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Abstract
In this paper we prove various properties of the meanders. We
then use these properties in order to construct recursively the set of
all meanders of any particular order.

1 Introduction

A road from west to east crosses r times a river flowing from south-west
to east. We enumerate the bridges as they are located along the road
(from west to east). The order of the bridges along the river determines
a permutation g on [r] = {1,2,...,7}. We call this permutation (and the
corresponding geometrical representation) a meander of order r, [5].

All numbers are taken mod r. Obviously p(Z) is odd iff 7 is odd; also a
meander of odd (resp. even) order finishes in a north-east (resp. south-east)
direction; (see Fig.1).
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Fig.1. The meanders p=3214765 and p=34521876
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We use the following notations:
M, : the sct of all meanders of order 7.
M. (§) = {r € M, : p(1) = j}.
M (k) = {n € M, : p(r) = k}.
M.(4, k) = Mr(J) NM(k),j#k.
Uy: the set of pairs {p(3), u(i + 1)} of p € M, with i odd.
L,: the set of pairs {u(z), u(i + 1)} of 1 € M, with i even.

So, for example, for the meanders of Fig.1 we have:
n=3214765, U,={{1,4},{3,2},{7,6}}, L.={{2,1},{4,7},{6,5}}
1n=34521876, U,={{1,8},{3,4},{5,2},{7,6}}, L.={{2,1},{4,5},{8,7}}

We note that the above sets of pairs Uy, L, are nested, [7]. It is well
known that the number of nested sets of pairs on [2m] is given by the

Catalan number
1 m
Cm_m+1( 2m )

In thesc scts, we say that a pair {a,b} covers ¢ € {2,3,...,r — 1} if ¢
lics between a and b. Finally cach one of these nested scts covers ¢ if at
least one of its pairs covers c.

The wide range and the great importance of the applications of mecan-
ders in various areas, led to the intensification during the last decade of the
effort to solve the problem of their enumeration [1},2],[3],[4].

In this paper we give an equivalent definition of a meander, using per-
mutations and nested sets of pairs; we relate a given meander ;2 to other
meanders with particular properties and we use these propertics in order
not only to cnumerate but also to construct recursively the set of all me-
anders of any particular order.

More specifically, in scction 2 we present various relevant results, in-
cluding some necessary conditions that enable us to construct Man-1(1)
by checking the matching property of some nested scts. In section 3 we
answer the corresponding problem for the set Mo, by using some outer
pairs of the sets L, of the meanders ;1 € Map,(1). In section 4, we com-
plete the recursive construction of all meanders, since we present a way of
constructing Mo, from Ma,_1, and Maypy from Ma,,.
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2 The set Mo, ;

A permutation g = u(1)g(2) ... p(2n — 1) on [2n — 1] is a meander of order
2n-1 if:
1) p(1) is odd.
2) The sets U, = {{p(3),p(i + 1)} : i =1,3,...,2n — 3} and
Ly = {{w(i), p(i + 1)} : i = 2,4,...,2n — 2} are nested.
3) L, (resp. U,) does not cover p(1) (resp. ju(2n — 1)).

The above definition of meanders, using nested sets, is obviously equiva-
lent to the geometric definition of the introduction, considering nested arcs
instead of nested pairs. In addition, we can casily deduce that every two
consccutive values of ;1 cannot be both even or odd and hence p(3) is odd iff
iis odd; it is also clear that if € Man_1(j, k) with j < k, then p(2) < k.

The properties of the definition are complemented by the following
proposition.

Proposition 2.1 If 1 € Man_1(j, k) with j,k # 1,2n — 1, then U, covers
J and L, covers k.

Proof: If p(2n ~ 1) > p(1), let h be the greatest odd number such that
#(h) < px(1); then b # 2n—1 and p(h+2) > p(1). Since L, does not cover
J» J does not lie between p(h + 1) and z(h + 2); so j must lic between (k)
and p(h 4 1), i.e. Uy, covers j.

If j1(2n — 1) < p(1), let h be the greatest odd number such that u(h) >
p(1). Then h # 2n —1 and p(h +2) < p(1). Since L, does not cover j, we
get again that U, covers j.

