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Abstract: We obtain necessary conditions for the
enclosing of a group divisible design with block size 3,
GDD(n, m; A), into a group divisible design GDD(n,
m+1; A+x) with one extra group and minimal increase in
A. We prove that the necessary conditions are sufficient
for the existence of all such enclosings for GDD’s with

group size 2 and A £ 6, and for any A when v is

sufficiently large relative to A.
Kevwords: triple system, GDD, RGDD,

complete graph, enclosing.

1. Introduction

In their authoritative work on triple systems [1], C.J.
Colbourn and A. Rosa state that the existence of enclosings of
partial triple systems, or even triple systems themselves, has yet to
be studied. Motivated by this statement, Hurd, Munson, and
Sarvate [5] solved the problem of existence of minimal enclosings
for triple systems (or TS) into TS’s with one extra point and a
minimal increase in the index A with 1 £A<6. Since a TS can be
considered a group divisible design with group size 1, in essence
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they added one new group of size 1 for their enclosings. We take a
next logical step which is to find necessary conditions for
enclosings, by adding one more group, of group divisible designs
with group size two, and to prove that these necessary conditions
are sufficient for minimal enclosings. In this paper we completely
solve this problem for the case of minimal enclosings with group
size two and index A with 1 < A < 6. In fact we give minimal
enclosings for all A provided the minimal increase x is less or equal
to 3.

Let 7, a set of v points, be partitioned into m groups, each
of size n. A group divisible design with block size 3, GDD(n,
m; }) is a collection of blocks or unordered triples of points of V,
such that each pair of points from different groups occurs together
in exactly 4 blocks in the design and pairs of points from the same
group never occur in the same block. It is clear that m > 3, since
we are dealing with block size 3. A GDD in graph theoretic
terminology can be considered as a graph decomposition into
triangles of A(K,-I) where I is a one-factor. In that sense, when n =
2, we want to enclose the graph decomposition of A(K,-I) into that
of (A+x)(Kp+v-I') where I’ o I is also a one-factor.

The problem we deal with is that of the minimal standard
enclosing of X = GDD(n, m; 2) into Y = GDD(n, m+1; A+x) for a
minimal positive x. This means that, given X, we wish to construct
a new GDD, say Y, on the points and groups of X along with one
additional group of n points, and with the smallest possible
increase in A. Y contains, as a proper subdesign, all of the blocks
from X.

The following necessary conditions for the existence of
GDDs with block size 3 are well known, e.g. see Hanani [4] or
Raghavarao [8].

Lemma 1.1. There exists a GDD(n, m; }.) iff
(a) 2 divides An(m—1),
(b) 3 divides An? m(m-1), and
(c) m=23.
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Lemma 1.1, along with a variety of sources including Fu,
Rodger and Sarvate [2] and Lindner and Rodger [3], gives Table 1.
Each cell (n, 1) in Table 1 represents these values for v mod 6,
given A mod 6 and n, and assuming n divides v. For example, to
determine the condition on v for a GDD(3, m; 5) to exist, we must
look at cell (3, 5), since n=3 and A = 5. This tells us that for this
GDD to exist, it is necessary that v=3 (mod 6). We note that v>3
in all cases, since we are dealing with block size 3.

In Section 2 we derive new necessary conditions. Section 3
gives both a new general construction for enclosing of GDD's and
a single construction for v = 6 and any index. In the succeeding
sections we give examples and constructions for values of the
index from 1 (mod 6) to 6 (mod 6). All the general constructions
either use the new construction of Section 3 or a method used in
[6] involving difference partitions which are described below.

A GDD is said to be resolvable if its blocks can be
partitioned into classes such that each point occurs exactly once in
each class. These classes are called resolution classes. We will
refer to a resolvable GDD as an RGDD(n, m; ). See, for example,
Rees and Stinson [9] for the following necessary conditions and
results for an RGDD(n, m; 1).

Lemma 1.2. The following refer to the existence of an RGDD(n,
m; 1):

(a) n =1,5 (mod 6) implies m =3 (mod 6).

(b) n =3 (mod 6) implies m =1 (mod 2).

(c) n =2,4 (mod 6) implies m =0 (mod 3)

(d) n =0 mod 6 implies no congruential conditions.

(e) Thereis an RGDD(n, 3; 1) iff n is not 2 or 6.

(D If n =15 (mod 6) then there exists an RGDD(n, m; 1)

iff mis odd.
(g) For n =3 (mod 6), there is an RGDD(n, m; 1) iff m is
odd.

