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Abstract

The main results of this paper are the discovery of infinite fami-
lies of flow equivalent pairs of Bs and W5 amallamorphs and infinite
families of chromatically equivalent pairs of P and W3 homeomorphs,
where Bs is K5 with one edge deleted, P is the Prism graph and W5
is the join of K and a cycle on 4 vertices. Six families of Bs amal-
lamorphs, with two families having 6 parameters, and 9 families of
Ws amallamorphs, with one family having 4 parameters, are discov-
ered. Since Bs and W5 are both planar, all these results obtained can
be stated in terms of chromatically equivalent pairs of Bg and Wg
homeomorphs. Also three conjectures are made about non-existence
of flow-equivalent amallamorphs or chromatically equivalent homeo-
morphs of certain graphs.

1 Introduction

Much information about the flow polynomial can be found in [3], [4] and
[6]. Given a graph G = (V, E) with vertex set V and edge set E, where
multiple edges are allowed, let (D, f) be an ordered pair where D is an
orientation of E(G) and f : E(G) — 2 is an integer-valued function called
a flow. An oriented edge of G is called an arc. For a vertex v € V(G), let
E*(v) and E~(v) be the sets of arcs of D(G) with their tails at v} and
with their heads at v}, respectively.

Definition 1.1 A \-flow of a graph G is a flow f such that |f(e)| < A for
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every edge e € E(G) and for every vertez v € V(G)

Y. flo= ) fle) (mod X).

ecE+(v) e€E—(v)

Definition 1.2 The support of f, supp(f), is the set of all edges of G
with f(e) # 0. A A-flow is nowhere-zero if supp(f) = E(G).

For a graph G(V, E), the cyclomatic number of G, v(G), is defined
as ¥(G) = |E(G)| — |V(G)| + «(G) where x(G) denotes the number of
components. In [6], Tutte defines the flow polynomial, F(G,)), of a
graph G as a graph function and as a polynomial in an indeterminate A
with integer coefficients by

F(G,\) = ("1)|E(G)I Z (_1)|S|/\V(G:S)
SCE(G)

where (G : S) denotes the spanning subgraph of G with edge-set S. F(G, A)
is a polynomial in A which gives the number of nowhere-zero A-flows in G
independent of the chosen orientation. Tutte [6] also defines the chromatic
polynomial, P(G, ) , of a graph G by

P(G,)) = Z (_1)ISIAN(G:S)_
SCE(G)

When A takes a positive integral value n, P(G,n) is the number of
“proper vertex” n-colorings of G. For more information on chromatic poly-
nomials see [2]. It is often more convenient to work with the new variable
w =1 — A. Tutte [6] states some important properties of the flow polyno-
mial F(G) of a graph G, where G may have multiple edges and/or loops,
as follows:

Property 1.3 F(G,w) is a polynomial of degree v = v(G). The coefficient
of w¥ is (—1)" and all terms in F(G,w) have the same sign.

Property 1.4 If e is any edge of G, then F(G,)\) = F(G",\) — F(G',)\),
where G' and G" are obtained from G by deleting and contracting the edge
e, respectively.

By a result of Jaeger (1], if G is planar, then P(G*,A) = A - F(G, )),
where G* is the planar dual of G. Two graphs are homeomorphic if both
can be obtained from the same graph by inserting new vertices of degree
2 into its edges. Multigraphs with the same underlying simple graph were
given the name amallamorphs by Read and Whitehead in [3]. Two graphs
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G and H are said to be chromatically equivalent if P(G, \) = P(H, \), while
two graphs G and H are said to be flow equivalent if F(G,\) = F(H, ).

88 O

Figure 1: Amallamorphic graphs and homeomorphic graphs

Given a multigraph M, whose underlying graph is G, consider a bundle
of multiplicity n and let K be the graph obtained by contracting this bundle
in G to a vertex and H that obtained by deleting this bundle. By using
Property 1.4 of flow polynomials repeatedly, Read and Whitehead [3) arrive
at the “SRF”, or the Sheaf Removal Formula:

F(M,w) = (=1)" an_—_wlF(K,w)-l—F(H,w) .

2 Equivalences of B; and P

In this section we study the flow equivalence of the planar graph Bs shown in
Figure 2. The underlying simple graph of B is the bipyramid on 5 vertices
which is obtained by adjoining a vertex adjacent to 3 of the vertices of K.
The planar dual of Bs is B, also known as the Prism graph P. In Figure 2
a letter labeling an edge of Bs indicates the edge multiplicity, while a letter
labeling an edge of P indicates the number of edges in the subdivision of
that edge.

