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Abstract

A known convolution identity involving the Catalan numbers is
presented and discussed. Catalan’s original formulation, which
is algebraically straightforward, is similar in style to one re-
ported previously by the first author and the result has some
interesting combinatorial aspects.

Introduction

In 1887, the identity presented here was published by Eugéne Catalan in
an Italian journal article [1] as part of the Introduction (see pp.194-195).
The previous year it had appeared as the “Addition” (pp.62-64) to a paper
[2] in a different journal (run under the auspices of the Société Royale des
Sciences de Liége), with an attached date of April 1876—some ten years
earlier.

In this offering we outline the derivation of the result according to Catalan,
which involves the k-fold self-convolution of the Catalan sequence

{60,01,02,03,04,...}= {1,1,2,5, 14,} (1)
whose (n + 1)th term ¢, is defined by
1 2n
c,,_n+1< n ), n=0,12,... (2)
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Verifying examples are included for the benefit of the reader. Our exposition
is given in the same spirit that led the author P.J.L. to write on an obscure
and seemingly forgotten convolution type identity of Catalan [3] (see also
[4] for hypergeometric proofs) not too long ago. As in [3], the methodology
adopted by Catalan is accessible at undergraduate level, although this does
not diminish the formulation which demonstrates originality of thought at
the time. Remarks concerning both combinatorial aspects of the identity
and its appearances in the literature are also made.

Catalan’s Formulation

We begin with an application of the powerful 1770 inversion formula of
Lagrange; we state a result in which it can be found, taken for convenience
from the treatise of Whittaker and Watson [5, p.133] (Catalan apparently
used a version available in Bertrand’s Calcul Différentiel).

Theorem (Lagrange) Let f(z) and ¢(z) be functions of z analytic on
and inside a contour C surrounding a point @, and let £ be such that the
inequality

lté(2)| < |z —al
is satisfied at all points z on the perimeter of C; then the equation
¢=a+14(¢),

regarded as an equation in ¢, has one root in the interior of C; and further
any function of ¢ analytic on and inside C can be expanded as a power
series in ¢ by the formula
e dn-1 "
Q) = fla) + Y == F (e} {g(a)}"] -

n=1

So as to be in line with Catalan’s formulation we replace {,¢ with y,z,
upon which, choosing as a special case ¢(y) = 1/y and f(y) = 1/¢* (k>0
constant), the Theorem gives that the equation

y=a+§ (3)
in y(z) yields a series form of y~*(z) as
k k N —(k+nt1nE"
Yy = a -kzdan_l[a ]?
n=1
o xn
-k —1)"a—(k+2n) A(n- B)—
= a*4 kn;( 1)a A(n; k) — (4)
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after a little work, A(n; k) being the function
Am;k)=(k+n+1)(k+n+2)---(k+2n-1). (5)

Although Catalan does not mention this, the (n — 1)-term product A(n; k)
must be read as 1 for n = 1, but this becomes redundant if (4) is further
written using factorials as

oo
-k -k _1\n —(k+2n)(k+2n_1)! n
y a +k,,z=:1( 1)%a —__n!(k+n)! T
[ o]
= a7k 4+ (-1)"a~*+?™)B(n; k)z", (6)
n=1

where, to perhaps emphasise its integrality, he writes B(n; k) as

B(n;k)=(k+2n—l)_<k+2n—-l). ™

n n—1

Now, setting @ = 2 and replacing z by —4z, we see from (3),(6) that
associated with the particular equation

1z
=2-— 8
y ” (8)
is the kth inverse power of y
[ o]
yk=2* [1 + Z B(n; k)z"] . 9)
n=1

On the other hand, however, the solution to (8) as a quadratic in y is
y(z) = 1+ /1 — 4z (taking necessarily the positive square root!), whence

—+1-14
1_1-vi-iz (10)
Y 4z
and in turn 1
y k= 2—ka(:c), (11)
where
1-+v1-4z
) = —%
= c0+c1;c+(:2z2+-~ (12)

