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Abstract

Let T be a partial latin square. If there exists two distinct
latin squares M and N of the same order such that MNN =T,
then M \ T is said to be a latin trade. For a given latin square
M it is possible to identify a subset of entries, termed a critical
set, which intersects all latin trades in M and is minimal with
respect to this property.

Stinson and van Rees have shown that under certain cir-
cumstances, critical sets in latin squares M and N can be used
to identify critical sets in the direct product M x N. This pa-
per presents a refinement of Stinson and van Rees’ results and
applies this theory to prove the existence of two new families
of critical sets.

1 Introduction

Let M be a latin square of order m, and T a partial latin square
contained in M. If there exists a latin square N of order m, distinct
from M and such that M NN =T, then M \ T is said to be a latin
trade. For a given latin square M it is possible to identify a subset
of entries, termed a critical set, which intersects all latin trades in
M and is minimal with respect to this property.

Critical sets have been studied since 1978, see for instance [7].
Recently there has been much interest in the possible sizes of critical
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sets, [4, 10, 3, 2, 6]. It has been shown ([10, 3]) that for a given
m there exists critical sets of order m containing ¢ entries where
m2/4] < t < (m? — m)/2 (see also [6]). There are examples of
critical sets containing more than (m? — m)/2 entries, but to date
very little is known about generating these critical sets. In 1982,
Stinson and van Rees [13] proved that under certain circumstances,
critical sets in latin squares M and N can be used to identify critical
sets in the direct product M x N. In this paper we will refine Stinson
and van Rees’ results and apply this theory to identify two new
families of critical sets. These results are of interest as they indicate
new techniques which may be useful in settling the question of the
spectrum of critical sets.

2 Critical sets and latin trades

Let X = {1,...,m}. A partial latin square P of order m is an m xm
array containing symbols chosen from the set X in such a way that
each element of X occurs at most once in each row and at most
once in each column of the array. Thus P may contain a number
of empty cells. Table 1 provides examples of partial latin squares
of orders 2 and 4. For ease of exposition, a partial latin square P
will be represented as a set of ordered triples {(3, j; k) | element k €
X occurs in cell (4,5) of the array}. Define R(P) = {i | (3,5;k) €
P}, C(P) = {j | (3,5;k) € P} and E(P) = {k | (i,5;k) € P}. The
size of the partial latin square P is |P| and so represents the number
of non-empty cells in P. The shape of a partial latin square P is the
set of cells Sp = {(3,7) | (4,7; k) € P}. If all the cells of the array are
filled, then the partial latin square is termed a latin square. A latin
square M, of order m, is an m x m array with entries chosen from
the set X in such a way that each element of X occurs precisely once
in each row and precisely once in each column of the array. Table 1
provides examples of latin squares of orders 2 and 4.

Throughout this paper the notation P;, L;, Es and Lg will refer
to the partial latin squares and latin squares given in Table 1.

Two partial latin squares P and Q of order m are isotopic if there
exists three bijections 8, ¢ and p, respectively, mapping the rows,
columns, and symbols of P to the rows, columns, and symbols of Q.
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112 1121314
1 112 3 2111413
211 4 341112
2 4131211
P L By Ly

Table 1: P, and E; are partial latin squares of orders 2 and 4 respec-
tively, and L; and Ly are latin squares of orders 2 and 4 respectively.

Formally, P and Q are isotopic if @ = {(6(3), $(5); p(K)) | (3,5;k) €
P}. Moreover, if § = ¢ = p then P and Q are said to be isomorphic.

Let P be a partial latin square of order m and {a, b,c} = {1,2,3}.
Then the (a, b, c)-conjugate of P is denoted and defined by Pqp,c) =
{(zq, Tv; zc) | (21, %2;23) € P}. For € S3, the symmetric group on
{1,2,3}, we define 8(z1, T2, x3) = (Tg(1)> To(2)> To(3))-

A partial latin square P of order m, is said to complete to the
latin square M, if M is of order m and P C M. Note that if partial
latin squares P and Q of order m are isotopic (or conjugates) then
P completes to precisely r different latin squares of order m if and
only if Q completes to precisely r different latin squares of order
m. If M is the only latin square of order m which has symbol
k in cell (i,5) for each (¢,5;k) € P, then P is termed a uniquely
completable (UC) partial latin square in the latin square M and
P is said to be UC to M. The literature contains a number of
articles identifying general families of uniquely completable partial
latin squares which are minimal with respect to this property, see
for example [7, 4, 10, 3, 2, 6]. Such partial latin squares have been
termed critical sets.

A critical set in a latin square M of order m is a partial latin
square P contained in M, such that

1. P is a uniquely completable set in M, and
2. no proper subset of P satisfies 1.

The partial latin squares P; and Ej given in Table 1 are examples
of critical sets in the latin squares L; and Lo respectively. Critical
sets form the main focus of this paper.
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Let P be a partial latin square of order m defined on an element
set X. Then Ap is an array of alternatives for P if

1. Ap is an m X m array ;
2. whenever cell (3, 7) of P is filled, cell (3,5) of Ap is empty;

3. whenever cell (3, ) of P is empty, cell (¢,j) of Ap contains all
elements of X not appearing in row ¢ or column j of P.

Denote the set of symbols in cell (i, j) of Ap by Ap(3, 7).
The addition of a triple (%, j; k) to P is said to be forced if either:

1. Ap(i, j) = {k};
2. 0(1,J, k) satisfies 1 in Ap,,, , ,, for some 6 € S;.

Further, let P and @ be two partial latin squares. The partial
latin square P is strong uniquely completable to Q if there exists a
sequence of sets of triples P = S C S C ... C §y = Q such that
each triple t € Sy41\ S, is forced in S,,. If Q is a latin square, then P
is said to be strong UC to Q. A critical set P is a strong critical set
in a latin square L, if P is strong UC to L and no proper subset of P
satisfies this property. (For a more general definition of semsi-forced
and near-strong UC partial latin squares see [5].)

Property 2 of the definition of a critical set P ensures that for
each element (¢,5;k) € P, P\ {(3,7;k)} has at least two distinct
completions. For example consider E», as given in Table 1, and re-
move element (1,2;2). Then E3\ {(1,2;2)} has the two completions,
Ly and Lj, given in Table 2. Table 2 also displays the differences
between these two completions; that is, Lo \ L and Lj \ Ls.