(h) There is an RGDD(2, m; 1) iff m =0 (mod 3), m 2 9.
(i) There exists an RGDD(12, m; 1) if m 2 3.
() If m > 3, there exists RGDD(6, m; 1) if m is not 11, 14.
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Corollary 1.3. If an RGDD(n, m; 1) exists, then an RGDD(n, m;
A) exists for all A > 1.

n A 0 1 2 3 4 5
1 012345 |13(0134 |135] 0,1,34 (13
2 0,2,4 02| 02 0,24 02 102
3 0,3 3 0.3 3 0,3 3
4 0.2,4 04| 04 0,24 04 |04
5 01,2345 }35] 0235 |135] 023,56 |35
6 0 0 0 0 0 0

Table 1 - The spectrum of GDDs for parameters v, n, A mod 6

One commonly used method of employing a GDD for
enclosing purposes involves a technique known as expanding a
resolution class. Suppose we have a GDD containing some
arbitrary number of resolution classes. To expand a resolution
class about some new point, y, we take each block {a, b, c} in the
resolution class and replace it with three different blocks: {y, a, b},
{y, a, ¢}, {y, b, c¢}. This is helpful because it does not raise the
index of the original elements, but it creates an index of 2 for the
new point with all old points.

Another important technique we use in constructing these
GDDs is that of graph factorization and partitioning. The complete
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graph, denoted K] is a set of j vertices and j(j-1)/2 edges such that
every vertex is connected to every other vertex via an edge. A
one-factor of K; is a full set of parallel edges (i.e. no two edges in
the set contain the same vertex, and each vertex appears once).
When j is even say j = 2¢, we define a one-factorization of Ky to
be a set of 2¢-1 one-factors such that the union of these 2¢-/ one
factors gives the set of all edges of X,. When j = 2¢, such a one-
factorization always exists.

A difference partition of Ky, is a set of disjoint classes P,
Py, ..., P, where edge (i, j) is in Py if and only if i — j = k (mod 2t).
Difference partitions and one-factorizations can be used in the
construction of GDDs with group size 2 by carefully utilizing the
following well-known results (see Stanton and Goulden [10] and
Hurd and Sarvate [6]). For example, adding new point y to each
edge in a one-factor (based on the points of X) turns each edge into
a block for Y. This puts y in a block once with each point of X. If,
further, each edge in a one-factorization is used to make new
blocks, then the index for all old points is increased by 1. In the
Lemma below, "triangles" is used in the sense of subgraph, but for
our purposes, triangle equates to block of a GDD.

Lemma 1.4. With respect to the complete graph K, we have:

(a) The triangles {1 + i, 2+ i, 4+ i} fori = 1, 2, ..., 2t contain

exactly the edges from P, P,, P; and the graph K; may be
Jactored into 2t-1 one-factors such that six of the 1-factors
can be combined into 2t triangles.

(b) The triangles {1 +i, 1 +x+i 1 +x+y+i}fori=1, 2,
..., 2t contain exactly the edges from Py, Py, Py+,, where (x
+y) <t

(¢) The pairs in P, form a one-factor. The pairs in Py (for 2x
+ 1 < t) may be divided into two one-factors. The pairs in
P>, may be divided into a two-factor (i.e. a set of n edges
such that each vertex occurs in exactly 2 edges) if 2x < t.

(d) If 2x + 1 < t, then Py, U Py splits into four one-factors.
If tis odd, the set P,.; U P,can be split into 3 one-factors.

(e) For the complete graph Kg the set Py U Py forms 4s
distinct triangles and the set P,; forms 2s distinct triangles.
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2. Necessary Conditions

Two well known relationships between the parameters of a
GDD(n, m; A) with block size 3 are
A(v-n) = 2r, and vr = 3b.
These two relationships are used to obtain the first two conditions
given in the Lemma below.

Lemma 2.1. The following conditions are necessary for the
enclosing of a X = GDD(n, m; 2) intoa Y = GDD(n, m+1; A+x):
(a) v(A+x) =0 mod 2
(b) v(v+tn)(A+x) =0 mod 6
(c) by— by 2nr,
where ry and ry, are the replication numbers for X and Y,
respectively, and b, and b, are the number of blocks in X and Y,
respectively.

Proof: As
2ry = (A+x)[(v+n) - n] = v(A+x)
condition (a) follows. Also
(v+n)r, = v(v+n)(A+x)/2 = 3b
implies condition (b). The third condition arises from the fact the
number of new blocks that are needed to create Y is by, — b, and that
n is the number of new points in Y. Thus, the number of new
blocks must be greater than the total number of times the new
points (which do not appear together in any block) must appear in
Y.
]

Part (c) of Lemma 2.1, for our purposes, is better expressed

as in Corollary 2.2. We use this condition extensively.