1With y(z) = 14 /T — 4z then y~! =+ 27! as z — 0 (by (10)), so that, since integer
k>0, y=F=(y~1)k o (27N = 2=* which is consistent with (9) in the limit; Catalan
makes brief reference to this in the “Addition™ to [2] as a footnote on the first page.
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is the (ordinary) generating function for the Catalan numbers (known at
the time to Catalan from the work of others). Reconciling (9) and (11),
and multiplying both sides of the resulting equation by z*, gives

o
[1 + Z B(n; k)z"} =¥ = (coz + 12 + 2 + - - )k, (13)

n=1

from which the identity is immediate; writing a typical member of each of
the k r.h.s. brackets as co—12%,c5-12%,¢y-127,...,cr_1z*, then equating
coefficients of z¥+" across (13) it follows that (1<e,B,y,...,.2<n+1)

Ca=1CB—1Cy—1+"*Cr—1 = B(n; k): (14)
atfty+--+A=k+n

with B(n; k) (7) as defined. For specified k,n > 1 the sum contains (+n-1
terms, each a k-product of Catalan elements whose indices add to n. Note
that what we know today as the Catalan numbers were then called “Segner
numbers” in terms of which (14) was established in the aforesaid references
(1,2] (thus explaining their titles) and in the “Addition” to [2].

Examplel: n=2, k=4

D cac16p-164-165-1
atf+y+5=6
= €200CoCo + CoC2¢0Co + CocoC2Co + Cocococa
+ c1c1e9cp + c1¢e1c0 + €1¢0c00y
+ coc1c160 + €oci€oCy + cococicy
= 242424241 4+14+14+141+41
(3)-(7)
2 1

B(2;4). (15)

Example 2: n=3, k=4

z , Ca=1CF—-1C4—1C5-1
a+pf+y486=7
= €3CoCoCp + CoC3CoCo + CoCoc3cp + CoCoCoC3

+ c2¢160¢0 + c2¢0C1¢0 + €2C0C0C1 + Cocacycy
+ cocacocy1 + €1¢acoco + c1cpcace + ¢1cpcocs
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+ coc1€2¢0 + cocicoc2 + cococacy + cocpcica

+ eicieico + cicicoey + cicpcrer + copcic1a

= 5+5+5+5
F24+2424+24+24+2424+24+24+24+242
’ +14+14141
= 48
= (5)-(3)
3 2
— B(3;4). (16)

Catalan himself illustrated his identity in the “Addition” to [2] for n = 4,
k=3.

Remark We make the remark that when & = 1 the identity merely confirms
the definition of ¢n = Yooty Cam1 = B(n;1) = (¥) = (2°) = #1-(":’),
whilst the value k = 2 recovers the long established convolution

Z Ca—1Cg—-1 = CoCn+CiCn_1+ - -+ cCn-1€1+Cnco
at+f=n+2
= B(n;2)

_ (%:1)—<?ff)
- 3%5(2?::))
= Cpp1e (17)

Another case perhaps worth validating is that for n = 1, where the identity
correctly gives

Ca—1€p—~1Cy—1"""Cr=-1
a+f+y+-+A=k+1
= ¢€1€¢Co---Cp+ CoC1Co - -Co + CoCoCy ---Cp+ - -+ CoCpCo---C1
= 141414---41
= k
_ kE+1 _ k+1
- 1 0
= B(1;k). (18)

The analysis and examples above are consistent with Catalan’s derivation.
A possible oversight by him, however, is that B(n;k) (7) takes the con-
tracted form B(n; k) = 52 (*%¥) (familiar in combinatorial circles as a
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so called “ballot number” and available directly through a different cultiva-
tion of Lagrange inversion), and we choose to state the result in final form
thus, preserving Catalan’s notation in the Lh.s. sum: Forn >0,k > 1,
k 2n+k
Ca—-1€8-1Cy—1*"*Cr-1 = Mtk ( : ) . (19)
a+B+v+-+A=k+n

Interpretations of B(n;k)

Before finishing with some concluding remarks we frame combinatorially the
function B(n; k) for completeness, selective values of which are shown below
in a table whose columns have, in order (reading left to right), ordinary
generating functions G(z), G?(z), G3(z), G%(z), ...

kh| 1 2 3 4 5 6 7 8
T 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
2 5 9 14 2 21 35 44

5 14 28 48 75 110 154 208
42 90 165 275 429 637 910
42 132 297 572 1001 1638 2548 3808
132 429 1001 2002 3640 6188 9996 15504
429 1430 3432 7072 13260 23256 38760 62016

Ot W~ O
—
=N

Table 1: Values of B(n; k).