The identification of partial latin squares with the properties ex-
hibited by L \ L, and L} \ L, is crucial for the determination of
critical sets and we give the following definition. Two partial latin
squares I and I, of order m with S; = Sy, are said to be row (col-
umn) balanced if the symbols in each row (column) of I are the same
as those in the corresponding row (column) of I’. If I and I are row
and column balanced then they are said to be mutually balanced.
They are said to be disjoint if no cell in I contains the same symbol
as the corresponding cell in I'. Given two disjoint, mutually balanced
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1 112]3]4 1(3(4(2
3 2111413 412]1]3
4 314|1}2 2141311
2 4131211 3|112]|4
B>\ {(1,2;2)} L, Ly
314 3142
21114 41211
3 1(2 2 3|1
413 1 3|11 4
Ly\ Ly LY\ L,

Table 2: The possible completions of E, \{(1,2;2)} and their differ-
ences.

partial latin squares I and I’ of order m, of the same shape, we say
I is a latin trade and I’ is the disjoint mate of I. (Note that in some
earlier papers latin trades have been referred to as latin interchanges
or critical partial latin squares.) A latin trade is said to be minimal
if no proper subset of I contains a latin trade. An intercalate is a
latin trade of size four. Let P be a UC set contained in a latin square
M. Entry (i,7;k) € P is said to be necessary for UC if there exists
a latin trade, I C M, such that TNP = {(3,4;k)}. These ideas are
summarized in the next lemma.

Lemma 1 Let P be a critical set in a latin square M of order m.
Then

1. for each latin trade IC M, |PNI| > 1, and

2. each entry (i,7; k) € P is necessary for UC.

3 Products

Let M and N be two latin squares of orders m and n, with symbols
chosen from the sets X = {1,2,...,m}and Y = {1,...,n}. Suppose
that P is a partial latin square contained in M and Q is a partial latin
square containedin N. For1 <r <m,letY" = {(r—1)n+y |y € Y}
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and let Q" be the array obtained from Q by adding (r — 1)n to each
of the symbols in cells of Q. Consequently, Q" is a partial latin
square isomorphic to Q but based on symbols chosen from the set
YT. Define the completable product of P and @Q, with respect to M
and N (written P ® Q) to be the partial latin square of order mn
obtained by replacing each cell containing the symbol r of P with
the array N7 and each cell containing the symbol s of M \ P with
the array Q°. Let

PQ = {(u—Dn+z,@®-1)n+y(w-1n+2)|
(u,v;w) € PA(z,y;2) € Q},

P = {(u-Dn+z,(v-1n+y;(w-n+2)|
(u,v;w) € PA(z,9;2) € N\ Q},

PQ = {(u—1)n+z,(-n+y(w-1)n+z)|
(u,v;w) € M\ P A(z,y;2) € Q}.

Then the completable product of P and Q, with respect to M and
N, is

P®Q = PQUPQUPQ.

If Pis UC to M and @ is UC to N then we will adopt the convention
of referring to P®Q as the completable product of P with Q and omit
the phrase “with respect to M and N”. The completable product
of two latin squares M and N is usually referred to as the direct
product of M with N and is written M x N. So

MxN = {((a-1)n+d,(b-1)n+e(c—1)n+f)|
(a,b;c) € M A (d,e; f) € N}.

Table 3 provides an example of the completable product P, ® E> and
the direct product Lz = L; X Ls.

For a given cell (¢, j) of P, define the block position (i, j) of P®Q
to be the cells of P ® Q corresponding to the intersection of rows
(6=1)n+1to (i — 1)n +n with columns (j —1)n+1 to (j — 1)n+n.

We observe that the latin square M x N is isomorphic to the
latin square N x M; the partial latin square P ® @Q is contained in
M x N; the partial latin square P ® Q is isomorphic to the partial
latin square Q ® P.
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1]273]4]5]6 1]2]3]4]5]6[7]8
2143 7] [2]1[4]3]e6[5[8]7
3]4f1]2 8 3[4]1]2]7[8]5]6
413271 6 4f3f2f1]8]7]6]5
5]6 172 5T6[7[8][1]2]3]4
7' 3 6|5]8]7][2]1[4]3
8 '4 78|56 3]4[1]2
6 2 gl7]6[5][4]3]2]1
P, ® E, L3=1L) x Ly

Table 3: Completable and Direct products

Gower [12], Bedford and Whitehouse [5], and Adams and Khod-
kar [1] have laid down conditions under which the completable prod-
uct has UC.

Lemma 2 [5] Let P be a partial latin square of order m that is UC
to the latin square M and let Q be a partial latin square of order

'n that is UC to N. Let L be a latin square to which P ® Q com-
pletes. Suppose that the addition of the triple (i, j; k) is (semi)forced
in P. Then L must contain a copy of N* in block position (i,7).
Further if P is (near)strong UC to the latin square M, then P® Q
is (near)strong UC to M x N.

We will also require a generalization of a recently result by Dono-
van and Khodkar [11].

Lemma 3 Let P and Q be (near)strong UC sets in latin squares
M and N respectively. Let I C M and, for 1 <i<r, J; C N be
partial latin squares such that IN P = {(a,b;¢c)}, P\ {(a,b;¢)} is

(near)strong UC to M\ I, J;NQ = {(d;, &;; £i)}, and Q\ {(d;, e;; f;) |
1 <i < r} is (near)strong UC to N \ (U;J;). Then the partial latin
square (P Q) \ {vi | 1 <i < r} is (near)strong UC to

((M\ D) U{(a,b50)}] ®[(N\ (U i) U
{(dises; fi) |1 <i<rIP\{n|1<i<r}

where v; = ((a — )n + d;, (b — 1)n +e;5(c — 1)n + fi).
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The following lemma allows us to identify some of the entries of
P ® @Q which are necessary for UC.

Lemma 4 Let P and Q be a (near)strong critical sets contained,
respectively, in the latin square M, of order m, and N of order n.
Let PQ and PQ be as in the definition of completable product. Then
the elements of PQ and PQ are necessary for the UC of P ® Q.

Proof: Lemma 2 implies that P ® @ is (near)strong UC to M x N.
Thus P ® Q contains a critical set. It is necessary to show that for
every entry ((u — L)n + z, (v — 1)n +y; (w — 1)n + 2) of (PQ UPQ)
there exists a latin trade Z in M x N such that ZN (P ® Q) =
{(wu-Dn+z,@-n+y(w-1)n+2)}.

The entries in PQ correspond to the entries (u,v;w) € M\ P. All
such block positions (u,v) contain isomorphic copies of Q. Since Q
is a critical set in N for each entry (z,y; z) in Q there exists a latin
trade I(z4.,) in N such that QN I, ..y = {(z,y;2)}. Hence for each
((u=1)n+z, (v—1)n+y; (w—1)n+2) € PQ there exists a latin trade,
namely {(u=1)n+2'; (v-Dn+y's (W-1)n+2) | (@', 2) € Jagin},
which meets PQQ in ((u—1)n+z, (v—1)n+y; (w — 1)n + 2) alone.

The entries of PQ correspond to the entries (u,v;w) € P. Since
P is a critical set in M, for all entries (u,v;w) € P there exists a
latin trade I(y ;) € M such that I(y.,) N P = {(u,v;w)}. Thus
for each entry ((u — 1)n +z, (v — 1)n+y; (w — 1)n + 2) € PQ there
exists a latin trade, namely {((v' — 1)n + z,(v' = 1)n + y; (v’ —
Dn +2) | (W,v';9'") € Iyp)}, which meets P ® Q in the entry
(u—1)n+z,(v—1)n+y;(w—1)n + 2) alone.

