Searching a (33, 16) Doubly-Even Code For a (22,33,12,8,4)-BIBD

Richard Bilous
Concordia University
Department of Computer Science
e-mail: umbiloul@cs.concordia.ca

Abstract: It is known that if a (22,33,12,8,4)-BIBD erists then its in-
cidence matriz is contained in o (33,16) doubly-even self-orthogonal code
(that does not contain a coordinate of zeros). There are 594 such codes,
up to equivalence. It has been theoretically proven that 116 of these codes
cannot contain the incidence matriz of such a design. For the remaining
478 codes, an ezhaustive clique search may be tried, on the weight 12 words
of a code, to determine whether or not it contains such an incidence matriz.
Thus far, such a search has been used to show 299 of the 478 remaining
codes do not contain the incidence matriz of a (22,33,12,8,4)-BIBD.

In this paper, an outline of the method used to search the weight 12
words of these codes is given. The paper also gives estimations on the size
of the search space for the remaining 179 codes. Special attention is paid to
the toughest cases, namely the 11 codes that contain 0 weight 4 words and
the 21 codes that contain one and only one weight 4 word.

1 Outline

Let C be a (33,16) doubly-even self-orthogonal code over GF(2). Our
algorithm for determining whether or not C' contains an incidence matrix
for a (22,33,12,8,4)-BIBD works in two stages. In Sections 2, 3, and 4
we discuss the first stage of our algorithm. In this stage, we find a set L
of 22 x n matrices P, where n < 33, with the property that C contains
an incidence matrix for our design if and only if C contains an incidence
matrix [P|Q], where P € L. In Section 5, we discuss the second stage of
our algorithm. In this stage, for each P € L, we search the weight 12 words
of C for an incidence matrix [P|Q]. In Section 6, we discuss the pruning we
perform during our search. In Section 7, we briefly discuss the performance
of our algorithm on the 299 codes we have searched. Finally, in Section 8,
we give estimates on the size of the search space for the remaining 179
codes.

JCMCC 46 (2003), pp. 53-64

2 Word Blocks and Left Patterns

We use the term word block to refer to any set of codewords that may oc-
cur in the orthogonal complement of a (33,16) doubly-even self-orthogonal
code. A zero coordinate of W is a coordinate in which every codeword in
W has a value of 0. A left word block is a word block whose non-zero coor-
dinates all occur to the left of its zero coordinates. In Figure 1, all the left
word blocks we consider are given. Unless stated otherwise, whenever the
term “word block” is used, we are referring to one of the left word blocks
in Figure 1.

Let W be a left word block. We use the notation n(W) to denote the
number of non-zero coordinates in W. The notation W,(w)) is used to
denote W with its last 33 — n{W) coordinates deleted. A left pattern of
W is a 22 x n(W) matrix P such that: 1) each row in P is orthogonal to
every vector in Wi (wy), 2) each row in P has weight less than or equal to
12, 3) each pair of rows in P intersect in at most 4 positions (i.e. there are
at most 4 columns in which both rows have a value of one), and 4) each
column in P has weight 8. In Figure 2, examples of a left pattern for the
d;-block and for the f;-block are given.

Let C be a code whose orthogonal complement contains the word block
W. If C contains an incidence matrix A for a (22,33,12,8,4)-BIBD then
the 22 x n(W) submatrix in the first n(W) columns of A is a left pattern P
of W. We refer to this left pattern P as the left pattern A “begins with”.

For each of our left words blocks W, we have found a complete set
L(W) of left patterns of W, up to row and column rearrangement. What
we mean by a “complete set” is a set that contains every left pattern P of
W for which it has not be determined, by means other than our exhaustive
search, that there does not exist an incidence matrix A that begins with P.
In Table 1, |L(W)] is given for each of our word blocks W. The seven left
patterns of the f;-block and the three left patterns of the d;-block can be
found in [2]

W [fildildz|d | ds|d; | da
LN 7 | 3 |11] 8 [20] 2 |14

Table 1: The size of the set L(W) for each of the word blocks W in
Figure 1.

54

5556
OO ™
OO.I..m
omo 2
O~
oo g
-
o

Lo B o B |

means just enough zeros

ts.