Corollary 2.2. For any enclosing of GDD(n, m; A) into GDD(n,

m+1; A+x), it is necessary that x(m-2) 2 A.

Proof: We substitute the value of by - by and 1y to obtain
[(vn)(A+x)yv — (v-n)vA]/6 2 nv(A+x)/2
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and then simplify to yield
vx 2 n(A+2x).
Since v = mn, solving for the index gives
x(m-2) 2 A.

3 4 6

(1,5) (3,1)

(0,1) (1,4)
(3.2) (4,1)

6.1

(1,3) (3,1}(0,1) (1,2)

(3.2) (4.2)

(1.1) (3,1%2.1) (3,2)

(0,1) (1.6)
(4.3) (5.2)

(0,1) (2,2)

(0,1) (2,1)

(0,1) (2,3)
(4.1)

(0,1) (2,2)(0,1) (2,1)

(0,1) (2.,3)
(4.1)

3.1)

(0,1) (3.2)

&.1)

(0,1) (3,2)

3.1)

(0,1) (3,2)

(0,1) (4,2)

(0,1) (4,1)

(0,1) (2,1)
(4.3)

(0,1) (4,2)

(0,1) (4,1)

(0.1) (2,1)
(4.3)

(0,1) (1,2)
3.1) (5.1)23) (3.2)
(43) (5.6)

(0,1) (2,1)
(3.2) (5.4)

(1,1) (3,1)(0,1) (2,2)

(3.1) (5.5) (5.3) {3.2) (5.2)

(0,1) (0,1) (0,1) (0,1) (0,1) 0.1)

Table 2 — Minimal x for GDDs given parameters A and n
for sufficiently large v.

Using Table 1 and Lemma 2.1, we have created Table 2 which
shows the minimal possible x required for enclosing in each case
for large enough v. Each ordered pair (v, x) in the cell (n, A)
represents these values for the given v and A mod 6, i.e. a GDD(n,
m; A) can be minimally enclosed in a GDD(n, m+1; A+x). For
example, if we wish to find the minimal enclosing for a GDD(3, m;
5), we would look at cell (3, 5). The (3, 1) entry means that v = 6t
+ 3 and x = 1. Therefore, one should try to enclose a GDD(3,
2t+1; 6s+5) into a GDD(3, 2t+2; 6s+6) for all possible values of m
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which satisfy Corollary 2.2. The aim of this paper is to show the
existence of all these possible enclosings for each entry in line 2 of
Table 2.

3. New General Results

In Sections 4 to 9 we consider GDD with A = 6s+1to A =
6s+6 for s > 0, respectively. However, in this section we first
establish a new general construction for arbitrary group size which
we apply later several times. Then we give an application of
Corollary 2.2 for v = 6 and any index A. As will be seen, the
enclosings possible for v = 6t will tend to vary fort=1,t=2,and t
> 2, and it is convenient to handle the special case in this section.

Theorem 3.1. Let X = GDD(n, m; A). Suppose that there exists Z
= RGDD(n, m; x), that A + x is even and that Corollary 2.2 is
satisfied. Then X may be enclosed by Y = GDD(n, m+1; A+x).
Proof: The design Y consists first of the blocks of X and the
blocks of Z. This raises the index of points of X with each other to
A+x. Now, the replication number r, for Z is also the number of
resolution classes and, for block size 3, is given by r, = nx(m-1)/2.
To finish the enclosing, we must expand each of the n new points
with (A+x)/2 resolution classes from Z. We need n(A+x)/2
resolution classes. However, Corollary 2.2 implies
A <x(m-2),
A+x<xm—-x=x(m-1), so
n(A +x)/2 <nx(m-1)/2.

But the left hand side is the number of resolution classes needed
and the right hand side is the number available. It is easy to see
that the index is A+x for all points not in the same group. So X is
enclosed by Y, a GDD(n, m+1; A+x).

|
Theorem 3.2 Any GDD(2, 3; A) can be_minimally enclosed into Y
= GDD(2, 4; 22).
Proof: First we use A-copies of a difference partition {P,, P;, P3}
of K¢. The pairs in P; correspond to the groups of X and are not
used to make blocks. Use A-copies of P, to make blocks with new
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point 7 and A-copies of P, to make blocks with new point 8. Since
the index is 2A for all points, we have enclosed X into Y. By
Corollary 2.2 with v = 6 and m = 3, we get x = A. Thus the

enclosing is minimal.
|

4. A=1 (mod 6)

Note that row 1 of Table 2, where n = 1, has been dealt
with in [5]. For the rest of the paper, the group size n is 2. Noting
the cells of Table 2, we can see that to enclose a GDD(2, m; 1) into
a GDD(2, m+1; 1+x), it is necessary that v = 6t or v = 6t + 2.

