 16]. [ |

Example 10.3 Our (6,4,12; Z> x Zg)) GBRD is actually formed on the
points Iz x Z3, but we present it on the points Zg where the development
is with the order 3 automorphism z +— z + 2.
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(Oco0, Lo, 200,301)  (0co, 102, 215,300)  (0Ooo, las, 212, 415)

(Oco, 110, 214,404)  (Ogo, 115, 303,413)  (Ogo, 1os, 201, Sos)

(Oc0, 113, 204,503)  (Oco, 104, 313,512)  (0Ogo, 114, 310, So1)
(0co, 205,311, 514)

We construct a (7,4,12; Z2 x Zg) GBRD on point set Z.

(000, 100, 201,300)  (Oco, 102,215,301)  (Ogo, Los, 305, 413)
(Oc0, 115, 312,403)  (Ooo, 104, 315,513)  (Ogo, 110, 302, 512)

We construct a (10,4,12; Z; x Zg) GBRD on point set Zg U {c0}.

(0o, 100, 201,300)  (0co, 102,215,304)  (Ooo, Lo, 211, 5o2)

(0o, 112,400,713)  (Oco, 203,515, 714)  (Ooo, 111, 315, Sos)

(0000,004, 114,511) (o000, 000,301, 603) (000, 015, 305, 513)
(0000, 002, 412, 510)

We construct a (11,4, 12; Z3 x Zg) GBRD on point set Z;;.

(000, 100, 201, 800)  (Ooo, 102,301, To2)  (Oco, 200, 402, 715)

(Oco, 203, 512,815)  (0co, 115, 503,613)  (Oco, 211, 505, 713)

(000, 112,215,302)  (Oco, o4, 212,410)  (Oco, 111, 304, 701)
(0c0, 105, 415, 714)

Theorem 10.4 For v > 4, the necessary condition for a (v,4,A; EA(12))
GBRD is that A =0 (mod 12).

a. This condition is sufficient when A\ = 12 with the possible exceptions
of v =14, 15, 18 and 23.

b. This condition is sufficient when X > 12.

Proof: First we consider A = 12.

If v =5, 8, 9 or 12, then we may take the (v,4,3; Z3) GBRD given by
Theorem 8.2, and break its blocks with a (4,4, 4; EA(4)) GBRD to produce
the desired (v,4,12; EA(12)) GBRD. A (4,4,12; EA(12)) GBRD is given
by the difference matrix in Table 2, so we have the ingredient designs to
deal with the v = 0,1 (mod 4) case, using Lemma 8.4.c. By Example 10.3,
we have the remaining GBRDs with v < 12, and since the PBD closure of
K = {4-12} is 14, 15, 18, 19, 23 (see [8]), we only need deal with v = 19
for our ) = 12 result.

Application of Theorem 5.6 gives a (19,4,12; EA(12)) GBRD, since
19=6-(4-1)+1.

For A > 12, de Launey and Seberry established the sufficiency. |
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10.2 The Group of Order 36

For the group EA(36) de Launey and Seberry had two open cases for A > 36,
namely (v,4,108; EA(36)) GBRDs for v = 15 and 23. However, they gave
no examples of (v, 4,36; EA(36)) GBRDs for v = 2,3 (mod 4).

We now need a PBD result of Lenz [41], improved by Mullin et al. [46];
note that [46, Result 3.52] inadvertently omits the value 10.

Lemma 10.5 Ifv & {6,10,11,12,14,15,18,19, 23, 26,27, 30, 51} and v >
4, then a (v,{4,5,7,8,9},1) PBD exists.

Theorem 10.6 For v > 4, the necessary condition for a (v,4,); EA(36))
GBRD is that A =0 (mod 36).

a. This condition is sufficient when A\ = 36 with the possible exception
of v=6, 10, 11 and 18.

b. This condition is sufficient when \ > 36.

Proof: First we look at A = 36.

If v =5, 8, 9 or 12, then we may take the (v,4,3;Z3) GBRD given
by Theorem 8.2, and break its blocks with a (4,4,12; EA(12)) GBRD to
produce the desired (v,4,12; EA(12)) GBRD. A (4,4, 36; EA(36)) GBRD
is given by Theorem 4.13, so we have the ingredient designs to deal with
the v = 0,1 (mod 4) case, using Lemma 8.4.c. If v = 7, we may take the
(8,7,6; Zg) GBRD given by Corollary 6.18, remove a point, then break its
blocks with (k, 4, 6; Zs) GBRDs. If v = 19, we may take the (19,4, 4; EA(4))
GBRD given in [23}, and break its blocks with a (4,4, 9; EA(9)) GBRD. If
v = 30, we may take the (31, 5,4; EA(4)) GBRD given in Example 10.1, re-
move a point and then break its blocks with (k,4, 9; EA(9)) GBRDs. From
Abel and Ling’s designs (see Remark 7.4) we may get a (23, {4,5},4; FA(4))
GBRD and, adding 4 infinite points and possibly deleting a finite point, we
may get a (5,4; EA(4)) GBRGDD of type 124! and a ({4,5},4; EA(4))
GBRGDD of type 12241, Now we may break the blocks of these designs
with (k,4,9; FA(9)) GBRDs for k = 4 and 5, and then fill in the group
if necessary with a (4,4,36; FA(36)) GBRD to get a (v,4,36; EA(36))
GBRD for v = 23, 26 and 27. For v = 14 or 15, we may take Baker’s
(15,7, 3; Z3) GBRD, possibly remove a point, then break its blocks with
(k,4,12; EA(12)) GBRDs.