We similarly prove that L, covers k. O

Lemma 2.2 Let 4 € Man_; and the permutations p* and ji on [2n — 1]
with 1 ¥(3) = p(2n — i) and f(%) = 2n — ju(i). Then p*, ji € Mop_1.

Proof: By the definition of y*, u*(1) is odd iff z¢(2n — 1) is odd, which is
truc. Also U,. and Ly are nested, since Uy« = L, and Ly~ = U,,. Finally,
let some {2*(),u* (i4+1)} € Ly~ cover p*(1). Then {p(2n—34),u(2n—i—1)}
would cover y1(2n — 1) with 2n —i—1 odd (and hence {p(2r—4 —1),u(2n —
i)} € U,), contradicting condition 3 of the dcfinition for y. Similarly, for
7 (2n - 1).

By the definition of fz, fi(1) is odd iff 2n—pu(1) is odd, which is true. Also,
if {p(1),a(i+1)}, {a(h),a(h+1)} withi,h € {1,3,... ,2n—3} are two pairs
of Up with (i) < a(h) < ji(i+1) < fi(h+1), then 2n — p(i) < 2n— p(h) <
2n —p(i+1) < 2n—pth+1), ie p(d) > p(h) > p(i+1) > ph+ 1),
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contradicting the fact that U, is nested. Similarly we prove that Lj; is
nested. Finally the proof of condition 3 for p is similar to the corresponding
part of the proof for p*. O

Proposition 2.3 The following relations hold:

| Man—1(J, k)| = | Man_1(k, 5)I (2.3.1)
|[Man—1(j, k)| = [Man—1(2n — k,2n - j)| (2.3.2)
|[Man_1(5)] = [M2n_1(2n - j)| (2.3.3)
[Man—1(1, K)| = [Man_1(1,2n — k)| (2.3.4)

Proof: Relation 2.3.1 is a direct consequence of lemma 2.2 since for cach
1€ Mon_1(4,k), n*(1) =p(2n—1)=kand p*(2n—-1) = p(2n-2n+1) =
u(1) =j.

Relation 2.3.2 is obtained by combining relation 2.3.1 with lemma 2.2
from which we get that |Man—_1(4, k)| = [Man-1(2n — 5,2n — k)|. The last
equality also proves 2.3.3 since
Map_1(j) = ngMzn—l(j, k) and Man—1(2n—j) = kLGJJMZn—l(2n_j3 2n—
k), where J ={1,3,... ,2n - 1}.

Finally, relation 2.3.4 is an immediate conscquence of relation 4.2.2. O

The validity of the above formulae is displayed in Table 1.

Table 1: The values of [M3(3, k)|

iNk | 1 3 5 1 7 ] 9 ] 11 | 13 | M)l
1 538 | 353 | 316 | 353 | 538 | 1828 || 3926
3 538 81 | 93 [ 100 | 171 | 538 1530
5 353 | 81 42| 65 | 109 | 353 1003
7 316 | 93 | 42 42 | 93 | 316 902
9 353 | 109 | 65 [ 42 81 | 353 1003
11 538 | 171 | 109 [ 93 | 81 538 1530
13 1828 | 538 | 353 | 316 | 353 | 538 3926

[IMia(k)| | 3926 | 1530 | 1003 | 902 | 1003 | 1530 | 3926 | 13820

Proposition 2.4 If A= {(j,k) € J?: j+k=2n,j < k} and B = {(j, k) €
J?:j4+ k< 2n,j <k} then

Mon—1| =2 > [Mona(GiR)|+4 3 [Man_1(4, k)]
(k€A (5:k)eB

Proof: Relation 2.3.1 justifics why it is enough to consider j < k in both A
and B, and hence multiply both sums with 2; furthermore, relation 2.3.2
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justifies why it is enough to consider, in B, j+k < 2n (and hence finally mul-
tiply the second sum with 4). 0

Now for ¢,k € {3,5,...,2n— 1} let
u2n_1(1, k) = {U“ Y TS Mzn..l(l, k)}
Lon—1(1,k) = {Lu ‘pE€ M2n—1(1)k)}°
Uzn—1(1, k; q) :the subset of Uzp_1(1, k) consisting of its elements that
. cover q.
Lan-1(1, k; q) :the subset of Lo,_1(1,k) consisting of its elements that do
not, cover q.