The above result suggests that the structure of the latin trades in
M and N is important in the identification of elements in P®Q which
are necessary for unique completion. The purpose of this paper is
to advance our knowledge of the structure of latin trades in M x N,
and to shed new light on the necessity for UC of entries in the set
{((a=1)n+d,(b—1)n+e(c—1)n+f) | (a,b;c) € PA(d,e; f) € Q}.
Two further results which will be useful in our discussion are given
below.

Let Z C (M x N) be a partial latin square and define functions
fm(Z) and fn(Z) and sets projy(Z) and projn(Z) as follows:

fm: T — M, where
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fu(((w — D+ 2, (v - )n +y; (w - 1n+2)) = (u,v;w),

v :Z — M, where

In(((w=1)n+z,(v—-1)n+y;(w - 1)n +2)) = (z,;2), and
projm(T) = {(u,v;w) | e € I, fu(a) = (u,v;w)},
pTOJN(I) - {(x3y,z) I Ja € I’fN(a) = ("Day;z)}‘

If Z is a latin trade that meets each block position of M X N in at
most one entry, then it will be shown that the image of fs is a latin
trade in M, as is the image of fy in N.

Lemma 5 Let M and N be latin squares of order m and n re-
spectively. Let T be a latin trade in M x N such that for each
1,5 € {1,...,m} block position (3,j) of M x N meets T in at most one
entry. Let far and projas(Z) be as defined above. Then projum(ZT) is
a latin trade in M. In addition, if  is a minimal latin trade, then
up to isotopism T and proja(Z) have the same shape.

Proof: Let Z’ denote the disjoint mate of Z. The partial latin square
7' is contained in the latin square M’ = ((M x N)\ Z) UZ'. Define
fm and proj M’ a8 follows:

fMI :I’ — M'
fr(((w—)n+z,(v—n+y;(w - n+2)) = (u,v;w),
proju(Z') = {(u,v;w) | Ja € T', fapr (@) = (u,v;w)}.

It will be shown that proja(Z) and projae (Z') form a latin trade and
its disjoint mate. The definition of a latin trade implies that ((u—1)+
z, (v—1)n+y) € Sz if and only if ((u—1)+x, (v—1)n+y) € Szr. Hence
(u,v) € SprO]M(I) if and only if (u,v) € Sproj,,,(z7)- Thus projm(Z)
and projum¢(Z') have the same shape. Assume that they are not
disjoint. Then there exists an entry (u,v;w) € projy(Z) such that
(u,v; w) € projar(Z’). But this implies there exists z,z’,y,y', 2,2’ €
Y such that ((u—1)n+=z, (v-1)n+y; (w—1)n+2) € Z and ((u—1)n+
z',(v-1)n+vy';(w—1)n+2') € I'. But recall that Z and Z’ have the
same shape and Z intersects each block position of M x N in at most
one entry. Thus '’ = z and ¢ = y. In addition, 2/ = z. Therefore
proju(Z) and projpe (Z') are disjoint. Finally assume that row u of
projm(Z) contains symbol w but row u of projan(Z') does not. It
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follows that for some z € Y there exists 2z € Y such that symbol
(w — 1)n + 2z occurs in row (u — 1)n + z of Z, however for all 2’ € Y,
symbol (w—1)n+2' does not occur in row (v —1)n+z of Z'. But this
is a contradiction as Z and Z’ are mutually balanced. So projm(Z)
and projpye(Z') are row balanced. A similar argument shows that
proju(Z) and projae (Z') are also column balanced. Hence projm(Z)
is a latin trade in M with disjoint mate projar(Z’). It is immediate
that up to isotopism Z and projas(Z) have the same shape.

Corollary 6 Let M and N be latin squares of order m and n respec-
tively. Let I be a latin trade in M X N. Then J = {(z—1)m+u, (y—
I)m+v;(z-1)m+w) | (u—1)n+z,(v—1)n+y; (w-1)n+2) €I}
s a latin trade in N x M. Assume that J is such that for each
i,j € {1,...,n} block position (i,5) of N x M meets J in at most
one entry. Let fn(J) and projn(J) be as defined above. Then
projn(J) is a latin trade in N and up to isotopism projn(J) and
J have the same shape.

The next result will be important in proving the main result of
this paper.

Lemma 7 Let M and N be latin squares of order m and n respec-
tively and x be a latin square of order mn distinct from M x N. Let
(4,45 k) be an arbitrary element of M. Let x; j) denote the set of cells
corresponding to the intersection of rows (i—1)n+1,...,(i—1)n+n
with columns (j —1)n+1,...,(j —1)n+n of x. Let QC N bea
critical set. Assume that in X ), M x N and x agree in Q*. In
addition, assume that for each symbol z € Y\ {(k - 1)n+1}, X(irj)
contains n cells occupied by symbol z, n — 1 cells occupied by symbol
(k—1)n+1 and precisely one cell occupied by the symbol (w—1)n+u,
Jorw € X\{k} and u € Y. Then in the cells corresponding to x(i j),
M x N and x agree in precisely n?2 — 1 cells.

Proof: By assumption there exists r,s € Y such that cell (i —1)n+
7,(j — 1)n + s) of x contains symbol (w — 1)n +u, w € X \ {k} and
u € Y. Each of the symbols (k —1)n+2,...,(k— 1)n +n occurs n
times in X(; j). Hence each of these symbols occurs in each row and
each column of x; j). Symbol (k—1)n+1 occurs exactly n—1 times
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in x(ij). Consequently symbol (k —1)n + 1 does not occur in any
cell of row (¢ — 1)n + r or column (5 — 1)n + s of X 5.

Focus on X(;j). If symbol (w — 1)n + u is replaced by symbol
(k — 1)n + 1, the result is an n X n subarray which contains a latin
square on the symbols (k —1)n +1,...,(k — 1)n +n. Assume that
this 7 x n latin square, denoted A, is distinct from N k. Then it
follows that N* and A differ in a latin trade. However, N* and A
agree in all cells corresponding to Q*, and Q is near-strong UC to N.
Thus Q¥ intersects all latin trades in N k. leading to a contradiction.
Therefore, in the cells corresponding to x(; j), x and M x N differ in
precisely one cell.

4 Doubling construction

In [13], Stinson and van Rees used the completable product to con-
struct critical sets in latin squares of even order. Their result is as
follows.

Lemma 8 [13] Assume that Q is a critical set in o latin square N
of order n and that for each (3,j; k) € Q, there exists an intercalate
Iijky C N with the property that I; ) N Q = {(3,5;k)}. Then
P, ® Q is a critical set in the latin square L, x N.