For v = 6t, x = 1 is minimal by Table 2. For the case of t =
1 see Theorem 3.2, and for t = 2 we show existence through a
specific construction. Fort > 3, we will apply Theorem 3.1.

Example 4.1 We consider the case where t = 2. We will be
enclosing X = GDD(2, 6; 1) into Y = GDD(2, 7; 2). We know that
X has 20 blocks, and the replication number is 5, and that Y has 56
blocks and a replication number of 12. So it is necessary to add 36
new blocks to X to create Y. Consider a difference partition of
Ki2. We can consider Pg as the groups of X (by relabeling if
necessary) since it is a partition of 12 vertices into pairs (a one-
factor). We then create a set of 12 new blocks from P4 by adding
13 to each edge. Similarly, we create another set of 12 new blocks
from Ps by adding 14 to each edge. Thus, we have created 24 new
blocks, and the index of 13 and 14 with each number is 2, as
required. To get the remaining 12 blocks, we use part (a) of
Lemma 1.4, which allows us to form blocks from the remaining
partition elements P;, P,, and P;. Adding these 36 new blocks with
the original 20 blocks of X, gives us Y.

Theorem 4.2 Let X = GDD(2, 3t; 6s+1) andt 2 1. Then X can be
minimally enclosed into a Y = GDD(2, 3t+1; 6s+2) provided
Corollary 2.2 is satisfied.

Proof: In view of the examples, we assume t >2. We consider Z,
an RGDD(2, 3t; 1). Z exists by Lemma 1.2 part (h), since m= 0
mod 3 and m > 9. To use resolution classes to get the new blocks
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with the new points, 6s+2 resolution classes are needed (3s+1 for
each of the two new points to be added to X to form Y). This is
exactly guaranteed by the hypothesis that Corollary 2.2 is satisfied,
and the theorem follows by Theorem 3.1.
||
For v = 6t+2, we can see that x = 2 is minimal. We will
enclose a GDD(2, 3t+1; 1) into a GDD(2, 3t+2; 3).

Example 4.3 We consider the case where t = 1. To enclose X =
GDD(2, 4; 1) into Y = GDD(2, 5; 3), we will use a difference
partition Py, P,, P3, P4 of K to increase A by 1 for points of X, and
then follow by taking a copy of X to increase A again. We identify
P, with the groups of X, and so P4 is not used to make new blocks.
For new point 9, make blocks with the pairs from the two-factor P,
and one of the one-factors comprising P,. For new point 10, use P;
and the remaining pairs from P, for new blocks.

Theorem 4.4 Any X = GDD(2, 3t+1; 6s+1) can be minimally
enclosed into a Y = GDD(2, 3t+2; 6s+3) for all t >1when
Corollary 2.2 is satisfied.

Proof: We first suppose the index is 1 (s = 0) and modify the
proof for the general case. The case for t = 1 is in Example 4.3.
Now suppose t > 1. Then Y will consist of the blocks of two
copies of X and additional blocks formed from (the equivalent of)
3 one-factors for each of the two new points and other one-factors
formed into triangles (new blocks without new points). We will
use Kg+2 to increase the index of each old pair by 1 to get the
required index 3. We partition Kg.; into its difference partition,
which has 3t+1 classes of edges. We now apply a well-known
partition of indices technique (see, e.g., Hurd and Sarvate [6]) to
construct the necessary blocks. We consider the cases of t odd and
t even separately.

Case: t even — Since t is even, we have 3t+1 = 6j+1 sets in our
difference partition for some j. We identify Pgj+1 (a one-factor)
with the set of groups. We will use part (b) of Lemma 1.4 to
construct the triangles from the partition of indices, so we need to
take the remaining indices, i = 1, 2, ..., 6j, of the sets of the
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difference partition and partition them into triples {a, b, a+b}
where at+b < 3t+1, except for 3 indices that we will use to create
the blocks with the new points. The triples are

{la 3.]’ 3J+1}9 {3: 3.]'1’ 3.]+2}, seey {2.]'3’ 2.]+2’ 4.]'1}5 {2.]'1’
2j+1, 4j}, and

{2: 5.]: 5J+2}’ {4: Sj'l’ SJ+3}9 veey {2.]'2’ 4j+2, 6.]}

The remaining sets are Py, P41, and Psj»i. We now divide Ps;y
into two one-factors as described in part (c) of Lemma 1.4. We
add one new point to each edge in the first one-factor and the other
new point to each edge in the other one-factor. Then we add the
first new point to the edges in Py; and the other new point to the
edges in Pyj4;.