In the rest of this section we will prove that in order to construct Ma,_1,
it is enough to work with a small number of pairs of nested sets, namely
just with the nested sets U U {k,2n}, LU {2n,j} with U € Uapn_1(1,k; j)
and L € Lop_1(1,k;7), 1 <j<k.

Lemma 2.5 o) For every nested set U on [2n—1]\{k},k € {3,5,...,2n—1}
that does not cover k, there exists p € Man_1(1,k) with U, =U.

f3) For every nested set L on [2n—1]\{1} there exists p € Man_1(1,2n-1)
with L, = L.

7) For every nested set L on [2n—1]\{1} that covers k € {3,5,... ,2n-3},
there exists p € Maon_1(1, k) with L, = L.

Proof: «) We will construct recursively such a meander j, with p(1) =1,
wk)=2n-1, n(2n - 1) =k, p(i) € {2,3,...,k -1}, Vi€ {2,3,...k - 1}
and p(i) € {k+1,k-+2,..,2n -2}, Vie {k+1,k+2,..,2n - 2}.

Suppose that i # 1,k,2n — 1 and that p(1),1(2),...,2(2 — 1) have been
defined. We define p(i) € A= {2,3,....k - 1}U{k+ 1,k +2,..,2n — 2} as
follows:

If 7 is even, let pu(i) be the unique element of [2n — 1] \ {k} such that
{u(3 — 1), u(2)} € U. If on the other hand 7 is odd let

l(’l)— /.L(i—l)—]., if}t(‘i—l)—leli_l,
e = min(A\ L;_;), otherwise.

where I;_; is the image of [ — 1] under p.
The proofs of 8 and v are similar. a
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From lemma 2.5, we have the following result, for q < k.
Proposition 2.6 The following relations hold:

lUzn—1(1,k)| = CaCp, where a = 51, g = =1k
|L2n-1(1, k)| = Cn1 — CaCp.

Uzn—1(1, k;q)| = Cp(Ca — CyCs), where v = 352, § = &34
|C2n-1(1, k;9)| = C4(Ce — CsCs), where € = 22512,

The following necessary conditions will help us construct the set Map_;
from the set Mnp_1(1).
Proposition 2.7 If p € Man_1(j, k), 1 < j <k, then U, € Uzn—1(1,k; J)
and L, € Lon-1(1,k;7), where Lon_1(1,k;7) is the set that we obtain, if
we replace j with 1 in every element of Loan—1(1, k; ).

Proof: Applying lemma 2.5a for U = Uy, we obtain y1; € Man_1(1,k) with
Uy, = U,. Furthermore, by proposition 2.1 follows that U, (and hence Uy, )
covers j, so that U, € Uan—1(1, k; 5).

In order now to prove that L, € E2n—1(1, k; 7) let L be the set obtained
from L, by replacing 1 with j. Applying lemma 2.5/3 or -y for L, we obtain
B2 € Mon_1(1,k) with Ly, = L. Furthermore, by definition, L, does not
cover j and so Ly, does not cover j either. Thus L € L2,-1(1, k; j) so that
Lp € £2n—1(11k;j)' ]

We now note the following: If we know Ma,, (1) and hence May,_1(1, k)
for cvery k € {3,5,...,2n — 1}, we get the sets Upn—1(1,k), Lon_1(1,k)
and from them we get the scts Uzn—1(1,k;5), Lan-1(1,k;5) for 1 < j < k;
furthermore from Lo (1, k; 5) we get Lan—1(1, k; 7).

Now, following the procedure presented in [6], for cach U € Uzn—1(1, k; j)
and for each L € L2,-1(1, k; ) such that UU{k, 2n}, LU{2n, j} are match-
ing, we get a meander 1 € Map_1(j, k) with U, = U, L, = L. According
to lemma 2.5 and proposition 2.7, we thus construct from the set Ma,_1(1)
all meanders of Map,_1(j, k) for j < k; by lemma 2.2, we get Man_1(j,k)
for j > k, too. So, we construct Mo,_1(j, k) for every j # k, i.e we con-
struct the required set Ma,_;.

