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Abstract: Given a polyomino P with n cells, two players A and B alter-
nately color the cells of the square tessellation of the plane. In the case
of A-achievement, player A tries to achieve a copy of P in his color and
player B tries to prevent A from achieving a copy of P. The handicap num-
ber h(P) denotes the minimum number of cells such that a winning strategy
exists for player A. For all polyominoes that form a square of n = s square
cells the handicap number will be determined to be s — 1.
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1 Introduction

In an A-achievement game two players A and B alternately color the squares
of the Euclidean tessellation of the plane. For a given polyomino P with n
squares player A wins if he achieves a copy of P in his color (green) and
player B (by red squares) tries to prevent A from winning (for references
see [1]).

In (1] the handicap number h(P) is introduced as the minimum num-
ber of squares that A has to color before he starjs to achieve the given
polyomino P by an A-achievement game with a winning strategy for A.
Polyominoes with h(P) = 0 are known as winners. There are 11 winners,
one polyomino, called Snaky, is undecided, and for all others a winning
strategy for A does not exist. In general, it is trivial that h(P) <n - 1.

Besides exact values of h(P) for some small polyominoes, in [1] it is
proved h(P) = n — 2 if P consists of n consecutive squares in a line and
h(P) =n—1if P is a generalized "plus sign” with n = 4s + 1 squares. For
snaky only A < 2 is known. Here we will prove mainly A(P) = n ~ 1 for
P = P,z being a square of n = 32 square cells.

2 Polyominoes of square shape

The trivial upper bound h(P) < n—1is attained if P is an s x s-square Pja.
Theorem 1. h(P;2) =s% -1 for s # 2.
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As mentioned above h(P,2) < s2 — 1 is fulfi ed. The proof of A(P,2) >
— 1 for s > 3 is partitioned into two cases wiien s is odd and even. For
s = 1it is trivial and h(P,2) = 2 is proved in [1].

2.1 Proof for odd s

For odd s every P,z has a central cell. To obtain h(P,2) > s2 — 1 we prove

that B is able to exclude every cell of the plane as a central cell of a green P,2

if player A has colored any set of s2 — 2 cells in green before his first move.
We need the following three lemmas. We frequently will use —'"— =t

Lemma 1. No cell of a ¢t x t-square is possible as a central cell of a
green Py if this ¢ x ¢-square contains a red cell.

Proof. Any s x s-square having its central cell inside of a ¢ x t-square covers
this ¢ x t-square completely and thus contains a red cell. n

Lemma 2. If arectangle of s rows and ¢ columns contains a red cell then
no cell of the middle row is possible as a central cell of a green Pja.

Proof. Any s x s-square having its central cell inside of the middle row of
the rectangle covers it completely and thus contains a red cell. ]

Lemma 3. If (a) or (B) is fulfilled then player B can color cells inside
of a stripe R of ¢ consecutive infinite lines (rows or columns) of square cells
such that no cell of R is possible as a central cell of a green P,.
(a) There exists a partition of R into t x t-squares, each having at least
two uncolored cells.
(8) In R there are i lines, 2 < i < t, having at most si — 2 green cells.

Proof. If (a) is fulfilled then player B can color one of the two cells within
any ¢ x t-square in red and Lemma 1 can be used.

If () is fulfilled then we can assume that at least one ¢ x t-square of
every partition of R into ¢ x t-squares has at most one uncolored cell since
otherwise () can be used. There are ¢ different partitions into ¢ x ¢t-squares
and we can assume that each partition has one square Q;, j = 1,2,...,¢,
with at least ¢ — 1 green cells in the considered i lines. No pair of these
squares exists with an empty intersection since otherwise R would contain
at least 2(ti — 1) green cells in the ¢ lines and thus more than si — 2, a
contradiction to (B). It follows that the ¢ squares Q; have to cover an
s x t-rectangle R;. The leftmost and rightmost of these squares @Q; have
in common exactly one column C of ¢ cells. Since each Q; has at most
one uncolored cell and since the i lines contain at most si — 2 green cells,
there remain no green cells outside of R, and in these ¢ lines, and exactly
two uncolored cells occur in these 7 lines and inside of R;. Then player B
can color one of these two cells in red and Lemma 2 excludes all cells of
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column C as central cells. If R on both sides of C is partitioned into ¢ x ¢
squares then all of them contain at least two uncolored cells (at least in ths:
i lines). Then Lemma 1 completes the proof in the case of (8). u

We now are ready to exclude every cell of the plane as a central cell of
a green Py,

We consider partitions of the plane into horizontal and vertical stripes
of width ¢. We can assume that every partition céntains one stripe that
fulfills neither (a) nor (8) since otherwise Lemma 3 can be used. Horizontal
and vertical there are ¢t different partitions each with one stripe H; or V;,
respectively, having at least si — 1 green cells in every set of i lines of H;
and V; with 1 < j <t and 2 <i <t. These ¢ stripes have pairwise at least
one line of cells in common since otherwise there are altogether at least
2(st — 1) green cells, that is, more than the given number of s> — 2 green
cells. Thus the stripes H; and V; form stripes H and V, respectively, of
widtht+t—-1=3s.