Proof: Lemma 2 implies that P ® Q is UC. Lemma 4 implies that
each of the entries in block positions (1,2),(2,1),(2,2) is necessary
for UC. Lemma 4 also implies that in block position (1,1) the entries
corresponding to N \ Q are necessary for UC. For the remaining en-
tries of block position (1,1) it is noted that for each (3, j; k) € Q there
exists an intercalate I(i,j;k) = {(z)ji k): (i,jl;k,)a (i,aj; k’)$ ('i,)j,;k)}
in N with the property that I(; j.x) N Q@ = {(3,5; k)}. Hence for each
such (2, j; k) in block position (1,1) of P® Q there exists an interca-
late T = {(4,7; k), (4, 5’ +n; k' +n), (' +n, 5; k' +n), (¢ +n, 5’ +n;k)}
such that ZN (P, ® Q) = {(3,5; k)}.

‘We now prove that if there exists a latin trade which meets P,® Q
in block position (1,1) in only one entry then the latin trade is an
intercalate.
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Lemma 9 Assume that Q is a critical set in a latin square N of
order n. If there exists a latin trade T € (L) x N) such that |Z N
(P ® Q)| =1 and T contains precisely one entry from block position
(1,1), then T is an intercalate.

Proof: Assume Z meets block position (1,1) in the entry (d,e; f).
Let Z' denote the disjoint mate of Z. Without loss of generality
assume that block position (1,2) of ((L1 x N)\ Z) UZ’ contains one
occurrence of the symbol f, n—1 occurrences of the symbol n+1 and
n occurrences of each of the symbols n+2,...,2n. Then by Lemma,
7, (L1 x N)\Z)UZ" and L; x N agree in n2 — 1 cells of block
position (1,2) and similarly for block position (2,1). Now assume
that in block position (2,2) the latin squares ((L; x N)\Z)UZ' and
Ly x N are disjoint in at least two cells. Thenfor1 < ¢ < # <n and
1 < j < j' < n block position (2,2) of ((L1 x N)\Z) UZ’ contains
the entries (n +%,n + j;n + 1) and (n +#',n + j';n + 1). But this
implies that in block position (1,2) of ((L; x N)\ Z) UZ’ symbol
n + 1 does not occur in column 7 + j or column n + j'. This is a
contradiction. Thus block position (2,2) of ((L; x N)\Z) UZ’ and
Ly X N agree in n? —1 cells and Z must contain four symbols. Hence
Z is an intercalate.

Corollary 10 Let (3,5;k) € Q and let I C N be a latin trade such
that INQ = {(3,5; k)}. Assume that for all such I, |I| > 4. Then for
all latin trades T C (L1 x N) such that (i,5;k) € Z, |ZIN(PA®Q)| > 1.

Proof: Assume that there exists a latin trade Z with (¢, j;k) € Z.
Since Pi® Q is UC it follows that |ZN(PA®Q)| > 1. |IN(P®Q)| =
1, then 7 meets block position (1,1) in precisely one entry and
Lemma 9 implies that Z is an intercalate. So |projn(Z)| =1 or 4. If
lprojn(Z)| = 1, then projn(Z) = {(3,4; k)} and T = {(3, j; k), (4, n +
Jin+k),(n+14,5;n + k), (n +4,n + j;k)}. But (4,5;k) € Q and
(3, 3; k), (i, + j3n + k), (n+1,5in+k),(n+i,n+3k) € (P® Q),
and we have a contradiction. Thus |projn(Z)] # 1. Consequently,
[projn(Z)| = 4 and Corollary 6 implies that projy(Z) is an interca-
late in N. But (¢, j; k) € projn(Z) and by assumption |projn(Z)| > 4
which gives a contradiction.
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Corollary 11 Assume Q is a critical set in a latin square N, of
order n. Fiz (d,e;f) € Q and assume that for each (i,5;k) € @\
{(d,e; f)}, there ezists an intercalate I ;x) C N with the property
that Ij; j.xyNQ = {(4,5;k)}. In addition, assume that all latin trades
I C N such that (d,e;f) € I, |I| > 4. Then Ly x N contains the
critical set

(A® )\ {(def)}

Corollary 12 Let Q be a critical set in a latin square N of order n.
For r a positive integer and 1 < 1 < 7, fix (d;, e;; fi) € @ such that
the following conditions are satisfied:

1. for all (u,v;w) € Q\ {(di,ei; fi) | 1 < ¢ < r}, there exists an
intercalate Iy, ) € N such that QN Iy ) = {(u,v;w)};

2. for 1 < i < j < r there ezists partial latin square G; C N such
that (di,ei; f;) € Gi, (UiGi) N Q = {(di,ei; fi) |1 < i<},
Q\ {(di,ei; f;) | 1 <3 < r} is (near) strong UC to N \ (U;G;),
end R(G;) N R(G;) =0, C(G;) NC(Gj) = 0;

3. for 1 < i < r and all latin trades J; such that QN J; =
{(di, es; fi)}, we have |J;| > 4.

Then Ly X N contains the critical set
P\ {(diei; fi) |1 <i<r}

Proof: Assume that for some £ € {1,...,7}, the entry (dg, eg; f¢) is
necessary for UC in P, ® Q. If J; is a latin trade with the property
that J; N Q@ = {(d;, &; fi)}, then |Ji| > 4. Thus Corollary 10 implies
that, for 1 < ¢ < r, if there exists a latin trade J; in L; x N such
that (di,e;; f;) € J;, then [7; N (P1 ® Q)| > 1. Lemma 3 implies
that Vi, J; C (U;G;) and so if (dg, eg; f¢) is to be necessary for UC
then there exists j # £ such that (dj,ej; f;) € Jp. However, for all
1<i<j<r R(G;)NR(Gj) =0, and C(G;) N C(G;) =9, and so

Je € {(de,es; fe) (z,n+y;n+2), (n+z,y;n 4+ 2),
(n+z,n+9y;2) | (=,9;2) € Ge\ {(de, eg; o)} }-
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Thus we have a contradiction and so for 1 < ¢ < r the entries
(d;, e;; fi) are not necessary for UC. The result follows.

We provide an application of these results in Section 6. In Sec-
tion 5 we generalize the result to the completable product of strong
critical sets P and Q.

5 Generalization for strong critical sets

The Stinson and van Rees result has been generalized by Donovan,
Gower and Khodkar, [8]. Their result (together with the Bedford
and Whitehouse results [5]) essentially shows that given (near)strong
critical sets P C M and Q C N, with the property that for each pair
of entries n € P and v € Q there exists isotopic latin trades ITM C M
and IN C N, such that IM NP = {n} and INNQ = {v}, then
P ®Q is a critical set in M x N. However, the conditions placed
on P and Q are too restrictive for this result to be of great use. In
this section we seek to weaken these conditions and identify subsets
of P ® Q which form critical sets.