Figure 1: Our left word blocks. The notation 0*

to extend the codeword to one with 33 componen

) 1
COCOCO O mmM MmN =~O00O0COOOO

OO0 -H 1 OO0 1 MOOOHHOOOOOO
HEA A OO OO0 OOCOHHMM~OO0OO0OOOO

HeEH A~ O00C00O00OCOCcCOoOO O
[—]

r]
OO0 00O M HOOO N mMOOHMeMOOOO

OO0 O H HOOOHHOOHmOO~NOOO®

HEH OO OO O HOOOONHHHOOOOO

HFEA AT O 0O 00O NN M HOOOOOOOOOD

HEAE A A A A AT OO OO OO0OO0OO0OO0O0COCOO O
L ']

pattern 2.0

pattern 4.0

pattern of the

Figure 2: Examples of left patterns. Pattern 4.0 is a left
fi-block. Pattern 2.0 is a left pattern of the d;-block.

55

3 The Word Block of a Code

Let L denote our set of 478 codes that we have not eliminated theoretically.
The orthogonal complement of each C in L contains several word blocks
that can be permuted, with a coordinate permutation, to at least one of
the left word blocks in Figure 1. For each C in L, we select one word block
in its orthogonal complement, and then permute the coordinates of C until
the word block becomes the corresponding left word block in Figure 1. The
running time of our search algorithm may be greatly affected by the word
block we choose. Therefore, the word block we select is the one that we
believe will result in the shortest running time.

We classify each code based on the word block we select for the code.
For example, if for a code C the word block we select is permuted to a
ds-block, then we classify C as a d3-code. For a given word block W, the
notation C(W) is used to denote the set of codes C in L that have been
classified as W-codes. In Table 2, we list the number of codes in each class
of codes. All 478 of these codes can be found at [1].

W Al | dz | & |ds|ds]|da
[COV)[|11 [132 | 122 [115 [44 [17 37

Table 2: Number of codes in each class.

Thus far, we have search all of the d4, d}, d3, and d3-codes, and many
of the dy-codes. Among the codes we have not searched, our estimations
have shown the toughest cases are the codes that have at most one weight
4 word. There are 11 codes that contain no weight 4 words (i.e. the 11
codes we classify as fi-codes) and 21 codes that contain exactly one weight
4 word (all of which are dy-codes).

4 The Left Patterns of a Code

Let W be a word block and let C be a code in C(W). If C contains
an incidence matrix A for a (22,33,12,8,4)-BIBD then the 22 x n(W)
submatrix in the first n(W) columns of A must be a left pattern P of W.

Our algorithm for determining whether or not C contains an incidence
matrix for a (22, 33,12, 8,4)-BIBD works by first producing a set L(W,C),
of left patterns of W, with the property that C contains an incidence matrix
for a (22,33,12,8,4)-BIBD if and only if C contains an incidence matrix

56

that begins with one of the left patterns in L(W, C). For each P € L(W, (),
our algorithm then searches the weight 12 words of C for an incidence
matrix that begins with the left pattern P. If for each P € L(W,C), our
algorithm does not find an incidence matrix that begins with P, then we

can conclude C' does not contain an incidence matrix for a (22, 33,12, 8, 4)-
BIBD.

The set of left patterns L(W) for the word block W is used to find the
set L(W, C). By definition of L(W), if C contains an incidence matrix that
begins with a left pattern P, then L(W) must contain one and only one
left pattern P, such that the rows and columns of P, are a permutation
of the rows and columns of P,. If P, is simply a permutation of the rows
of P, then C' must also contain an incidence matrix that begins with P;.
However, if we must also apply a column permutation 7. to P;, in order to
produce P», then it is not necessarily true that C also contains an incidence
matrix that begins with P;. (The reason for this is, of course, that when
we apply 7. to P, we are also permuting the coordinates of C, and thus
all we can say, in the most general sense, is that there must exist a code
equivalent to C that contains an incidence matrix that begins with P,.)
Therefore, for each P € L(W), we may have to include, in L(W,C), all
left patterns m.P, where 7 is a column permutation, that are distinct up
to row rearrangement. Note that, due to the automorphism group of the
code, we may not have to include all such patterns in L(W,C).

5 Searching for an Incidence Matrix

Let W be a word block and let C € C(W). For each left pattern P €
L(W,C), we determine whether or not C contains an incidence matrix
[P]Q] by performing an exhaustive search on the weight 12 words in C.