Case: t odd — Since t is odd, we have 3t+1 = 6n+4 sets in our
difference partition for some n. We identify Pgn+4 with the set of
groups. The needed triples in the case of an odd t are:

{1, 3n+2, 3n+3}, {3, 3n+1, 3n+4}, ..., {2n-1, 2n+3, 4n+2},

{2n+1, 2n+2, 4n+3} and :

{2, 5n+3, 5n+5}, {4, 5n+2, 5n+6}, ..., {2n-2, 4n+5, 6n+3}
The remaining sets are Pa,, Psg+s, and Pspeg. Since it is necessary
for one of the sets to have an odd index so we can apply part (c)
Lemma 1.4, we replace the triple {2n-3, 2n+4, 4n+1} with {2n,
2n+4, 4n+4} in the set of triples above. Part (b) of Lemma 1.4 is
then applied to construct triangles from the triples. We are left
with the classes Pyn.3, Pans1, and Pspes. Now we, divide Py, into
two one-factors as described in part (c) of Lemma 1.4. We add
one new point to each edge in the first one-factor and the other
new point to each edge in the other one-factor. Then we add the
first new point to the edges in Py,.3 and the other new point to the
edges in Pspy4.

Now suppose the index is A = 6s+1 for s > 0. Rather than a
second copy of X and one decomposition of Kgu4a, We use two
copies of K¢+, to make new blocks. Assume t is even (the odd case
is similar). We partition the copies as in the even case above. There
are six indices “left over,” two each of Pyj, P4j+1, and Psj+;. One
copy of each is used as described in the case above for A = 1. The
other three indices (that is, the corresponding P’s) comprise six
one-factors. We use these six one-factors to make blocks with one
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of the new points. Now one of the two new points requires s-triples
to create new blocks and one requires (s-1)-triples. Thus, 2s-1
triples are needed. We note that the hypothesis from Corollary 2.2
becomes
s <2j-1.
We note that there are 2j-1 triples in each partition of Kgwz. In
other words,
2s - 1 < 2(2j-1).
That is, the left hand side is the number of necessary triples of
indices to make new blocks and the right hand side is the number
available. Thus, there are ample one-factors to make all needed
blocks with the two new points. The one-factors corresponding to
any other triples of indices are used to make blocks without new
points as indicated in Lemma 1.4. ‘
|

It is worth noting that the separation of cases in the proof
for index 1 and for index 6s+1 is necessary. Two copies of Kgz,
necessary for the general case, can not be used for the index 1 case
since there would be no way to apply Lemma 1.4 to the six indices
not in triples. As will be seen, a similar comment is appropriate for
the proofs of Theorems 6.3, 7.2, and 9.3.

5. A=2 (mod 6)

We consider the problem of enclosing a GDD(2, m; 6s+2)
into a GDD(2, m+1; 6s+2+x). Noting the cells of Table 2, we can
see that it is necessary that v = 6t or v = 6t + 2. For v = 6t, we can
see that 1 is the minimal possible x by Table 2. Checking the
necessary condition by Corollary 2.2, we can see that this x does
not work for t = 1 but works for t > 2, the general case here.

When using a difference partition for the proof of Theorem
4.4, we used Lemma 1.4(b) which required three related P; to make
triangles, i.e, blocks for Y without new points. In the next theorem
we will use Lemma 1.4(e) so that the two P; corresponding to
indices t and 2t can be used together to make triangles. For the
general case at hand, if the enclosing is to be accomplished via a
difference partition, this use of P, and P, (equivalent to 4 one-
factors) is forced. This is because, for K¢, there are 6t-1 one-
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factors in all, the one-factor P3 is not used (it corresponds to the
groups), and because six one-factors are to be used to make blocks
with the 2 new points. This leaves 6t-1-1-6 = 6(t-2)+4 one-factors
left to make blocks without new points. Since Lemma 1.4(b)
“consumes” six one-factors at a time, there must be four one-
factors used in some way to make blocks. Interestingly, the
previous partitions can not be used in this case to allow use of P,
and P. They and P3 occur in different triples and there are too
many parts “left over.” However, two new partitions are
constructed in the proof of the next theorem which overcome this
difficulty, and exactly the right number of indices are not in triples
of the sort (X, y, x+y). In the remaining sections, when we use
difference partitions in a proof, we will prove only the odd case or
the even case, not both, or we will just refer to Theorem 4.4 or 5.1
to indicate the partition to be used when the difficulties of
balancing indices are straightforward.