Lemma 13 Let M and N be latin squares defined on the sets X =
{1,...,m} and Y = {1,...,n}, respectively. Let P and Q be partial
latin squares which are, respectively, strong UC to M and N. Fiz
(a,b;c) € P and (d,e;f) € Q, and let I C M and J C N such
that PN T = {(a,b;¢)} and QN J = {(d,e; f)} with P\ {(a,b;c)}
strong UC to M\ I and Q \ {(d,e; f)} strong UC to N\ J. Let
y=(a-1)n+d,(b—1)n+e(c—1)n+ f). If there exists a latin
trade T C (M x N) such that

(PQ)NI={7},

then, for each i,j € {1,...m}, I intersects block position (i,j) of
M x N in at most one eniry.

Proof: Assume that there exists a latin trade Z such that

(PeQ)NI={}
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By Lemma 3

T c {(G-Dn+gG-n+hk-1n+l)|
(4,7:k) € IA(9,hil) € J}.

Hence if 7 intersects block position (i, j), then there exists k € X
such that (3,5;k) € I.

Let x be a completion of ([((M \ I) U {(a,4;¢)}] ® [N\ J) U
{(d,e; £)})) \ {7} distinct from M x N. Denote the array of alterna-
tives for ([(M \ T) U {(a,550)}] ® [(N'\ ) U{(ds; /)}] \ {7} by

Ax = AqAnU{(a b el de )\

and let A, (g, h) denote the set of symbols in cell (g, k) of A,.

The partial latin square P is strong UC to M, and since P C
(M \T)U {(a,b;c)} it follows that (M \ I) U {(a,b;c)} is strong UC
to M. Consider the array of alternative A(ap\ryu{(a,bic)}- It may be
assumed that without loss of generality that there exists a cell (2, j)
such that Ay ryu((eb;c)} (5 5) = {g} for some ¢ € X. If not consider
the appropriate conjugate of (M\I)U{(a, b; c)}. If Aan\1)(%,5) = {q}
then by Lemma 2 block position (z,5) of x must contain symbols
chosen from the set Y7 and so x and M x N agree in block position
(1,§). Otherwise {g,¢'} C A\1)(%,5) where ¢ € X \ {g}. The
partial latin squares M \ I and (M \ I) U {(a,b;c)} differ in the
occurrence of symbol ¢ in cell (a,b). Hence the only difference in
the array of alternatives AM\NU{(a,b;c)} and A( Mm\1) is the addition
of symbol ¢ to some cells of Apz). Thus ¢ = cand i = a or
J = b. Without loss of generality assume j = b. Then Vy € Y and
Vze Y\ {e} if h € Ay((i — 1)n +y,(b— 1)n + 2) (that is, in the
array of alternatives, symbol h occurs in any column corresponding
to block position (%, b) except (b—1)n+e), then h € Y9. In addition,
VyeY ifhe Ay((i — 1)n+y,(b— 1)n +e) (that is, in the array of
alternatives, symbol h occurs in column (b—1)n +e of block position
(4,b)), then h € Y7U{(c—1)n+ f}. But note that symbol (c—1)n+ f
can be placed in at most one cell in column (b — 1)n + e of block
position (4,b) and all remaining cells in column (b — 1)n + e of block
position (3,5) must be chosen from the set Y9. Thus Lemma 7 may
be used to prove that block position (%, §) of x and of M x N intersect
in at least n2 — 1 entries.
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Since P is a strong UC set, it may be assumed without loss of
generality, that there exists a cell (#/, j') such that

Apnnu((eoiin) (5 5) = {p}
for some p € X and we repeat the above argument and prove that
block position (i, ') of x and of M x N intersect in at least n? — 1

entries. This argument is repeated until all block positions have been
dealt with.

Corollary 14 Let I, J, P, Q, M and N be as in Lemma 13. Let
Z C (M x N) be a latin trade such that

(PeQ)NI = {7},

and let @ denote an isomorphism from P ® Q to Q ® P, such that
O(u-Dn+z,(v-n+y;(w—-1)n+2) =((z-1)m+u,(y -
)m+wv;(z— 1)m+w). Let § = 6(v). Then there exists a latin trade
J such that 0(Z) = J and (Q ® P)N J = {d}. Furthermore, for
each i,j € {1,...n}, J intersects block position (i,7) of (N x M) in
at most one cell.

Proof: It is easy to see that
(PRQINI={y} = (@®P)NJ={d},

where J is the appropriate isomorphic image of Z. If J intersects
block position (g, k) then there exists an | € Y such that (g, ;1) € J.
Using the fact that (N \ J)U {(d,e; f)} is strong UC to N we may
proceed as in the proof of Lemma 13 to verify that J intersects each
of the block positions (g, h), where (g,h;!) € J for some [ €Y, in at
most one cell.

It is now possible to show that if I and J are minimal latin trades,
then the latin trades I, J and Z all have the same shape.

Corollary 15 Let I, J, P, Q, M and N be as in Lemma 13 with I
and J minimal latin trades. If there ezists a latin trade Z C (M x N)
such that

(PRQ)NI={y},

then up to isotopism the latin trades I, I and J all take the same
shape.
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Proof: Lemma 3 indicates that Z C {((u — 1)n + z,(v — 1)n +
y;(w — )n+ 2) | (u,v,w) € I A(z,y;2) € J}. Thus projmu(Z) € I
and projn(Z) C J. Lemma 5 and Corollary 6 indicate that proja(Z)
and projn(Z) are latin trades which, up to isotopism, take the same
shape as Z. But I and J are minimal, therefore I = projy(Z) and
J = projn(Z). The result now follows.

For completeness we prove the following proposition.

Proposition 16 Let M and N be latin squares defined on the sets
X =1{1,...,m} and Y = {1,...,n}, respectively. Let P and Q
be partial latin squares which, respectively, are (near) strong UC to
M and N. Fiz (a,b;c) € P and (d,e;f) € Q, and let I C M
and J C N be latin trades such that PN I = {(a,b;c)} and Q@ N
J = {(d,e; f)}. If Sr and S;, then there ezists a latin trade T in
M x N with S = St = Sy such that (P ® Q) NZ = {v}, where
y=((e—-1)n+d, (b—1)n+e;(c—1)n+ f). Hence, v is necessary
in P® Q for the UC to M x N.

Proof: Define
I = {(i-Vn+i,(-n+j;(k—1)n+) |
(4,7;k) € I and (¢, 5;€) € J}.
(Note that since I and J have the same shape Z is well-defined.)
Then T is a latin trade in M x N with disjoint mate
T = {(G-Vn+i,(j-Un+4E -1)n+f) |
(3,5;K) € I' and (3, 5;¢) € J'},
where I” and J' are disjoint mates of I and J, respectively. Obviously,

Z, I and J have the same shape. Moreover, (P® Q) NZ = {v}.