In describing how our algorithm works, we will make use of the following
terminology and notation: The term left word of C will be used to refer to
any n(W)-vector ! that occurs in the first n(W) components of a codeword
in C. The term right word of C will refer to any (33 — n(W))-vector r that
occurs in the last 33 — n(W) components of a codeword in C. For the left
word I, we will use R(C,[) to denote the set of all right words r of C in which
Ir forms a weight 12 word of C that does not intersect any of the weight 4
words in C (if any) in 4 positions (the notation Ir means concatenation).
Note that the reason we do not include weight 12 words that intersect a
weight 4 word in 4 positions is that, as shown in [2], any such weight 12
word cannot be a row in an incidence matrix for a (22, 33, 12, 8,4)-BIBD.

For a given code C, the size of the set R(C,1) is basically a function of

57

the weight of the left word I. For the fi-codes and left words [with weight
0, 2, and 4, the average size of R(C,1) is 1851, 800, and 200, respectively
For the d;-codes with one weight 4 word and left words ! with weight 0 and
2, the average size of R(C,1) is 3192 and 1235, respectively.

Our algorithm for determining whether or not C contains an incidence
matrix [P]Q] works by recursively filling, row by row, the rows of @ until
either an incidence matrix has been produced or all possibilities have been
exhausted. Given a Q whose first i —1 rows have been filled, the possibilities
for row i of Q are the right words r in the set R(C,l;), where [; is the left
word in row i of P, in which /;r intersects each of the first ¢ — 1 rows
of [P|Q] in four positions. Note that since the weight of the columns of
Q do not typically come into play until the last few rows of Q) are being
filled, we do not consider the weight of the columns of @ in our algorithm.
(Furthermore, it is known that if @ can be completed, then its columns will
all have weight 8.)

The running time of our algorithm is greatly affected by the arrangement
of the rows of P. Therefore, before we begin our search, we attempt to sort
the rows of P in a manner that will result in the shortest running time.
Factors taken into consideration when sorting the rows of P include the
theoretical number of possibilities for row i of @, the amount of pruning
that may be done, and empirical results from testing.

6 Pruning the Search Space

Suppose the first i — 1 rows of Q have been filled. Let R; denote the set of
right words that are candidates for row ¢ of Q. That is, R; is the set of all
right words r € R(C,1;), where l; is the left word in row ¢ of P, such that
l;v intersects each of the first ¢ — 1 rows of [P|Q)] in four positions. We have
several methods for determining when inserting a given r € R; into row ¢
of Q will not lead to a solution, each of which we will briefly describe next.

6.1 Right Representative Pruning

Let m. be a permutation of the columns of @ for which there exists a
permutation 7. of the rows of @ such that: 1) the first i — 1 rows of @
and 7,7, Q are equal, 2) . does not move row ¢ of Q, and 3) C contains
an incidence matrix [P|Q] if and only if C' contains an incidence matrix
[Plmr7cQ). Then for any two right words 1,72 € R;, if 11 = mcre then
inserting r; into row ¢ of @ will lead to a solution if and only if inserting r
into row ¢ leads to a solution. Thus, our algorithm only needs to try one of

58

1 and r2. This observation leads us to a method of pruning we refer to as
right representative pruning.

Before our algorithm begins trying the different possibilities for row i
of @Q, it first finds a set II; of columns permutations 7. for which there
exists a 7, with the three properties described above. For each right word
r € Ry, our algorithm then uses II; to find the unique ' € R;, that will
be processed first by the algorithm, for which there exists a . € II; such
that w.r' = r. We refer to r' as the right representative of r and denote it
by rep;(r). (Of course, ' may be r itself.) Our right representatives are
such that rep;(r1) = rep;(rz) whenever there exists a m. € II; such that
WeT1 = r2, where 71,72 € R;. Furthermore, if r is the right representative
of some r; then r is its own representative (i.e. rep;(r) =r).

Inserting a right word r into row ¢ of @ will lead to a solution if and only
if inserting rep;(r) into row ¢ leads to a solution. Therefore, the only right
words r € R;, that our algorithm tries as row i of Q, are those that are
their own representative. This gives us our right representative pruning,.