Now we may use Lemma 10.5 to get a PBD whose blocks we can break.
We have already dealt with 12, 19, 23, 26, 27 and 30 in the possible excep-
tion set of Lemma 10.5. We may also construct a (51, {4,7,12},1) PBD
(by truncating one group of a TD(5,11) to size 6, then filling the groups
using an extra point) and so deal with another possible exception.

36



We now consider A > 36. For A = 72, we may break the blocks of
a (v,4,6;Z3) GBRD with a (4,4,12; EA(12)) GBRD for our result. For
A = 108, we may break the blocks of a (v,4,12; EA(4)) GBRD with a
(4,4,9; EA(9)) GBRD for our result. u

10.3 Some Groups of Order 108 or More

For the group EA(108) de Launey and Seberry had no open cases for A >
108; however, they gave no examples of (v,4, 108; FA(108)) GBRDs for
v=2,3 (mod 4).

Theorem 10.7 Letn = 4-3° > 108. For v > 4, the necessary condition
for a (v,4,; EA(n)) GBRD to exist is that A\ =0 (mod n).

a. If n = 108, this condition is sufficient when A = n with the possible
exception of v = 14 and 18.

b. If n > 108, this condition is sufficient when A = n with the possible
ezception of v = 18.

c. For n > 108, this condition is sufficient when A > n.

Proof: For most of these GBRDs, we can take the (v, 4, 36t; EA(36)) GBRD
given by Theorem 10.6, and break its blocks with a (4,4, n/36; EA(n/36))
GBRD, or else take the (v,4,12t; EA(12)) GBRD given by Theorem 10.4,
and break its blocks with a (4,4,7n/12; EA(n/12)) GBRD to produce the
desired (v,4,nt; EA(n)) GBRD. So, for n/36 > 9, our only possible excep-
tion is the intersection of the possible exceptions in Theorems 10.4 and 10.6.
However, for n = 108, the former construction is not available, so we must
deal with the possible exceptions in Theorem 10.4.

For v = 15, we may take Baker’s (15,7,3;Z3) GBRD, then break
its blocks with a (4,4, 36; EA(36)) GBRD. We have a ({4,5},4; EA(4))
GBRGDD of type 134! with u = 0, from Abel and Ling’s construction
(see Remark 7.4); break the blocks with a (k, 4, 27; EA(27)) fork=4or5
to get a (23, 4,108; EA(108)) GBRD [ |

11 The 0 mod 24 cases

Here we consider EA(n) groups of order n = 24 - k.
We first need a PBD result primarily due to Lenz [41]. We give the
improved version of Ling et al. [42, Theorem 1.1].

Lemma 11.1 If v > 4, then o (v,{4,5,6},1) PBD exists if and only if
v ¢ {7,8,9,10,11,12,14,15,18, 19, 23}.
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Theorem 11.2 Let n = 24h. For v > 4, the necessary and sufficient
condition for a (v,4,; EA(n)) GBRD is that A =0 (mod n).

Proof: It suffices to establish the result for A = n.

Note that, by Theorem 4.13, a (4,4, g; EA(g)) GBRD exists for g = n,
g=n/3 and g = n/6. For v = 5 or 8, we may break a (v,4, 3; Z3) GBRD
with a (4,4,n/3; EA(n/3)) GBRD. If we have a (v, 4, 6; Zg) GBRD, we may
break it with a (4,4,n/6; EA(n/6)) GBRD; In particular, we have GBRDs
for v = 6 and 7, and the exception set of Lemma 11.1. We also have
v = 4, so we have the GBRDs to break the blocks of the PBDs given by
Lemma 11.1, which with its exception set covers all v > 4. n

12 Other Prime Factors

Here we consider EA(n) groups of order n = 273%°h with ged(6,h) = 1
and h > 1. Up to now we have mostly just considered h = 1. The case
h > 1 doesn’t alter the basic residue classes relating » and A. Apart from
the necessary condition that A = 0 (mod n), this case is largely like the
corresponding case with h = 1, and any (v,4,A/h; EA(n/h)) GBRD can
be broken with a (4, 4, h; EA(k)) GBRD to yield a (v, 4, A\; EA(n)) GBRD.

However, there are cases where we do not have the (v, 4, \/h; EA(n/h))
GBRD available to break; most of these cases are due to our failure to
construct them, but there are some cases where it is known that they do
not exist.

One such class is v = 4 with n/h = A/h = 2 (mod 4): here, since
h is odd, we also have n = A = 2 (mod 4), and Theorem 4.6 gives us
non-existence for our larger group EA(n).