Figure 2: The graph Bs and its planar dual B = P
To compute the flow polynomial of a Bs amallamorph we need to apply
the SRF a few times. Since these computations are tedious and lengthy, we
omit them and just state the result:
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(_1)p+q+r+s+t+u+v+w+=
(1-w)

- (2w +3w? + ) W+ W 0+ Wt + w7

- (WH+2W?+uwd) [w" +w? + w']

F(Bs,w) = {4w + 8w? + 5w3 + w?

+ (w +w2) [wu+v +wr+’u +ww+v +wu+s +wr+a +ww+s +wu+z

+ wr+z + ww+z + ww-l-p + wz+p + wu+q + wv+q + w‘r+t +w3+t]

+ (w+w2) [wu+r+p+wv+s+p +wr+w+q +wa+z+q +wu+w+t+

vzt | utr+vts+p rt+w+s+z+q utwtvtz+t
+ w wlw +w +w

w [ww+v+s+p + witrtatp + whtetrtg + wutetete + wutwtsett

+ wr+v+:+t]
= w (WP L e yrrett) 2 [P + W + W] 2.1)
w [wu+r+w+p+q+t + wv+s+z+p+q+t] + wp+q+r+s+t+u+v+w+z}

By FORTRAN programs, we obtained a list of all nonisomorphic Bs
amallamorphs with 10 through 30 edges and their flow polynomials. These

cases are found in a table in Theorem 2.2. In order to complete the proof
of Theorem 2.2, we first need to establish the following lemma.

Lemma 2.1 The graphs G and H in Figure 8 are flow equivalent.

G H

atc a, a+c

a+b a a+b a

Figure 3: Flow equivalent graphs
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Proof: Apply SRF to the bundles d and e of G. This gives four graphs
whose polynomials sum to that of G. Now apply SRF to the bundles e and
d of H. The same four graphs are produced, showing that G and H have
the same flow polynomial.

Theorem 2.2 The following 6 pairs of Bs amallamorphs are flow eguiva-
lent for every choice of positive integers a, b, c, d, e and f:

| p | a |r] s t [u|] v [ w x |

1 e f alat+b| d b c atc a
d f a | atb e b c atc a

2 a a 1 e f d|at+b c a+b+1

a+b atb | 1 e f d a c a+l

3 a at+l | 1 c a b 1 d b
a a 1 b at+l | b c d 1
4 a a+2 |1 c at+b | 1 1 1 b
a+b+1 a 1 c a+l |1 1 1 b
5 a at+l [ b 2 at+2 | 1 c 2 1
a a+l | 2 c at+2 | b 1 1 2
6 a atl |1 2 at3 | 1 b 1 1
a a+2 |1 1 a+2 | 1 b 1 2

Proof: For the sake of brevity, we shall only prove the flow equivalence
of pair #1. Let M and N be the multigraphs whose edge multiplicitis are
described by pair #1. As shown in Figure 4, we proceed by applying the
SRF to the bundle f of M and N. Doing so results in the following:

FMw) = (-1)f [“f L F(as,0) + PO, 0)]

- W
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N, b

/ ¢ 2ate
contract
f

delete
~L
f N, a

Figure 4: SRF applied to bundle f of M and to bundle f of N

F(N,w) = (-1)f [“;I_IF(NI,w)+F(N2,w)]

—-—w

First we notice that M; = N;. Then by the Lemma 2.1, F(M;,w) =
F(Na,w). Hence F(M,w) = F(N,w). Flow equivalence of all the other
pairs in the table can be established in a similar manner.

Corollary 2.3 The 6 pairs of Bs amallamorphs of Theorem 2.2 are also
chromatically equivalent P homeomorphs for every choice of positive inte-
gersa, b, ¢, d, e and f.

3 Equivalences of Wjs

In this section we study the flow equivalence of the planar graph W5, which
is join of K7 and a cycle on 4 vertices as shown in Figure 5. Since all
wheels are self-dual, we also show the planar dual of W5. In Figure 5 a
letter labeling an edge of Wy indicates the edge multiplicity, while a letter
labeling an edge of W¢' indicates the number of edges in subdivision of that
edge.

Ws

Figure 5: The wheel W5 and its planar dual
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To compute the flow polynomial of a W5 amallamorph we need to apply
the SRF a few times. Since these computations are tedious and lengthy, we
omit them and just state the result:

(_1)p+q+r+s+t+u+v+w

F(WSv w) =

1-w?