3 The set Mo,

A permutation g = p(1)p(2)...1(2n) on [2n] is a meander of order 2n if:
1) p(1) is odd.
2) The sets Uy, = {{p(d),p(i+ 1)} :i=1,3,..,2n — 1} and
L, = {{u(@),p(i + 1)} : i =2,4,...,2n — 2} are nested.
3) L, docs not cover cither (1) or ji(2n).
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Obviously, for the meanders of even order, the above definition is again
cquivalent to the geometric definition of the introduction and we also have
that p(2) is odd iff i is odd. Furthermore, (1) < p(2n), since otherwise
we would have an odd number of elements in the set {i + 1, +2,...,2n},
which is a contradiction, since 4 is odd.

Lemma 3.1 ) Let p € Mo, and the permutation fi on [2n] with ji(i) =
2n+1—p(2n+1—1). Then i € Mag.

B) Let jp € Man(1) and the permutation ji on [2n] with (1) = 1 and
i) =2n+2 - p(3), i=2,3,...,2n. Then ji € May(1).

Proof: a) f1(1) is odd iff 2n + 1 — u(2n) is odd, which is true, since p(2n)
is even.

Let now {/i(2), fi(z + 1)}, {z(h), #(h + 1)} € Uz such that () < ji(h) <
pE+1) < ilh+1);then2n+1—p(2n+1-43) < 2n+1— p(2n +
1-h)<2n+1—p(2n—1) <2n+1—p(2n—h),ie. p2n+1-1) >
#(2n +1— k) > u(2n — i) > p(2n — k) with {g(2n — h),u(2n + 1 - h)},
{1(2n —3), u(2n + 1 — i)} € U, contradicting the fact that U, is nested.

If now {i(3), i(s+1)} € Lj covers fi(1), then {2n+1—pu(2n+1-i),2n+
1 — p(2n —4)} would cover 2n + 1 — u(2n) i.e. {p(2n —i),p(2n —i+1)}
would cover p(2n) which is a contradiction. Similarly, if {&(2), 2(i + 1)}
covers ji(2n).

B ) The proof is similar and it is omitted. ]

We can similarly prove the following lemma.
Lemma 3.2 a) Let p € M2,(2n) and the permutation i on [2n] with
fi(3) = 2n — p(3), Then i € Mo (2n).

B) Let p € M2, (j) and the permutation fi on [2n), with (i) = p(i+h),
where h = p~1(j — 1). Then i € Man(j —1).

v) Let p € Mayn(j) and the permutation ji on [2n), with ji(i) = 2n+1—
p2n+1—14). Then ji € Ma,(2n +1 —j).

The following proposition is now clear:
Proposition 3.3 The following relations hold:

|M2ﬂ(js k)l = IM2n(2n +1- ka 2n+1- ])I (331)

| Man (4, 2n)| = | Man(2n — j,2n)] (3.3.2)
[Man(4)| = IM2n(2n + 2 = 7)| (3.3.3)
|M2n(17 k)' = IM2n(1a 2n+2- k)l (334)

The validity of the above formulac is displayed in Table 2.
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Table 2: The values of |[Mi2(4, k)|

JNEkE ] 2] 468 J10] 12 [ M3
1 538 | 221 | 155 | 155 | 221 | 538 1828
3 132 | 66 | 52 | 67 | 221 538
5 95 | 51 | 52 | 155 353
7 95 | 66 | 155 316
9 132 | 221 353
11 533 538
[ [M2(k)] [ 538 [ 353 [ 316 [ 353 [ 538 [ 1828 ]| 3296

Proposition 3.4 If J = {1,3,...,2n — 1}, K = {2,4,...,.2n}, A = {(j,k) €
JXK : j+k=2n+1,5 <k} and B={(j,k) € JxK : j+k < 2n,j <k}
then

Man| = 3 IMan(3R)|+2 3 [(Man(5,K)l-
GkyeA (G.k)eB

The proof is similar to that of proposition 2.4.