6.2 Must Not Come Before Pruning

For this pruning, before we begin our search for an incidence matrix in C,
that begins with a particular left pattern P, we first find a set S of row
permutations w,. with the property that C contains an incidence matrix
[P|Q] if and only if C contains an incidence matrix [P|r,.Q)].

Let 7, € S. Suppose =, has the form:

1 2 ..o -1 4..-
(1 2 -+ i=1 j---)

where j > i. Suppose further that the first j — 1 rows of Q have been
filled. Then since C contains an incidence matrix [P|Q)] if and only if C
contains an incidence matrix [P|x.Q)], inserting a right word r € R; into
row j of @ will lead us to a solution if and only if C contains an incidence
matrix [P|Q’], where the first i — 1 rows of Q and Q' are equal, and row
i of Q' contains the right word r. Therefore, if the algorithm has already
determined there does not exist such an incidence matrix [P|Q'], then we
know inserting r into row j of @ will not lead us to a solution.

6.3 Pruning Using Patterns Under A Weight 5 Word

For each of our codes C, C contains at least six weight 5 words. Let
be a weight 5 word in C+ and let S denote the set of five coordinates of

59

C in which % has a value of one. Then if C' contains an incidence matrix
A for a (22,33,12,8,4)-BIBD, the five columns of A, that correspond to
the coordinates in S, must form a left pattern of the fi-block. Therefore,
whenever our algorithm produces a [P|Q] in which the five columns that
correspond to S cannot be completed to a left pattern of the f;-block, then
our algorithm can backtrack. For example, suppose the first ¢ rows of [P|Q]
contain three rows that have weight 4 in the five columns that correspond
to S. Then [P|Q] cannot be completed to a left pattern of the f;-block as
it is known that any left pattern of the f;-block has at most two rows with
weight 4.

6.4 Equivalent Case Processed Pruning

This form of pruning is only performed on the nine f;-codes C' that con-
tain more than one fi-block that is isomorphic to the chosen f;-block W.
It is based on the following observation: Let W' be an f;-block in C*
(other than W) that is isomorphic to W. (That is, W’ is an f;-block for
which there exists an automorphism of C that permutes the five non-zero
coordinates of W' to the first five coordinates of C*.) Let S denote the
five non-zero coordinates of W’. Suppose C contains an incidence matrix
[P|Q]. Then the five columns in [P|Q] that correspond to the coordinates
in S form a left pattern P’ of the f;-block. Furthermore, since there ex-
ists an automorphism of C that permutes S to the first five coordinates
of C, C must also contain an incidence matrix that begins with the left
pattern P’'. Therefore, if inserting a right word into row i of Q results in
a [P|Q] in which the five columns of [P|Q], that correspond to S, can only
be completed to a left pattern P’ that has already been processed by the
algorithm, then the algorithm can backtrack. For example, suppose our
algorithm has already (unsuccessfully) searched for incidence matrices that
begin with each of the left patterns P’ that contain at least one weight
4 row. Now, suppose our algorithm is searching for an incidence matrix
that begins with a left pattern P that does not contain any weight 4 rows
(note that there is one left pattern of the f;-block that does not contain
any weight 4 rows). Then, whenever insertion of a right word r into row
i of Q results in a [P|Q] that has weight 4 in the five columns of row ¢
that correspond to S, we know [P|Q] cannot be completed to an incidence
matrix.

6.5 Look Ahead Right Word Pruning

For this pruning, we maintain sets of all right words that may potentially
be inserted into row m of Q, for m = 4,4 + 1,...,22. Let R; ., denote

60

the set of right words r € R(C,!,,), where [, is the left word in row m
of P, such that rl,, intersects each of the first i — 1 rows of [P|Q] in 4
positions. Then if [P|Q] can be completed to an incidence matrix, row m
of Q@ must be an element of R;,,. Now, many of the sets R;,, may be
equal. For example, if rows m; and m; are equal then R;,,, = Rim,. Let
N (i,m) denote the number sets R; s/ in which R; s = Ri . Then in order
to complete [P|Q] to an incidence matrix, our algorithm must eventually
select N(i,m) right words from the set R;,,. Furthermore, for the word
blocks we use, these right words must be distinct. Therefore, whenever our
algorithm produces a set R;,, in which |R; »| < N(i,m), then we know
[P|Q] cannot be completed to an incidence matrix.