Lemma 17 Let P and Q be strong critical sets in the latin squares
M and N respectively. Let PQ and PQ be as in the definition of the
completable product. For r a positive integer, let (a,b;c) € P and
{(di,ei; fi) | 1 <4 < r} C Q such that the following conditions are
satisfied:

1. there ezxists a minimal latin trade I C M such that PN I =
{(a,b;¢)}, and P\ {(a,b;¢)} is strong UC to M \ I;
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2. for1 <i < j <r, there erists minimal latin trades J; such that
Q NnJ; = {(disei;fi)}) R(Jt) N R(‘I?) = @; C('Il) N C(JJ) = @,
and Q\ {(d;,&; fi) | 1 < i <7} is strong UC to N \ (Ui Ji);

3. the sets St and Sy;, 1 <i <, are not isotopic.

Then there exists a critical set C such that

(PQUPQ) c C € (PRQ)\{(a-1)n+d;
(b-Dn+esc—n+fi)|1<i<r}

Proof: Lemma 2 indicates that P ® @ is UC to M x N and hence
contains a critical set. Lemma 4 implies that the entries of (PQUPQ)
are necessary for UC and therefore (PQUPQ) is a subset of a critical
set. For 1 < % < r, assume that there exists latin trades J; such that
Jin(P®Q) = {((a—1)n+d;, (b—1)n+e;; (c—1)n+ fi)}. Since for
alll1 <i<j<r, R(J)NR(J;) =0, and C(J;) NC(J;) = §, Lemma
3 implies that

J € {(u=-Dn+z,v-1)n+y;w-1)n+2)|
(u, v;w) € I A (2,y;2) € Ji},

and so J; N J; = 0. In addition, each such latin trade meets each
block position of M x N in at most one entry. For i, 1 <2 <7,
we know I and J; are minimal, so Lemma 15 implies that up to
isotopism the latin trades I and J; take the same shape. But this
is a contradiction. Hence no such latin trades exist and the entries
((a=1)n+d;, (b—1)n+e;, (c—1)n+ fi), 1 < i < r, are not necessary
for UC. The result now follows.

6 Applications

Let Py, E,, L; and L be, respectively, the partial latin squares and
the latin squares given in Table 1. For n > 2, let L, = Ly X L
and P, = P, ® P,_;. By Lemma 8 P, is a critical set in Ly, with
[Pn| = 4™ — 3™. '

Lemma 18 The set (P1 ® E») \ {(1,2;2)} is a critical set of order
8.
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Proof: Lemma 2 implies that P; ® E; has a UC to L; x L. For each
of the entries (¢,5;k) € E2 \ {(1,2;2)} there exists an intercalate I
such that I N E; = {(4,5;k)}. Using Table 2 it can be seen that if
I C E, is a latin trade such that I N Ey = {(1,2;2)}, then |I| = 12.
Thus Corollary 10 can be applied and the result follows.

Lemma 19 For all n > 3 define &, to be

(P \ {(2" — 2,27 — 2;1), (2" — 1,2" — 1;1), (2" — 1,2" — 3;3),
(2+4r,1+47;2),(1 + 4r,3 +4r;3), (3 + 83,2 + 8s;4) |
0<t<2®?2-1,0<s<2"3-1})uU

{@" - 2,2™;3), (2" — 1,2" — 2;4),(2",2" — 1;2)}.

Then (P1 ® £,) \ {(2" — 3,2" — 2;2)}, is a critical set of order 27!
and size 47+l — gntl _ g on-1 _ 3 on-3 _ 1

Proof: In the Appendix we show that £, is a critical set, for all n >
3. In addition, it is shown that for each entry (3,j;k) € &, \ {(2" —
3,2™—2;2)} there exists an intercalate I such that INE, = {(¢,4;k)}-
If I C L, is a latin trade such that IN&, = {(2" —3,2" —2;2)}, then
|I] > 4. Hence by Corollary 11, (2" — 3, 2" — 2; 2) is not necessary for
unique completion and so (P, ®&,)\{(2"-3,2"—2;2)} is a critical set.
It is shown in the Appendix that |€,| = 4" — 3" — 271 — 273, Hence
[(PL®&n)\{(2"-3,2" —2;2)}| = 2" —143(4" - 37— 271 —2"3) =
qntl 4 3o+l _3.9n—-1 _ 3973 _ 1 as required.

To present this construction we start with the back circulant latin
square of even order. For ease of exposition the symbols occurring
in this latin square will be chosen from the set Y = {0,1...,n — 1}
and the latin square will take the from B,, = {(%, ;% + j(mod n)) |
0<4%j <n-1}. In 1978, [7], Curran and van Rees showed that
for even n the back circulant latin square B,, contains the critical set
Cy, of order n and size n2/4, where

Cn = {(i’j;i"'j(mOd n)|05ign/2_1a
0<j<n/2-1-d}uU
{(4,5;¢+j(mod n) [ n/2+1<i<n-1,
3n/2-i<j<n-—1)}.
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In addition, they showed that for each entry (, j; k) € Cy, there exists
an intercalate I C By, such that I N C, = {(%,4; k)}. Later Donovan
and Howse, [9], adapted C,, to construct a critical set Fy, of size
n?/4 + 2. They showed that, for even 7, the set

(Cn \ {(0,0;0)}) U {(0,7/2;0), (n/2,0;0), (n/2,n/2;n/2)}

is a critical set in

An = (Bn\{(0,0;0),(0,n/2;n/2),(n/2,0;n/2), (n/2,n/2;0)})
U{(0,0;n/2), (0,7/2;0), (n/2,0;0), (n/2,n/2;n/2)}.

F,

If n = 0(mod 4), then for each entry v € F,, there exists an interca-
late I C A, such that I intersects Fy, in v alone. However, if n =
2(mod 4), this is only true for entries in F,, \ {(0,7/2;0), (n/2,0;0),
(n/2,n/2;n/2)}. Tt will be shown that in the completable product
P, ® F,, the entries {(0,7/2;0),(n/2,0;0)} are not necessary for UC.
The result will be a critical set of order 2n and size n2-|-3("72 +2)-2=
m?

- +4.

Lemma 20 For all n = 2(mod 4), n > 2, the partial latin square
(P ® F) \ {(0,n/2;0),(n/2,0;0)} is a critical set of order 2n and
size 7%2 + 4.

Proof: The partial latin square P; ® F,, is a UC set of order 2n and
size n? + 3("72 +2) = Z%E- + 6. The proof of Lemma 8 implies that
each of the entries (P, ® F;,)\ {(0,7/2;0), (n/2,0;0), (n/2,n/2;n/2)}
is necessary for UC. Lemma 23 in the Appendix indicates that
(n/2,n/2;n/2) is necessary for unique completion. Let

G

{55+ j(mod n)) [0<i<n/2-1,n/2<j<n-—1,
n/2+1<i+j<n}, and

{(i,j3i + j(mod m)) [n/2 <i <n—1,0<j <nf2—1,
nf2+1<i+j<n}

H

In the Appendix, Lemma 22, verifies that F;,\ {(0,n/2;0), (n/2,0;0)}
is UC to the partial latin square A, \ (G U H). Note that R(G) N
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R(H) =0 and C(G)NC(H) = 0. Using Lemma 3 it can be seen that
(P ® Fp) \ {(0,n/2;0),(n/2,0;0)} is UC to the partial latin square

(L1 x Ayg) \ {(0,'/&/2; 0), (n/zs 0;0), (4,5 +n;k +n),
(i+naj;k+n)a(é+n3j +n; k) I (@,]ak) €
(GuU H)\ {(0,n/2;0),(n/2,0;0)}}.