- (W2 +0%) [P+ + 0 +w?]
- (2w +3w? +w) [T+ W + W + WY

+  (wHw?) |wPtetr et o ttute w”"’"*""} + (w +w?) -

[wIH's +wQ+3 +wq+t +wp+u +wq+u +wr+u +w8+u +wq+v

{3w+6w2+4w3+w4

(3.1)

+ ws+v +wq+w +wr+w +ws+w +wt+w +wu+w] +w2 [wp+t +wr+v]

- w [wp+q+r+s+t + wr+s+t+u+v + wp+q+r+v+w + wp+t+u+v+w]

w [wp+q+r+u + wq+t+u+v + wr+8+t+w + wq+a+u+w + wp+s+v+w]

- w (wp+s+u 4 ttety L atttw wr+u+w) + wp+q+r+s+t+u+v+w}

By FORTRAN programs, all nonisomorphic Wy amallamorphs with 9
through 30 edges and their flow polynomials were obtained. Below we list all
the cases found. Since flow equivalence of all these pairs can be established

in a similar manner to that of Theorem 2.2, we omit their proof.

Theorem 3.1 The following 9 pairs of Ws amallamorphs are flow equiva-
lent for every choice of positive integers a, b, ¢ and d:

| p |[a] r ) t |ul v w
1]l b 1 c a b |d|a+1 c
a 1 c b a |[d]| b+l c
2|at+l |1 a b |at+l ]| 1] b+l a
a+2 [ 1 a |a+l b 1 b a
3|atl |1 b 1 at+3| 3 a 2
at2 | 1 b 1 a 3 | at+2 2
4|at+l|1l]|a+tl a a+l | a a a+1
a 1 a at+2 | a+l | a a a+l
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LIplagfris ]t ] ulv]w]
5[at2[a+2 2] 1 [at+3 ] 1 a | 2|
a at+d | 2 1 a+l 1 at+2 | 2
6 3 1 2| at+4 a 2 a 1
3 1 2 a a+2 2 a+2 | 1
7 3 1 2 2 a+2 a a+2 | 1
3 1 2 a a+4 a 1
8 a 4 2 1 a+2 2 4 3
a 2 2| a43| 4 1 3 3
9 4 3 2 1 a 1 4 2
3 2 2 3 5 1 a 1

Corollary 3.2 The 9 pairs of Wy amallamorphs of Theorem 3.1 are also
chromatically equivalent Wg homeomorphs for every choice of positive in-
tegers a, b, ¢ and d.

4 Some Conjectures on Graph Equivalences

In[4], we studied some graphs, each of which admitted many infinite families
of flow-equivalent amallamorphs. Furthermore, many infinite families of
flow-equivalent amallamorphs of the Petersen graph was discovered in [5).
However, we then examined a class of graphs none of which showed
any trace of flow equivalence. The number of nonisomorphic amallamorphs
of a graph can grow very rapidly as the size grows. With the available
computing capabilities and within the time allowed, we searched among all
the possible amallamorphs of reasonable order of each of these 13 graphs
in Figure 6. None of the graphs in Figure 6 exhibited any flow-equivalence
among its amallamorphs. This led us to make the following conjecture.

Conjecture 4.1 The graphs in Figure 6 do not have any flow-equivalent
amallamorphs.

Since all the 13 graphs in Figure 6 are planar, they possess a planar dual.
As we have already seen, an infinite family of flow-equivalent amallamorphs
of a planar graph G also signals the presence of an infinite family of chro-
matically equivalent homeomorphs of G*. For the sake of completeness, we
also make the following conjecture.

Conjecture 4.2 The planar duals of graphs in Figure 6 do not have any
chromatically equivalent homeomorphs.
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Figure 6: Some graphs admitting no equivalence

We now have seen some graphs which allow some sort of equivalence,
flow or chromatic, among their amallamorphs or homeomorphs. Some self-
dual graphs like the wheels W,,, possess both flow-equivalent amallamorphs
and chromatically equivalent homeomorphs. It is desirable to find a set of
properties for a graph to have in order to exhibit any form of equivalence.
Equally interesting is the set properties that guarantee the non-existence
of any equivalence.

Conjecture 4.3 There ezists a set of properties for a graph G so that G
admits no flow-equivalent amallamorphs or chromatically equivalent home-
omorphs.

It is worth searching for necessary conditions or sufficient conditions
which point to the existence or non-existence of flow-equivalent amallam-
orphs or chromatically equivalent homeomorphs of a graph.
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