Theorem 5.1 An X = GDD(2, 3t; 6s+2) can be minimally enclosed
into a Y = GDD(2, 3t+1; 6s+3) for all t 22 provided Corollary
2.2 is satisfied.
Proof: We use difference partitions as in Theorem 4.4. This time,
however, we must use a different set of triples representing the
indices of the difference classes. The even and odd cases are
considered separately. We first suppose A = 2.
Case: t even — Since t is even, t = 2j for some j. Therefore we have
6j difference classes. We identify Pg; as the set of groups and so we
remove it. Next we partition the difference classes with the
following triples:

(1, 35-1, 3j), (3, 3j-2, 3j+1), ..., (2j-1, 2j, 4j-1), and

(2, 55, 5j+2), (4, 5j-1, 5j+3), ..., (2j-2, 4j+1, 6j-1)
It can be verified that the Psj+; and Py are not included in any
triple. We remove the triple (2j-1, 2j, 4j-1) as well. Next we use
part (¢) of Lemma 1.5 to combine P4 and P; into triangles (note
that 2j =t and 4j = 2t). Next we divide Ps;+ into two one factors,
and add the first new point to one one-factor and the second new
point to the other. Finally, we add the first new point to the edges
in Py and the second new point to the edges in P4j.;. It can be
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verified that these new blocks along with the blocks of X form a
GDD(6t+2, 2, 3).

Case: t odd -t is odd, therefore t = 2j+1 for some j. So 6t =12j+6
and we have 6j+3 difference classes. We identify Pg+3 with the
groups of X. An appropriate partition of the indices is

(1, 3j+1, 3j+2), (3, 3j, 3j+3), ..., (2j-1, 2j+2, 4j+1), and

(2, 5j+2, 5j+4), (4, 5j+1, 5j+5), ..., (2j-2, 4j+4, 6j+2).

This time, the remaining indices are 2j, 2j+1, 4j+2, 4j+3, 5j+3, and
6j+3. This time we use part (¢) of Lemma 1.5 on Pyj+; and P2
(note that 2j+1 =t and 4j+2 = 2t), and divide Ps;j+3 into two one
factors. The rest follows the even case exactly.

Now suppose the index A = 6s + 2. In addition to the blocks
created as above, we need s triples for each of the two new points.
It is easy to see that there are 2j-1 triples of indices. Thus, we want

2s <2 -1
or equivalently, s <j.
The condition from Corollary 2.2 (A £ m — 2) in this case reduces
to

6s+2 <3t-2.

Since t = 2j, this becomes

s <j-=2/3.
That is, s <j.

|

From Table 2, for the case of v=6t+2, we see that x =1 is
minimal, and Corollary 2.2 tells us that these enclosings may exist
forallt=>1.

Theorem 5.2 An X = GDD(2, 3t+1; 6s+2) can be minimally
enclosed into a Y = GDD(2, 3t+2; 6s+3) for all t 2> I provided
Corollary 2.2 is satisfied.
Proof: Whent=1 and A = 2, use a one-factorization of Kg, which
has 7 one-factors. One one-factor corresponds to the set of groups
and three each are used for each of the two new points. The general
enclosing uses the partition from Theorem 4.4, and the argument
for the sufficiency of the number of triples of indices is the same as
at the end of the proof of Theorem 5.1.

|
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6. A =3 (mod 6)

We consider the problem of enclosing a GDD(2, m; 65+3)
into a GDD(2, m+1; 6s+3+x). Noting the cells of Table 2, we can
see that it is necessary that v = 6t, v = 6t+2 or v = 6t+4. In the case
of v = 6t, x = 1 is minimal, and Corollary 2.2 tells us that this
enclosing may exist for all t 22. For t = 1, we know x = 3 by
Theorem 3.2.

Example 6.1 We consider the case where t = 2. We will be
enclosing X = GDD(2, 6; 3) into Y = GDD(2, 7; 4). We use the
difference partition Py, Py, ..., Pg for K;,. Use Py by itself to make
triangles, by Lemma 1.4(e). Identify Pg with the blocks of X. Use
two of the partitions left to make blocks with the first new point
and use the other two partitions to make blocks with the second
new point.

Theorem 6.2 Let X = GDD(2, 3t; 6s+3) andt >2. Then X can be
minimally enclosed into a Y = GDD(2, 3t+1; 6s+4) provided
Corollary 2.2 is satisfied.

Proof: In view of Example 6.1, we may assume t > 3. We
consider Z, an RGDD(2, 3t; I). Z exists by Lemma 1.2 part (h),
since m = 0 mod 3 and m > 9. We also know that r, = m-1 = 3t-1.
It is necessary that r, > n(A + x) / 2 = 6s+4, but this is exactly the
condition guaranteed by Corollary 2.2. We can then apply

Theorem 3.1 to construct the new blocks of Y.
|

According to Table 2, for v = 6t+2, x = 3 is minimal.