Similarly to proposition 2.6 (and using corresponding notation for me-
anders of even order) we have the following results.
Proposition 3.5 The following relations hold:

[Uen(1, k)| = Cn — CaCp, where a = &, p = 2ok,
|L2n(1,k)| = C5C,_y.

Uan (1, k; g)| = Cp(Ca — CyCs), where y = 452, 6 = £t1=1,
|Lan(1, k; @)} = Co(Ce ~ CsCs), where e = 2219,

A pair {a,b} of a nested sct S is called outer pair if there is no pair
{c,d} € S such that ¢ < @ < b < d. We can easily find the set OPS of
outer pairs of S, since

OPS = {{(Ii +1, ai+1} €S:ie {0, 1,..., h},a() =0,ap41 = 2n}

For p1 € Man, let OPL, = {{¢s(p), p(p + 1)} € OPL, : p(2n) < p(p)}-

Proposition 3.6 The following relation holds:

Mau| = [Ma2a(1)|+ ¥ [OPL,|,
HEM2n (1)
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Proof: Tt is enough to prove that Y. |OPL,| = |[Map\Man(1)]; for
#GMzn(l)
this, we prove that there exists a 1-1 correspondence between the sets

eJ}tJ (1)6?7,‘ and Man\Man(1). Let p € Man(1), {1(p),u(p + 1)} €
HEMan

OPL, and the permutation p, on [2n] with p,(i) = pu(p +4). Then
1p € M2\ Man(1), since otherwise we would have pu(p+1) = po(1) = 1=
p(1) < u(2n) < p(p), i.c. the pair {u(p), u(p + 1)} € L, would cover u(1),
contradicting condition 3 of the definition of 1 € Ma,. Conversely, every
v € Man\Mazn(1) corresponds to p € Man(1) with p(i) = v(qg+i-1),i=
2, 31, ... ,2n and the pair {g(2n—h+1), u(2n—h+2)} € OPL,, where h =
v~i(1). O

The proof of the above proposition gives a method to construct the set
Mo, from the set Mo, (1) since, in order to construct Mayn(1)\Mazn(1) it
is enough, for each p € Ma,(1) and for each {u(p), u(p + 1)} € OPL, to
form a new permutation g’ € Map(1)\Man(1), by defining U,r = U, and
Ly = (Lu\{1(p), nlp + 1)} U {1, p(2n)}}.

4 The general case

For the set M, we have the following results.
Proposition 4.1 From the set M, we can construct the set Ma(1) .
Proof: For each u € M, define the permutation g on [r + 1] such that
pt(1) =1 and p+(i + 1) = p@E) + 1,4 € [r]. Then My (1) = {u+ : p €
M.} a
Notice that inversely, from the set M,;1(1) we can construct the set
M. Indecd, for each pr € My41(1) define the permutation p~ on [r) such
that = (¢) = p(i + 1) - 1,4 € [r].

Proposition 4.2 The following relations hold:

[ M2n-1(1)|= [ M2n_z| (4.2.1)
Man-1(1,k)| = |Man_2(2n - k)| (4.2.2)
| M2n(1)] = [Man_1] (4.2.3)
[Man(1, k)| = |[Man_1(k — 1)| (4.2.4)

Proof: Relations 4.2.1 and 4.2.3 are direct consequences of the proof of
proposition 4.1 and of the subsequent remark.
For the proof of 4.2.2 it is enough to realize that there is a 1-1 correspon-

dence between each 4 € My, _1(1, k) and a permutation ﬂ. € Man_2(2n—k)
defined by ji(i) = 2n — p(2n — i).
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Similarly, for 4.2.4 consider for each g € Man(1, k) the permutation 72 €
Man_1(1, k) with (i) = p(2n+1—i)—1. m|

The validity of the relations 4.2.1 and 4.2.2 becomes clear by the exis-
tence of the corresponding common values in Tables 1 and 2.

Proposition 4.3 From the set M, we can construct every M, s < r.
The proof of this proposition is an immediate consequence of the remark
after proposition 4.1.

Corollary 4.4 If M,[n] = {p € M, : u(3) = i,i € [nl},n < r, then
M)l = IMr_q).
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