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Abstract

Agrawal provided a construction for designs for two-way elimi-
nation of heterogeneity, based on a symmetric balanced incomplete
block design. He could not prove the construction, although he found
no counterexample. Subsequently Raghavarao and Nageswarerao
published a proof of the method.

In this note we observe a flaw in the published proof.

1 Introduction

Agrawal [1] studied a class of designs for two-way elimination of hetero-
geneity. Such a design has three classes of constraints, called rows, columns
and letters. Suppose there are r rows, ¢ columns and v letters. Then the
design has rc blocks of size 3, satisfying the following constraints:

e every block is a transversal of rows, columns and letters;

e every row and letter occur together in at most one block;

e every column and letter occur together in at most one block;
e every row and column occur together in exactly one block;

o there exist positive integers &k, Arr, Acc and A such that:

TA1l. each letter occurs in k blocks;
TA2. any two distinct rows contain A.. common letters;
TA3. any two distinct columns contain A.c common letters;
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TA4. any row and column contain A, common letters.

An example is

(1)

O 00 © =
- QO N OO O
N O W
WOl O
OO U =
O 00N

1

(This example is taken from (1, p1157].)

Such a design has a natural representation as a (binary) row-end-column
design; if a,b and c are respectively a row, column and letter, the block abc
is represented by symbol c in cell (a,b). The properties mean that the row-
and-column design is equireplicate, with every letter appearing k times, it
contains no empty cells, and if the rows and columns are treated as sets then
the intersection of any two rows has size A, the intersection of any two
columns has size A¢c, and any row and column intersect in A, elements. We
shall call this array a triple array and denote it TA(v, k, Arr, Acey Arc 2 T X C).
The example above is a T'A(10,3,3,2,3: 5 x 6).

The design can also be represented in two extensive forms: as an r x v
array, where block abc is represented by entry b in cell (a,c), and a ¢ x v
array with entry a in cell (b, ¢). We shall call these arrays the RL and CL
forms of the triple array, respectively.

For any array in RL form to represent an r X ¢ array with no repetitions
in the rows or columns, it is necessary that the entries in (the occupied cells
of) every column are distinct, and that the entries in (the ¢ occupied cells
of) each row should include each of {1,2,...,c} precisely once. For the RL
form of a triple array, the conditions TA1 through TA4 have the following
effect:

TA1: every column has k occupied cells;

TA2: for any pair of rows, there are A, columns in which both are
occupied;

TA3: every pair of symbols must occur together in A\, columns;

TA4: columns with occupied cells in row ¢ must contain every symbol
Arc times, for all 4,1 <i < r,

Consider the matrix formed from this array by replacing each occupied
cell by 1 and each empty cell by 0. Then TA1 and TA2 together imply that
this matrix is the incidence matrix of a (v, v, ¢, k, Arr)-BIBD. So, if the rows
of a triple array are considered as treatments, and for each symbol we define
a block consisting of the rows that containing that symbol, these blocks form
a balanced incomplete block design with parameters (r, v, ¢, k, A-), which
we shall call the row design.
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A similar analysis can be applied to the CL form, and the triple ar-
ray forms a (c,v,7,k, Acc)-BIBD, the column design. The usual parameter
relations follow, and it is easy to prove that \.. = k.

In (2] we prove

Theorem 1.1 Any triple array with k # r and k # c satisfies

v=zr+c—1

The extremal case v = r + ¢ — 1 (in which it is easy to show that
Ace = T — k) is of special interest. Agrawal [1] gave a method that started
from a symmetric (v+ 1,7, Asc)-BIBD, where v = r+4c—1, and constructed
a TA(v,k, Arry Acey Are @ 7 X ¢). He could not prove his method, but had
found it to work in every case that he tried, provided r — A,c > 2. (Not
only does the method fail when r — A = 2, but no triple array exists in
those cases.) Subsequently Raghavarao and Nageswarerao [3] claimed to
prove that the method always works. However, their proof is faulty.

2 Agrawal’s method

Agrawal uses two balanced incomplete block designs obtained from the
symmetric (v+1, 7, Ac)-BIBD: the residual design, with parameters (v+1—
U TT — Acey Ace) = (€, 0,7, k, Ace), Obtained by deleting one block and all
its members from the symmetric design, and the derived design, an (r,v,r—
1, Acey Ace — 1)-BIBD, obtained by deleting one block and all members of its
complement.! Suppose the original design is based on treatment-set T =
{1,2,...,} and has blocks By, By,..., By; the blocks of the residual design
(with regard to Bo) are the k-sets B}, B3,..., B}, where B} = B;\By.
Let A denote the incidence matrix of the complement of the derived design
with regard to the same original block By. This is a BIBD with parameters
(v, v—=r+1,7=Aee,v—2r+ Aee+ 1) = (1,0, ¢, k, Arr) whose treatment-set
is Bo and whose blocks are the sets Bo\Bj, so A is a (0,1) matrix of size
T x v — 1 with k& 1’s per column.

Now, for each j, the entries 1 in column j of A are replaced by the
elements of Bj. Then the elements in each column are reordered in such
a way that every row contains each member of By. The resulting array is
the RL form of a triple array TA(v, &, Arr, Acey Are 1 T X €).