If columns 2, 3,4, 5, .. ., are pushed down by the respective amount of places
1,2,3,4,... (and the gaps they leave replaced with zeros), then the mod-
ified array forms a particular Riordan matrix (introduced in the seminal
1991 paper by Shapiro et al., Disc. Appl. Math., 34, pp.229-239) whose
columns have generating functions G(z), zG?(z), z2G3(z), 23G*(z), . ..

Pleasing combinatorial views of B(n; k) are to be found in considering walks
in the 2D plane. Denoting, in the usual fashion, an upward step from gen-
eral point (z,y) to (z + 1,y + 1) as U, and likewise writing D for a step
from (z,y) to (x+ 1,y —1), then B(n; k) = ﬁ(z": *) counts the number
of paths from the origin (0, 0) to the point (2n+k — 1,k — 1) staying on or
above the z-axis via steps of type U and D; a formal proof of this result is
not elementary (requiring the use of André’s Reflection Principle), and is
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dealt with in the Appendix. Linked to this is the observation that the num-
ber of k concatenated Dyck paths? whose semi-length is n is again B(n; k).
1t is perhaps helpful to provide an example for this last interpretation. As-
sociated with the concatenation of, for instance, k¥ = 4 Dyck paths is the
generating function G4(z) = Y0, B(n;4)e™ = 1+ 4z + 1422+ 482 +- - -,
whose (enumerating) coefficients are available from Table 1 and may be
checked as follows (where e stands for the ‘empty’ Dyck path):

Paths of Semi-Length 0:

e : 1 permutation of this type
Permutations Total 1 = [2%){G%(=)}

Paths of Semi-Length 1:

UD,e,e,e

Permutations Total

Paths of Semi-Length 2:

UD,UD,e,e
UDUD,e,e,e
UUDD,e,e,e

Permutations Total

Paths of Semi-Length 3:

UD,UD,UD,e
UDUD,UD,e,e
UUDD,UD,e,e

: 4 permutations of this type

4=[="{G* =)}

6 permutations of this type
4 permutations of this type
4 permutations of this type

14 = [z’{G*(z)}

4 permutations of this type
12 permutations of this type
12 permutations of this type

2A Dyck path comprised of steps U and D begins and ends at the same height (i.e.,
y co-ordinate) and never, at any point, falls below that height. Its semi-length is one
half of the difference in the z co-ordinates of the points at the beginning and end of the
overall path. :
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UUUDDD,e,e,e : 4 permutations of this type
UDUDUD,e,e,e : 4 permutations of this type
UDUUDD,e,e,e : 4 permutations of this type
UUDDUD,e,e,e : 4 permutations of this type
UUDUDD,e,e,e : 4 permutations of this type

Permutations Total : 48 = [z%]{G%(z)}

This procedure can be continued as desired.

Further Remarks

We emphasise that it is the novel procedure of Catalan, in arriving at his
result, which is of overriding concern here. A great deal of the theory
now taken for granted by combinatorialists was undiscovered in the 19th
century, and modern analysts have much more knowledge on which to draw.
By way of illustration, a contrasting contemporary approach to (19) is made
by Graham, Knuth and Patashnik [6] who define (see Section 7.5 therein)
a power series P(z) through the functional relation

P(z) = zP™(z) + 1, (20)

and show (using an observation of G.N. Raney regarding cyclic shifts) that
[e"]{P'(2)} is, for integer I > 0, the number of sequences of length mn + I
possessing the characteristics that (i) each term in the sequence is either
1 or 1 — m, (ii) all partial sums are positive, and in particular (iii) the
total sum is /. This number is found to be the (unique) combination of !
sequences that each have the so called “m-Raney” property,® namely,

> ey, (21)
nykngde-+ni=n

where the “Fuss-Catalan” number of Graham et al. (sometimes referred to
by people as the ‘generalised’ or ‘higher’ Catalan number) is*