7 Results

Thus far, we have used our algorithm to search all 37 ds-codes, 17 d}-codes,
44 d3-codes, and 115 d3-codes. We have also searched 86 of the 122 d;-codes.
Thus far, the code with the largest search tree contained 1.48e + 11 nodes
and took 9.5 days to search. On average, our algorithm searched 1.8e + 10
nodes per day. However, we believe with further optimization of both our
algorithm and our implementation, we can sufficiently increase the number
of nodes searched per day to allow us to search the remaining codes.

8 Estimations

We conclude this paper with estimations on the size of the search space
for the 11 fi-codes and the 21 d,-codes that contain only one weight 4
word. Also included is an estimation on the size of the search space the
478 — 32 = 147 remaining codes we have not searched. Additional details
on the estimations for the fi-code C» are also given.

Comparisons between our estimations and the actual size of the search
space for the codes we have searched have shown that our estimations are
quite good. For example, for the code searched with 1.48e + 11 nodes, our
estimation for the number of nodes was 1.54e + 11.

In Table 3, we give, in detail, our estimations on the size of the search
space, over all left patterns, for code Cz. The column labeled “calls” gives
our estimation of the number of times our algorithm will be called to fill
row level of Q. The column labeled “nodes” gives our estimation of the
number of times the algorithm will insert a right word into row level of Q.

61

level calls nodes right reps mncb wt 5 words | processed | look ahead

1 82 16011 8378 0 0 11 0
2 7606 782418 26294 33850 0 2150 0
3 721075 |1.24e + 08 139007 | 16966316 110901 1544293 0
4)1.05¢ + 08 | 6.29¢ + 09 173413 (2.13¢ + 09 7324192 | 81520255 0
5|4.08¢e + 09]2.02¢ + 11 738866 | 2.56e + 10| 2.29e + 09 |3.60¢ + 09| 1.16e + 08
6|1.71e + 11]3.52e + 12| 2208311 |1.15e¢ + 12| 3.72e + 10| 7.58¢ + 10| 1.46¢ + 08
7]2.26e + 12 |4.44e + 13| 6136210|6.41e + 12| 6.57e+11]5.32¢ + 11| 6.4le + 11
8|3.64e + 13|2.88¢ +14] 2986220|1.02¢ + 14| 5.37e+12|1.45¢ + 13| 2.28¢ + 13
9|1.45¢e + 14|9.59e + 14| 3472672|8.52¢ + 13| 2.22e+13|2.11e+ 13| 3.92¢ + 14
10| 4.46e + 14|1.08¢ + 15 1432825 (4.98¢ + 14| 1.85e + 13|5.90e + 12| 4.36e + 14
11]1.24e 4+ 14|3.73e + 14 379007 |1.40e + 13| 2.22¢ + 13|2.69¢ 4 12| 3.16¢ + 14

12|1.84e +13)2.41e+ 13 305085(1.15¢ + 13| 1.07e +12|2.32e +11| 1.08¢ +13
13|4.64e+11}1.0le 4+ 12 163029 [2.69¢ + 10| 1.16e+11|6.46e + 09| 8.27¢ + 11
14} 3.86e + 10]{4.37e + 10 0]2.08¢ + 10| 3.07¢ 4 09]5.95¢ + 08| 1.60e + 10
15]3.25¢ + 09 | 4.04e + 09 0| 62766167 | 4.6le+ 08| 9088728| 2.64e + 09
16]8.60e + 08 |8.87¢ + 08 0| 50353412 74832341 9226714 | 3.65e¢ + 08
17|3.87¢ + 08 |3.94¢ + 08 0 0 26112985 691877 43499882
18(3.24e + 08]3.24¢ + 08 0| 2561315 59995028 0] 2.6le 08
19 749594 | 2998377 0 0 0 0 2098377
8

Totals: [7.73e + 14 [2.77e + 15| 18169318[7.18¢ + 14| 7.02e +13]4.50e 4 13| 1.18¢+ 15

Table 3: Estimation of the search space size over all patterns for code 2.

The last five columns give the estimated number of times the insertion will
be rejected due to one of our five methods of pruning.