Hence if there exists latin trades Z C (L; X A,) or J C (L1 x Ay) such
that TN (P, ® F,) = {(0,1/2;0)} and J N (P, ® F,) = {(n/2,0;0)}
then

Z < {(0,n/2;0),(s,5 +n;k +n), (i +n,5;k +n), (i +n,j +n; k)
| (5, 5: k) € G\ {(0,n/2;0)}},

J <€ {(n/2,0;0),(%,j +nk+n),(i+n,5;k+n),(i+n,5+nk)
| (z’j’k) € H\{(n/zaO;O)}}‘

Since Z meets block position (1,1) in precisely one entry and R(Z) N
R(J) =0 and C(Z)NC(J) = @ it follows that proja, (Z) is an inter-
calate. But proja,(Z) must be a latin trade contained in G. How-
ever, A, agrees with B, in all cells except (0,0),(0,n/2),(n/2,0),
(n/2,n/2) and since n = 2(mod 4), G does not contain an interca-
late. Thus we have a contradiction and no such latin trade Z exists.
Similarly it can be shown that there is no latin trade J in L; x A,,.
The result is now immediate.

7 Appendix

Define P, = P, ® P,—;, n > 2. Starting with the partial latin
square Pj of size 43 — 33 = 37, we may obtain a distinct critical
set B3 C L3 of size 43 — 3% — 22 -1 -3 4+ 3 = 32 by deleting
the entries (6,6;1), (7,7;1), (7,5;3), (1 + 4¢,3 +4¢;3), (2 +4¢,1 +
4t;2), (3 + 8s,2 + 8s;4), t = 0,1 and s = 0 and inserting entries
(6,8;3),(7,6;4),(8,7;2). This critical set is given in Table 4 and the
example will be generalized in Lemma 21.

Lemma 21 For all n > 3 define &, to be

(P \{(2" —2,2" — 2;1),(2" — 1,2" - 1;1),(2" — 1,2" - 3;3),
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112] [4|[5]6]7

14365
3 12[7] |5
4321
5(6]7] |[1]2
65 3
ANE 4

2

Table 4: The critical set £3

(2 + 48,1 + 4t;2), (1 +4¢,3 + 4¢;3), (3 + 85,2 + 8s;4) |
0<t<2"?2-1,0<s<2" 3 -1})u
{(@" —2,2%3), (2" - 1,2" - 2;4),(2",2" - 1;2)}.

Then &, is a critical set in Ly of size 4" — 3™ — 271 _ 273 [n
addition, for all entries (¢,7;k) € & \ {(2" — 3,2" — 2;2)} there
exists an intercalate I C Ly, such that INE&E, = {(3,7;k)}.

Proof: Note £, C L,. Divide L, into four block positions (1,1),
(1,2),(2,1),(2,2) and correspondingly divide &, into four block po-
sitions.

The partial latin square £, was obtained from P, by deleting
symbols 1,2, 3,4 from certain cells and inserting the symbols 2, 3,4
in three cells in the intersection of the last three rows and three
columns.

Let N represent a latin square of order 2" such that £, C N. We
proceed with the following steps to show that P, C N.

1. For all columns ¢ # 2" — 3 where ¢ = 1(mod 4), if cell (r,¢c) is
empty in &,, then r = c¢+1 or r = 0(mod 4). For r = 0(mod 4),
symbol 2 occurs in row 7 of £,. Hence forall0 < ¢ < n—-2_29,
(2 + 4t,1 + 4%;2) € N. Given this and (2" — 2,2™;3) € &,
(@" — 1,2%2), (2" — 2,2" — 3;2) € N.

2. For all rows 7 # 2" — 3 where » = 1(mod 4), if cell (r,¢c)
is empty in &,, then ¢ = r + 2 or ¢ = 0(mod 4). For ¢ =
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0(mod 4), symbol 3 occurs in column ¢ of £,. Hence for all
0 <t< 2"2_2 we have (1 +4t,3 + 4t;3) € N, implying
(2" - 3,2" — 1;3), (2", 2" — 2;3),(2" — 1,2" — %;3) € N.

3. Foralli=1,...,2" =3, (i,i;1), (2" —3,2" —2;2), (2" —2,2™; 3),
(2" —1,2" — 2;4) € &,. Hence (2" —2,2" - 2;1),(2" - 3,2" -
3:1), (27,27 1) € N.

4. Now consider row 2" — 3. If (2" — 3,¢) is empty, then ¢ =
0(mod 4). For ¢ = 0(mod 4), ¢ # 2", symbol 4 occurs in
column ¢. Thus (2" — 3,2"%;4) € N and similarly (2*,2" —
3;4) € N. For column 2" — 1, if cell (r,2" — 1) is empty, then
r = 0,2(mod 4). For r = 0(mod 4) symbol 4 occurs in row 7.
For r = 2(mod 4) and r # 2" — 2, symbol 4 occurs in row r.
Thus (2" — 2,2" — 1;4) € N. For all rows r, r = 3(mod 8),
if cell (r,c) is empty, then ¢ = r — 1 or ¢ = 0,6(mod 8). For
every column c of £,, where ¢ = 0, 6(mod 8), symbol 4 occurs in
column ¢ and so, for all 0 < s < 2"~3 -1, (3+8s,2+8s;4) € N.

We have shown that P, C N and since P, has a UC to Ly, &, is a
UC to L.

To complete the proof we must show that for each entry (3, j; k) €
&, there exists a latin trade I C L, such that I N &, = {(3,7;k)}.
If k € {5,...,2"} and (%, 5; k) € Ly, for some i, j, then (,5;k) € &,
if and only if (¢,5;k) € P,. Lemma 8 implies that for each en-
try (i,5;k) € P,, k € {5,...,2"}, there exists an intercalate I =
{G,5:k), (6,53 &), (&', 3; '), (¢, 5’3 k) } with &’ € {5,...,2"} such that
INP, = {(i,7;k)}. Thus for all such (3, j;k) € &,, there exists an
intercalate I, such that I N &, = {(¢,5;k)}. Similarly we can see
that for 1 < ¢ < 2%, there exists an intercalate I C L, such that
(¢4,451) €e T and INE, = {(3,%; 1)}

It is easy to see that there exist required intercalates for the entries
(2™ - 2,2™;3), (2™ —1,2" — 2;4) and (2",2" — 1;2). The necessary
intercalates for the remaining entries in &, \ {(2" — 3,2" — 2;2)} are
given in Table 5 and so for all entries (4, j; k) € £,\{(2"-3,2"-2;2)}
there exists an intercalate I such that IN&, = {(3,5;k)}.