C'(‘m)z;(m""'l), (22)

mn+1 n

3An m-Raney sequence {ag, a1,...,amn} of terms 1 or 1 — m, defined after Raney,
is one for which properties (i),(ii) hold and whose total sum is 1; the number of such
sequences is ctm (22).
n
4This entity arises naturally in considering polygon partitioning—a classic problem
described in enumerative combinatorics with a long history. The interested reader is
referred to the Appendix of an article [7] by Larcombe and Wilson for more details.
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A simple counting argument (using a further result due to Raney) gives a
closed form for the sum (21) as

! (”‘"“). (23)

mn+1 n

Form =2, C? = ¢, (2) and P(z) = G(2) (since (20) reads P(z) =
zP%(z) + 1, which the generating function G(z) satisfies), and equating
(21) with (23) reproduces (19) on changing I, z to k, z. Clearly, Catalan’s
identity relates in this situation to the composition of k¥ 2-Raney sequences,
each of individual length 2n+1 and comprised of terms +1; it is an instruc-
tive interpretation, especially since (19)—although certainly known—is not
overly discussed in the literature in this kind of way.

On this last point (and to conclude matters), we note that in [6], with
the “generalised binomial series” B3(z) corresponding to G(z) (see (5.68),
p-203), the result (19) is listed in the equivalent form

° k n+k
k(p) = — n
G*(z) = ,?:0 SR ( n ):c (24)
as equation (5.70),° together with the related identity (5.72)

%:i(z":k ):c". (25)

n=0

These are also given in the useful paper by Deutsch and Shapiro [8] as
(supplementary) Results I,II (p.33), and Wilf includes them as equations
(2.5.16),(2.5.15) on p.54 of [9]. At the bottom of p.128 of [10] is a version of
(24) (see also [9, p.170], where the inversion formula of Lagrange is applied
to obtain it in yet a different guise), and doubtless there are other instances
where it crops up in a particular context. Perhaps the most interesting
technical formulations are the generalised ones of Gould [11] (the following
results are also tabled as (1.121),(1.120) (p.15) in his well known work [12])
who, on defining

o« a+ fn
An(avﬂ) - a+ﬁn ( n ) 3 (26)
derived the result (see p.85)
i Ap(a, B)2" = 29, (27)

n=0

5The sum begins at n = 0 (where it gives the correct lead term in the expansion of
G*(z) based on (12)), at which value, as it must, (19) holds with Lh.s. cococo -+-co = 1.
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where
z—1

P
and with convergence for |z| < |(8 — 1)?=!/BP|; setting & = k and # = 2
yields (24) from (26),(27) (emphasising that (28) implies z(z) = G(z)),
and (25) is recovered in an analogous fashion (with a little more effort) by
Gould’s later identity (p.86)

I G R &

n=0

=

(28)

Other early appearances are in Riordan’s 1968 text [13] (where obtaining
(24) is set as part of Problem 2(a) (p.153), and showing (25) is likewise
part of Problem 2(c) (p.154)°) and in the authoritative book by Pélya and
Szego [14] (see Gould’s result (29) on p.302, the explicit identity (25) on
p-303 and the references around them; also the form of (24) on p.301).
Recently, Deutsch and Shapiro [15, p.246] mention that (24) can be de-
rived via Lagrange inversion, and outline a neat inductive argument in-
stead. In the same paper they make an appeal to (25) (which is writ-
ten ["]B(2)C*(z) = (**+°), with B(z),C(z) appropriately defined) in the
proof of Lemma 1 on p.256; a potted combinatorial derivation of the identity
is offered in the accompanying footnote. Finally, we remark that hyperge-
ometric function theory, applied by hand, produces without difficulty the
corresponding series forms

G’k(:c) =.F (%k’é'f:’:' 1) 41:) ) (30)
and Gk(z) s(k+1),3(k+2)
e o F ( k1 4x) (31)

(written here in standard hypergeometric notation), which are generated
directly (choosing @ = 1k, z = 4z) from the respective first and second
equalities of the identity

a,l+a
12 _ 2a — . ]—2a
2 ( 1+ % Z) = 2 [1+\/1 Z]

1
’__l—zzFl(1+°’2+a

1+ 2a

z) (32)