Theorem 6.3 Let X = GDD(2, 3t+1; 65s+3). Then X can be
minimally enclosed into a Y = GDD(2, 3t+2; 65+ 6) for all t > 1
provided Corollary 2.2 is satisfied.

Proof: First, let A =3 and let Z denote a GDD(2, 3t+1; 1). We add
two copies of the blocks of Z to those of X. Now increase the
index for points of X to 6 by using a difference partition exactly as
in the proof of Theorem 4.4. For t odd or even, there are 3 indices
outside the partition, corresponding to six one-factors for one of
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the new points. Use the partitions corresponding to any other triple
to get six one-factors to make blocks with the second new point.
For the general case, A = 6s+3, and we need 3 copies of K¢z
rather than using Z at all. In addition to 18 one-factors outside the
partitions (Theorem 4.4), we will need 2s-1 triples of indices to
make blocks with the new points. Since x = 3, Corollary 2.2
guarantees this.
|
Table 2 shows us that in the case of v = 6t+4, x = 2 is
minimal, and Corollary 2.2 tells us that this enclosing may exist for
allt>1.

Theorem 6.4 Let X = GDD(2, 3t+2; 6s+3). Then X can be
minimally enclosed into a Y = GDD(2, 3t+3; 6s+5) for all t 21
provided Corollary 2.2 is satisfied.
Proof: First suppose A = 3. We will use two copies of Kg.4 to
increase the index of points of X by 2. We utilize the technique
introduced in Theorem 4.4 We consider only the case for t odd,
the other case being similar. Since t is odd, we have 3t+2 = 6j+5
for some j. The sets in our difference partition are Py, Py, ..., Pgj+s.
We identify Pgj+s with the set of groups in both copies of Kga.
The partition, from Theorem 4.4, which we use is the following:

{1, 3n+2, 3n+3}, {3, 3n+1, 3n+4}, ..., {2n+1, 2n+2, 4n+3}

and

{2, 5n+3, 5n+5}, {4, Sn+2, 5n+6}, ..., {2n-2, 4n+5, 6n+3},
{2n, 4n+4, 6n+4}.
The set Psy44 is left over in both copies. In the first copy of K44,
we turn all of the triples into triangles. In the other copy, we
remove one triple, the one containing, say, the sets Pan+1, Pan+2, and
Ps+3. We convert the remaining triples into triangles. We now
have five P;’s remaining which correspond to the 10 one-factors
we need to make blocks with the two new points. The general case
for A = 6s+3 is completed as before.

]

7. A =4 (mod 6)

220



We have two cases to consider: v = 6t, and v = 6t + 2.
Table 2 shows us that in the case of v = 6t, x = 1 is minimal, and
Corollary 2.2 tells us that this enclosing may exist for all t > 2.

Theorem 7.1 Let X = GDD(2, 3t; 6s+4) andt 2 2. Then X can be
minimally enclosed into a Y = GDD(2, 3t+1; 6s+5) provided
Corollary 2.2 is satisfied.

Proof: Use the partition from Theorem 5.1.
|

Table 2 shows us that in the case of v = 6t+2, x = 2 is
minimal, and Corollary 2.2 tells us that this enclosing may exist for
allt>1.

Theorem 7.2 An X = GDD(2, 3t+1; 6s+4) can be minimally
enclosed into a Y = GDD(2, 3t+2; 6s+ 6) for all t > I provided
Corollary 2.2 is satisfied.

Proof: Use 2 difference partitions of Kg+2 and this construction is

similar to the construction in Theorem 4.4.
[ |

8. A=5(mod 6) . .

We have two cases to consider: v = 6t, and v =6t + 2. We
begin with the case of v = 6t. Table 2 shows us that in the case of v
= 6t, x = 1 is minimal, and Corollary 2.2 tells us that this enclosing

may exist for all t > 3.

Example 8.1 Lett=2. Using Corollary 2.2, it is clear that x = 2
will work, so we will enclose X = GDD(2, 6; 5) into Y = GDD(2,
7; 7) by using two copies of a one-factorization of K;, and the two
corresponding  difference  partitions. The  details are
straightforward.

Theorem 8.2 Let X = GDD(2, 3t; 65s+5) andt 23. Then X can be

minimally enclosed into a Y = GDD(2, 3t+1; 6s+6) provided
Corollary 2.2 is satisfied.
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Proof: We consider Z, an RGDD(2, 3t; 3). Z exists by Lemma
1.2 part (h), since m= 0 mod 3 and m> 9. We can then apply

Theorem 3.1 to construct the new blocks of Y.
' |

Table 2 shows us that in the case of v = 6t+2, x = 1 is
minimal, and Corollary 2.2 tells us that this enclosing may exist for
all t > 2. We start by finding the x for the case of t=1.