Finally, if T is a latin trade such that INE, = {(2" -3,2" - 2;2)}
then

I= {(2n -3,2" — 2;2)a (2n -3,2" - 1;3)’ (2n - 3,211;4)’
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(2,],k) egﬂ.a
0<t<2m2 -2,
0<s<2"3_2

Entries which together with (3, j; k) form an
intercalate I in L, such that
EnnI={(J;k)}

(1 +4t,2 + 4t; 2)

(1 + 4¢, 2% 2" — 41), (2" — 1,2 + 4t; 2" — 4¢),
(2" —1,2%;2)

B+ 4t,4+452)

B+ 4,2%2" —2— &), (2" — 1,2%2),
(2" — 1,4 + 482" — 2 — 4t)

A+ 4,3 + 4t;2)

@+ 41,27 — 3; 2" — 4&t), (2" — 2,2" — 3;2),
(27 — 2,3 + 4t;2" — 4t)

@+ 42,4 + 4%; 3)

@ +4%,2" — 1;2" — 41), (2" — 3,2" — 1;3),
(2" — 3,4 +4t;2" — 4¢)

(3+4t,1+4t;3)

(3 + 4t,2" — 2;2" — 4t), 27, 1 + 4¢; 2" — 4),
(28,2 — 2;3)

@ + 42,2 + 4t; 3)

@ +4t,2" - 3,27 — 41), (2" — 1,2" — 3;3),
(2" — 1,2 + 4t;2" — 4¢)

(1 +4t,4 + 4t;4)

(0 +4t, 2™, 2" — 41), (2" — 3,4 + 4t; 2" — 41),
(2" — 3,2";4)

(2+4t,3 +4t;4)

(2 +4t,2" — 1;2" — 4t), (2" — 2,2" — 1;4),
(27 — 2,3 4 48, 2™ — 4¢)

@+ 4t,1+45;4)

@14t 2" —3,2" — &), (20,1 + 45, 2" — &),
(2",2" — 3;4)

(7 + 8s,6 + 8s;4)

(7 + 85, 2" — 6, 2" — 83), (2" — 5,2" — 6;4),
(2™ — 5,6 4 8s; 2™ — 8s)

Table 5: Necessary intercalates
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(2" —2,2" — 3;2), (2" — 2,2" — 2;1), (2" — 2,2" — 1;4),
(2n - 1’211. - 3;3)$ (2n - 1’2n - 1; 1): (2n - 1,21&;2),
(2", 2" — 3;4), (2", 2" — 2;3), (2", 2% 1) }.

Note that |E,| = 4" —37—2.27"2-2""3_343 = 4" —3n—2~1 273,

The last two results are required for the proof of Lemma 20.

Lemma 22 Let n = 2(mod 4) and let F,, and A, be partial latin
squares as defined in Section 6. If there exists latin trades I,J C Ay,
such that IN Fy, = {(0,n/2;0)} and JNF, = {(n/2,0;0)} then

IC{(,j;i+j(medn))|[0<i<n/2-1,n/2<j<n-1,
n/2+1<i+j<n}, and

J C{( ;i +j(mod n)) [n/2<i<n—-1,0<j<nf2-1,
nf2+1<i+j<n}

In addition, |I| > 4 and |J| > 4, R(I)NR(J) =0 and C(I)NC(J) =
0.

Proof: It will be shown that if there exists a partial latin square A
of order n, such that (F, \ {(0,7/2;0),(n/2,0;0)}) C A then
AC An\ ({Gysi +j(mod m)) |0 S i < mf2 - 1,
nf2<j<n-1,n/2+1<i+j<n}U
{(,4;4 +j(mod n)) | n/2<i<n—1,
0<j<n/2-1,n/24+1<i+j<n}).
Assume (F, \ {(0,n/2;0),(n/2,0;0)}) C A then
e fork=n/2-1,...,1,fori =k+1,...,n-1, (3, n+k—i; k) € A;
e for k=n/2, (0,0;n/2) € A,andfori =1,...,n/2 -1, (i,k —
i;k) € A;

efork=n/2+1,...,n—1,fori=0,...,k—n/2, if (i,5;k) €
A then j > nf/2 and so for ¢/ = k—-n/2+1,...,n/2 — 1,
(@ k—1;k) € A
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‘We have shown that if there exists a latin trade I C A, such that
InF, = {(0,n/2;0)} then I is bounded by rows 0 and n/2 — 1,
and columns n/2 and n — 1. In addition, (¢,7) € Sy if and only if
n/2+1 < i+ j < n. Similarly, if there exists a latin trade J C A,
such that JNF, = {(n/2,0;0)} then J is bounded by columns 0 and
n/2 — 1, and rows n/2 and n — 1. Further, (4,7) € Sy if and only if
n/2+1 < i+ j < n. Using the structure of B, it can be shown that
if n = 2(mod 4), then |I| > 4,|J] > 4. Thus R(I) N R(J) = 0 and
cyncJ)y=0o.

Lemma 23 Let P1, L1, Fy, and A, be partial latin squares as defined
in Section 6. Then there ezists a latin trade T C (L1 X Ay,) such that
IN(P®F,)={(n/2,n/2;n/2)}.

Proof: To verify this we use the existence of latin trades in B, as
documented in [6]. That is, for all positive even integers n there
exists a latin trade denoted H,/3_42 in B, /a2 with the property
that H,,j5_4 is contained in the subarray defined by the intersec-
tion of rows 0 to /2 —4 with columns 0 to 2 and contains the entries
(0,0;0),(0,2;2), (n/2—4,0;n/2—4),(n/2—4,2;0). Let HL/2_4’2 de-
note the disjoint mate of Hy,/5_4,3. The required latin interchange
and disjoint mate 7’ are given below:

Z = {(n/2,0;0),(n/2,n/2;n/2),(n/2,n +1;3n/2 + 1),
(n/2,3n/2 — 1;2n — 1)} U{(3n/2 — 1,n/2;2n — 1),
(B3n/2-1,n+1;n/2)} U{(3n/2 + 1,0;3n/2 + 1),
(3n/2+1,n/2 - 2;2n - 1),(3n/2+1,3n/2 - 1;0)} U
{(G+3n/2-1,i+2,k+3n/2+1) |
(5,5 K) € Hojaoaz \ {(n/2 - 4,2:0)}}

{(n/2,0;3n/2 + 1), (n/2,n/2;2n — 1), (n/2,n + 1;n/2),
(n/2,3n/2 — 1;0)} U{(3n/2 — 1,1n/2 — 2;2n — 1),
(3n/2 -1,n/2;n/2),(3n/2 - 1,n+ 1;3n/2 + 1)} U
{(3n/2 +1,0;0),(3n/2+1,3n/2 - 1;2n — 1)} U
{G+3n/2-1,i+2;k+3n/2+1) |
(5,5;%) € Hyjp_y2 \ {(n/2 - 4,0;0)}}.

II
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