Of course, the difficulty lies in proving that such a reordering is always
possible.

1 For some reason, both Agrawal and Raghavarao-Nageswarerao interchange the mean-
ings of “residual” and “derived”.
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3 Raghavarao and Nageswarerao’s analysis

Raghavarao and Nageswarerao state that Agrawal’s method is equivalent
to the following. Denote by D, D; and D, the symmetric design, its resid-
ual design with regard to By and the complement of its derived design
with regard to Bp. Corresponding to element t; of By, select those blocks
By,,By,,...,B., of the symmetric design that do not contain t;. Then
find a system of distinct representatives for the corresponding blocks of Ds
(that is, the sets Bo\B; where 1 ¢ B;). Then these elements are to be
“brought to the first column” ([3, p. 198]). Clearly this should be “first
row”, as elements remain in their original column. However, there is a more
serious problem: the elements being selected are chosen from By, and the
elements that Agrawal requires are to be members of T\ By. To make sense
of the construction, we assume that Raghavarao and Nageswarerao mean
to ask for a system of representatives of the sets B;\By. As further evidence
for this assumption, we note that there are r treatments in D, and ¢ sets
have been chosen, so that the scheme could only be carried out when ¢ < ,
which is not necessarily true.

So we assume that the plan is as follows: for each T; € By, consider
the blocks By,,By;,...,B., of D that do not contain tj. Find a sys-
tem of distinct representatives by;,bs;,...,b; for the corresponding sets
B1,\Bo, B2;\Bo, - - ., Bc,\Bo. Then b, is to be the (¢;, ) entry of the RL
matrix.

The authors state that “an SDR exists” for the sets B; ;. While this is
true, it is not sufficient. If the algorithm is to work, then for every choice of
i the elements b;, and b;; must always be different when h # j. This puts
a restriction on the SDRs, and it is not obvious that it can be satisfied.

4 An example

The proof is certainly not valid as written. If it were then the construction
would work when r — A.. = 2, and Agrawal noted that his method does not
work in that case. But the problems go further than that. As an example,
consider the (11,5, 2)-design with blocks (written as columns)

1]3 214 2 3 1 1 1 2
2|4435554523
36 776 7 8 9 6 6 6
4/ 7 888 91010 7 8 9
5/10 11 9 9 10 11 11 11 10 11

(this is the (11,5, 2)-design that was used in [1] to produce the triple array
(1)
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The residual design with regard to the first block consists of the south-
east corner of the array. For element 1, we require an SDR of the sets

{6,7,10} {7,8,11} {6,8,9} {7,9,10} {8,10,11} {6,9,11}
and one possibility is 6,7,8,9,10,11. For element 2, the sets are
{6,7,10} {7,8,9} {6,8,9} {8,10,11} {9,10,11} {6,7,11}

but there are three restrictions: one cannot choose 6 from 6,7,10, 8 from
6,8,9 or 10 from 8, 10, 11, because these choices lead to a repetition. So we
really need an SDR of the sets

{7,10} {7,8,9} {6,9} {8,11} {9,10,11} {6,7,11.}

One choice is 7,8,9,11, 10, 6. For 3, the sets are

{7,8,11} {6,8,9} {7,9,10} {9,10,11} {6,7,11} {6,8,10}
but after deleting the elements already used, the choice must be made from

{8,11} {6} {7,10} {9,11} {7,11} {6,8,10}

and we might select 8,6,7,9,11,10. For 4, the sets are

{7,8,9} {7,9,10} {8,10,11} {6,7,11} {6,8,10} {6,9,11}
and after deleting the elements already used we have

{7,9} {10} {8} {7} {6,8} {6,9}

which have no SDR. In fact, if the first two SDRs have been chosen as
above, there is no possible completion.

All three designs involved in this example — the symmetric (11,5, 2)-
design, the residual (6, 10, 5, 3, 2)-BIBD and the derived (5, 10, 6, 3, 3)-design
— are uniquely determined up to isomorphism, so there is no chance that
the failure is due to a poor choice of design.

5 Youden squares

The authors also state that the construction is equivalent to taking a
Youden square, and deleting the first column and all its elements. (In
our terminology, they assert that the resulting array is the RL form of a
triple array.) Again, this does not work for every Youden square. If one
starts with the Youden square

1 3 274 5 1011 6 8 9
2 4 715 9 8 101 6 3
3 6 489 2 5 1 710 11
4 7 836 10 1 9 5 1 2
5 10 11 9 8 7 3 4 1 2 6
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the result of deleting the first column and its elements is

- - 7 - -1 1 6 8 9
- 7 - - 9 810 11 6 -
6 — 8 9 - - — 710 11
7 8 — 6 1011 9 - - -~
10 11 9 8 7 ~- —- —- -— 6

If the result of this process is treated as the RL form of a triple array, the
RC form is

8 3 9106 7
9 26 5 7 8
1 83 49 10
4 1 2 75 6
10 5 4 3 1 2

which has neither constant row intersection size nor the property that any
row and column share a constant number of symbols.
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