Example 8.3 For the case of t = 1 and X = GDD(2, 4; 5),
Corollary 2.2 shows that x = 3 is minimal, but a GDD(2, 5; 8) does
not exist by Table 1, so we must let x =4. We may enclose X into
Y = GDD(2, 5; 9) - just use 4 copies of a difference partition for
Ks. Identify P4 with the groups. Make triangles with one copy of
Py, P> and P;. Use the other 3 copies of those partitions to get the
18 one-factors needed to make blocks with the 2 new points.

Theorem 8.4 Let X = GDD(2, 3t+1; 6s+5). Then X can be
minimally enclosed into a Y = GDD(2, 3t+2; 6s+6) for all t 22
provided Corollary 2.2 is satisfied.
Proof: The construction of this enclosing is identical to that of
Theorem 4.4.

|

9. A=0(mod 6)

Finally, we consider the problem of enclosing a GDD(2, m;
6s+6) into a GDD(2, m+1; 6s+6+x). Noting the cells of Table 2,
we can see that it is necessary that v=6t, v=6t + 2, or v==6t + 4.
Table 2 shows us that in the case of v = 6t, x = 1 is minimal, and
Corollary 2.2 tells us that this enclosing may exist for all t > 3.

Example 9.1 When t = 1, using Theorem 3.2, we can see thatx =6
is minimal. When t = 2, x = 2 suffices. To see this, we enclose X =
GDD(2, 6; 6) into Y = GDD(2, 7; 8). Use two copies of K;, and
the method of difference partitions.
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Theorem 9.2 Let X = GDD(2, 3t; 65+ 6) and t >3. Then X can
be minimally enclosed into a Y = GDD(2, 3t+1; 6s+7) provided
Corollary 2.2 is satisfied.
Proof: Use the method of difference partitions (Theorem 4.4). In
each case, odd t or even t, one needs 14 one-factors for the new
blocks. But this is straightforward.
]

Table 2 shows us that in the case of v = 6t+2, x = 3 is
minimal, and Corollary 2.2 tells us that this enclosing may exist for
allt>1. '

Theorem 9.3 Let X = GDD(2, 3t+1; 65s+6). Then X can be
minimally enclosed into a Y = GDD(2, 3t+2; 6s+ 9) for all t 21
provided Corollary 2.2 is satisfied.
Proof: Use the method from Theorem 4.4, and use 3 copies of
Ksi+2.
]

Table 2 shows us that in the case of v = 6t+4, x = 1 is
minimal, and Corollary 2.2 tells us that this enclosing may exist for
allt>2.

Example 9.4 Using Corollary 2.2, we can see that x = 2 is
minimal for X = GDD(2, 5; 6). Therefore it is necessary to enclose
X into Y = GDD(2, 6; 8). We take two copies of K;o and partition
them into 18 one-factors. Two of these correspond to the groups.
For the other 16 one-factors, use 8 with each of the two new points
to make blocks.

Theorem 9.5 Let X = GDD(2, 3t+2; 65+6). Then X can be
minimally enclosed into a Y = GDD(2, 3t+3; 6s+7) forall t >2
provided Corollary 2.2 is satisfied.
Proof: This is straightforward using the method of Theorem 4.4.

n

10. An Alternate Approach

A possible approach to the problems considered here using
graph decompositions could be undertaken, and we outline this
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attack as helpfully indicated by an anonymous referee. Each of the
n new vertices has in one sense no choice in what it requires: it
needs to be allocated the edges in a (A+x)-regular graph of
multiplicity at most x defined on the old vertices, but never using
the edges in a one-factor F (F forms the groups). So the problem
here is really to show that, whenever the necessary conditions are
satisfied, there exists an edge-disjoint decomposition of the
multigraph x(Kyn - F) into n (A+x)-regular graphs and a lot of
triangles. There is a result in the literature that does almost
precisely this and has a short proof. It finds the required triangles
in such a way that the complement in xK, has a one-factorization
if mn is even and a 2-factorization when mn is odd. In the case of
this paper, mn is even since n = 2; so the only thing it does not do
is guarantee that one one-factor is repeated x times in the
complement - these would be the edges never allowed to be used
as they define the groups. However, this should be essentially
already done except in a few extreme cases. In any case, this
approach should be shorter, and the case for n = 3 and one extra
group added could similarly be settled using the result mentioned
as one can ensure that the triangles contain x copies one parallel
class to form the groups.
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