SThe lower entry of the r.h.s. binomial coefficient is incorrectly written k rather than
(correctly) n, as is the summing index. Note that the start of Problem 2(c) re-states
(24) with a minor variation of the function B(n;k) (7) as the coefficient of z".
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tucked away as (15.1.13) on p.556 of the celebrated handbook of Abramowitz
and Stegun [16]. The reader may well have seen (24),(25) elsewhere. They
will hopefully be included in the next edition of Volume 2 of R.P. Stan-
ley’s Enumerative Combinatorics (Cambridge University Press, Cambridge,
U.K., 1999), and are currently to be found in the “Catalan Addendum”7 to
his oft cited problems involving the Catalan numbers in Chapter 6 of the
book.

Summary

A convolution identity involving the Catalan numbers has been presented
in a manner that is faithful to its original derivation by Catalan; it has
also been framed combinatorially. Whilst the result is known, his personal
formulation does not seem to have been discussed previously. It would
appear that hypergeometric function theory cannot be applied to provide
an alternative proof of it. We note that there is no evidence to suggest
that Catalan had any interest in, or was at all seeking, a combinatorial
interpretation of B(n; k) or the identity (24), indeed we remind the reader
that his work on which this article is based actually pre-dates by over a
decade the publication by Désiré André of the elegant Reflection Principle
in 1887 (invented by him to solve a now famous type of voting problem).

Appendix
Here we give a combinatorial interpretation, in the context of (integral) 2D

lattice paths, for the expression B(n; k) = 5 (**2"). Whilst the theory is
standard, its inclusion is felt to be a useful one for the non-specialist reader.

Let P1, P; have respective co-ordinates (a1, 1), (az,b2) in the z,y plane,
where 0 < @) < az, b1, b2 > 0. A straightforward path counting argument
gives, via steps of type U, D, the number of all paths from P, to P; as

A(Py, P) = ( %[az—;l: :‘(1’:2 —b1)] ) ’ (Y

some of which may lie below the z axis at any point(s). Call a path good
if it lies strictly above the = axis, otherwise it is bad. The well known
Reflection Principle of André (see, for instance, Example 14.8 (pp.118-119)

"Located at the web site http://www-math.mit.edu/~rstan/ec; the two iden-
tities are set as problems, with succinct solutions provided (for the record, they were
added in December 2001). The “Addendum” is continually being updated, and is worth
a look for anyone genuinely interested in the Catalan numbers.
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of van Lint and Wilson [17] or p.69 of the widely referenced discussion of
paths in [18]) allows

as —ay
B(P,, P) = A2

(P, P2) (%[ﬂz—al—(bz+bl)]> (A2)
to be determined as the number of bad paths between P, and P,, so that
the good paths between them total

G(P,,P;) = A(P,P)— B(Py,P)
(stor—enomian )
3laz — a1 — (b2 — by)]

as — ay

( 3laz — ay — (b2 + by)] ) ’ (43)
as a small check, note that if either by or b, is zero then there is no good path
between P, and P, since one of them lies on the z axis, in which case (A3)
correctly reads G(P;, P;) = 0. We now introduce the notion of an almost
good path, which runs between two points and lies on or above (that is,
not below) the horizontal. From P, to P, the set of such paths, numbering
AG(P,, P»), is by inspection equal to the set of good paths w.r.t. a new z
axis translated downward by one unit from the original one at y = 0. In
other words, we simply increase both b, b2 by 1 in the r.h.s. of (A3) to give

AG(P, Py) = ( 92— a )

$laz — ay — (b2 — b1)]

az—a
_< 3o —a Z (b21+51+2)] ) (A4)

Now, fix P, as the origin O and suppose a point P has co-ordinates (a, ),
say (a > 0, > 0). Then (A4) contracts to

won- () () W
which in turn simplifies to
_2(b+1) a
AG(O,P)_m( L(a—b) ) (A6)

Setting a =k +2n — 1, b = k — 1 as the particular co-ordinates of P, it is
immediate that

B(n;k):AG(O,P):(k+2n_l)—(k+2n_1) (AT)

n n—1
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using (A5) (this is equation (7)), or, from (A6),

Kk (k+m—1\_ k [k+2n
= s (271 )2 ()
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