In Table 4, we give our estimations on the size of the search space for
the 32 codes with at most one weight 4 word. Included for each code C;
is the left word block W used in the search, the number of left patterns in
L(W, C;), the estimated size of the search space over all left patterns, the
worst case left pattern, and the estimated size of the search space over the
worst case left pattern. Estimations for the remaining 147 codes we have
not searched can be obtained from the author of this paper. The estimated
size of the search space, over all 147 of these codes, is 1.80e + 15.

62

code word | num lett node worst worst
block | patterns count pattern count
Co h 83 1.66e + 15 6.0 9.67e + 13
Cy h 83 1.44e+ 15 4.3 8.55e+ 13
Csy hH 82 2.77e+ 15 4.0 8.31e + 13
Cs h 50 1.08¢e+15| 6.0 |1.49¢ + 14
Cy h 35 1.19¢+ 14 6.0 1.75e + 13
Cs fi 51 3.52e + 14 3.9 1.69¢ + 13
Cs N 51 1.29¢ + 14 5.0 6.36e + 12
Cr N 31 3.19¢ + 14 4.1 4.28¢ + 13
Cs N 8 1.71e+ 14 3.1 4.30e + 13
Cy h 31 7.96e + 13 4.1 1.05e + 13
Cho h 7 2.27e+ 13 3.0 7.49e + 12
Cn d; 4 4.34e+ 14 2.0 4.32¢ + 14
Ci2 d1 7 1.7le+ 14 2.0 8.87e¢ + 13
Cis dy 7 1.45e+ 14 2.0 8.71e + 13
Cha d; 7 1.09e + 14 2.0 7.14e+ 13
Cis dx 7 1.17e + 14 2.1 5.97e+ 13
Cie dy 7 9.81e + 13 2.0 6.10e + 13
Cir d; 7 1.3le+ 14 2.0 6.61e + 13
Cis dy 7 7.33e+ 13 2.1 3.74¢e + 13
Cho d; 3 1.33e + 14 2.0 1.33e + 14
Cao dy 3 1.07e+ 14 2.0 1.07e + 14
Ca dx 3 7.05¢ + 13 2.0 7.04e+ 13
Cas d; 12 4.09¢e + 13 2.2 1.51e + 13
Cos dy 12 2.16e+ 13 2.0 8.40e + 12
Coy d1 7 4.02e + 13 2.0 2.02e + 13
Cos dy 7 2.05e + 13 2.0 1.06e + 13
Ca6 dy 3 1.35¢+ 13 2.0 1.34e + 13
Cor dy 7 2.14e + 12 2.0 1.49¢ + 12
Cas dy 7 9.69e + 11 2.1 5.22e+ 11
Cag d, 4 8.14e+ 11 2.0 8.11e+ 11
Cso d; 3 6.15e + 11 2.0 6.15e + 11
Ca1 dy 3 1.71e+ 11 2.0 1.71e+ 11

Table 4: Estimations of the search space size for the codes with at most
one weight 4 word.

63

References

[1] R. T. Bilous. The (33, 16) Doubly-Even Self-Orthogonal Codes. (Internet
site), http://www.cs.umanitoba.ca/~umbiloul/DoublyEvenCodes/,
August 2000.

[2] R. T. Bilous. The Point Code of a (22,33,12,8, 4)- Balanced Incomplete
Block Design. PhD thesis, University of Manitoba, 2001.

[3] R. A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural
and Medical Research. Longman, London, 1% edition, 1938.

[4] N. Hamada and Y. Kobayshi. On the block structure of bib designs
with parameters v = 22, b =33, r =12, k =8, and A = 4. J. Combin.
Theory, Ser. A 24, pages 75-83, 1978.

[5] M. Hall Jr., R. Roth, G. H. J. van Rees, and S. A. Vanstone. On designs
(22,33,12,8,4). J. Combin. Theory 47, pages 157-175, 1988.

[6] B. D. McKay and S.P. Radziszowski. Towards deciding the existence of
2-(22,8,4) designs. J. Combin. Theory 22, pages 211-222, 1996.

[7] G. H. J. van Rees. (22,33,12,8,4)-BIBD, an update. In Computational
and Constructive Design Theory, pages 337-357. W.D. Wallis, Kluwer
Academic Publ., 1996.