If s > 5 thent—1 > 2 and H so as V contains at least st—1+s(t—1)—1 =
s% — 2 green cells (since (8) is not fulfilled), that means, all green cells are
within A and V, that is, within an s x s-square Q being the intersection
of H and V. The two uncolored cells of Q exclude the central cell of Q.
Around this central cell we partition the plane into ¢ x t-squares as indicated
in Figure 1. Since each of these ¢ x {-squares contains at least two uncolored
cells, player B can color one cell in red and Lemma 1 can be applied to
exclude all other cells of the plane.

Figure 1. Partition of the plane into ¢ x t-squares around the central cell of Q.

If s = 3 then H and V have the width 3, both stripes of width ¢ = 2
contain at least five cells, and the middle line of cells contains three or four
green cells. Thus there remain only two possibilities, either all seven green
cells are within the intersection @ of H and V or five of them are within
@ and one in each of the two middle lines as in Figure 2. In both cases
a partition as in Figure 1 guarantees at least two uncolored cells in the
2 x 2-squares and the proof is finished as before. n
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Figure 2. Five green cells within Q and one in each of the two middle lines.

2.2 Proof for even s

For even s every P, has a central lattice point and we exclude every lattice
point of the plane as the central lattice point of a green P, if player A has
colored any set of s — 2 cells in his color before his first move.

Again, we need three lemmas and we will use § =¢.

Lemma 4. No lattice point of a ¢ x t-square is possible as a central lattice
point of a green P, if this ¢ x t-square contains a red cell.

Proof. Any s x s-square having its central lattice point as a lattice point
of a t x t-square covers this t x t-square completely and thus contains a red
cell. =

Lemma 5. If a rectangle of s rows and ¢ columns contains a red cell then
no lattice point of the middle row of lattice points is possible as a central
lattice point of a green P,a. '

Proof. Any s x s-square having its central lattice point as one of the middle
row of lattice points covers all lattice points of the s x t-rectangle and thus
contains a red cell. =

Lemma 6. If (a) or (B) is fulfilled then player B can color cells inside
of a stripe R of ¢ consecutive infinite lines (rows or columns) of square cells
such that no lattice point of R is possible as a central lattice point of a
green P,a.

() There exists a packing of R by disjoint ¢ x t-squares such that all
lattice points of R are covered and each t x t-square contains at least
two uncolored cells.

(B) At most 2t2 — 2 cells of R are green.

Proof. If (a) is fulfilled then Lemma 4 can be used.

If (B) is fulfilled and () is not then at least one ¢ x t-square of each
of the t + 1 different packings of R by disjoint ¢ x t-squares covering all
lattice points has at most one uncolored cell. Two of these squares, @,
and @2, do not have any cells in common. Together, @, and Q2 have at
least 2(&2 — 1) = 2t% — 2 green cells. Therefore, Q; and Q2 each has exactly
t2 — 1 green cells and all remaining cells of R are uncolored. The squares

50



Q1 and Q; have a side in common since otherwise (a) is fulfilled. Now by
Lemma 5 the lattice points of the common side of @1 and @, are excluded.
The remaining lattice points of R are covered by packings of disjoint ¢ x ¢-
squares and Lemma 4 can be applied since ¢ > 2. u

To exclude every lattice point of the plane we consider vertical and
horizontal packings of the plane by disjoint stripes of width ¢ such that
all lattice points are covered. It suffices to assume that each of the ¢ + 1
packings contains one stripe that fulfills neither (a) nor (8) of Lemma 6.
Two of these stripes do not have any cells in common. Together, each pair
of stripes has 2(2¢2 — 1) = 52 — 2 green cells, that ig, all cells outside of the
stripes are uncolored. The pairs of stripes have one line of lattice points in
common since otherwise one of the ¢ + 1 packings exists where all stripes
fulfill («) of Lemma 6. Thus all s2 — 2 green cells are inside of that s x s-
square @ being the intersection of the horizontal and vertical pair of stripes.
By the two uncolored cells of Q the central lattice point of Q is excluded.
All surrounding lattice points can be covered by a packing of disjoint ¢ x ¢-
squares each having at least two uncolored cells (see Figure 3) and then
they are excluded by Lemma 4. n

Figure 3. Packing of the plane by disjoint ¢ x ¢-squares around the central lattice
point of Q.

3 Some related polyominoes
Exact handicap numbers for some further classes of polyominoes P with n
cells can be determined using Theorem 1. If one, two, or three square cells

are added to an s x s-square as in Figures 4, 5, or 6 (the dashed lines are
symmetry lines) then the lower bounds of the handicap numbers follow from
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Theorem 1 and the arguments for the upper bounc. ‘are straightforward to
obtain A(P) =n -2, n — 3, or n — 4, respectively.

In general, it may be a question whether polyominces P with n cells do
exist having h(P) = n — ¢ for any c.

M H [l

Figure 4. h(P)=n - 2. Figure 5. h(P) =n - 3.

HE.

Figure 6. h(P)=n—-4.
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