We are not able to say much about about the three sporadic series
resulting from de Launey and Sarvate’s work [21] i.e., the (10, 4, 2kh; EA(2h))
GBRDs, (7,4, 4h; EA(4h)) GBRDs and (5,4, 6h; EA(6R)) GBRDs.

* The other non-existence result we have is for a (4, 4, 3; Zs) GBRD. Here,
by Evans’s result [27] (given in Theorem 4.9) we know (4, 4, 3h; EA(3h))
GBRD:s exist for all odd h > 1 (see Theorem 4.13).

13 Summary of Open Cases

We summarize our results for G = EA(n) when n is of the form n = 273?;
See Section 12 for comments on other n.

For A > |G|, apart from the integrality conditions on the BIBD and the
non-existence result for v = 4 given in Theorem 4.6, it is probable that

there are no other non-existing designs. However, we still leave the case
(18,4, 18; EA(9)) GBRD open.
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Table 3: The Open Cases
The cases with A = |G|

|G| v Non- Unknown
_ restriction exist.
“IGI=1 (mod 2)
1 1, 4 (mod 12) None
3 0,1(mod4) 4 None
9 0,1 (mod 4) None
227 0,1 (mod 4) None
|G]=2 (mod 4)
2 1 (mod 3) 4, 10 None
6 v>4 4,5 8
18 v>4 4 10,11, 12, 18, 20, 23
54 v>4 4 8
> 162 v>4 4 None
G| =4 (mod 8)
4 1 (mod 3) 7 10, 22, 34, 46
12 v2>4 14, 15, 18, 23
36 v2>4 6, 10, 11, 18
108 v>4 14, 18
> 324 v>4 18
|G]|=0 (mod 8)
3/n 1 (mod 3) 10
3|n v>4 None
“The cases with A > [G]
|Gl v Unknown A
9 18 18
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Appendix

Since we rely so heavily on de Launey and Seberry’s earlier work [23], we
take the opportunity here to correct some minor errors in that article (all
references in this appendix will be to [23]). Only the first two errors we
mention below had any impact on our present article.

Their Theorem 2.2 is confusingly stated, and contradicts an statement
of theirs on page 248 regarding n = A = 3h odd. There is also a minor
lacuna in their proof for the case n = A = 24h. We correct (and improve)
their Theorem 2.2 in our corresponding Theorem 4.13.

The non-existence of a (15,5, 2) BIBD was overlooked during the proof
of their Theorem 5.2.2 and Lemma 5.6.1; in the former case, a (15,4, 6; Zg)
GBRD was also constructed directly on page 290, but in the later case
they provide no alternative construction for (v,4,18; EA(9)) GBRDs for
v = 14 nor v = 15. (These values were consequently also omitted from
their Theorem 10.1 summarizing the possible exceptions.)

There are arithmetic errors in Appendix Tables 1 and 2, invalidating
some PBD constructions given in Theorems 1.2.9 and 1.2.11. These can be
remedied by constructing a (96, {8,9,12},1) PBD by truncating one group
of a TD(9, 11) to size 7, then using an extra point when filling in the groups,
or constructing (v, {4,19},1) PBDs by appealing to our Theorem 7.5 for
v =91 and v = 139.

The construction of a (27, {4,5,6},1) PBD (by removing 4 oval points
from PG(2,5)) was omitted from the table on page 269, and the value 27
should not be in the exception set on line 6.

The construction of a (19, 4,4; Z;) GBRD given in the proof of Theo-
rem 4.2.1 is flawed (but one can take two copies of the (19,4, 2; Z;) GBRD
given in Theorem 4.1.1).

In some difference families, the signing of {co} (with the identity ele-
ment) was omitted.

Page 229, Abstract: v > 40 should be v > 48; de Launey has later
quoted this result (correctly) as v > 50, see (20, Theorem II1.4.8].

Page 256, Example 5.1.2: the last base block of the second difference
family should be {2z + 10,2,z + 2o, 11}.

Page 262, v = 9: the fourth and fifth base blocks should be:

(01, 1424, 3aw, Taw?) and (0y, 15242, 4q, 6.2).

Page 268, v = 9: the fourth base block should be (0, 144, 44, 6¢).

Page 274, Lemma 7.3.1 should read “There exists a GBRD(v, 4, 18; Z)
forv=25,6."

Page 290, v = 12: the first base block should be (cog, 09, 11, 23).

Page 292, v = 10: the first base block should be (cog, 0, 11,23).

Page 292, v = 14: the first base block should be (cog, 09, 20, 72)-
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Page 293, v = 11: the fourth, seventh and ninth base blocks should be:
(OOOe‘ OOua 31w» 12uw), (OOe, 103’ 3161 61u) and (OOe: 2Oe: 4014’ 61&)-
Page 293, v = 11: the fourth base block should be (0ge, 124, 51w, Touw)-
Page 293, v = 14: the twelfth base block should be (0ge, 224, 60w, 1uw)-
Page 293, v = 15: the fourth and fifth base blocks should be:
(Ooe, 11w, 20w, 110uw) and (0031 12y, 62w, 80e)-
Page 294, v = 18: the tenth base block should be (0pe, 1ou, 20w, S2uw)-
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