GRAPHS WITH THE 3-E.C. ADJACENCY PROPERTY
CONSTRUCTED FROM AFFINE PLANES
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ABSTRACT. A graph G is 3-e.c. if for each distinct triple S of ver-
tices, and each subset T of S, there is a vertex not in S joined
to the vertices of T and to no other vertices of S. Few explicit
examples of 3-e.c. graphs are known, although almost all graphs
are 3-e.c. We provide new examples of 3-e.c. graphs arising as inci-
dence graphs of partial planes resulting from affine planes. We also
present a new graph operation that preserves the 3-e.c. property.

1. INTRODUCTION

In this paper, we present new examples of graphs with the 3-e.c.
adjacency property. For a positive integer n, a graph is n-ezistentially
closed or n-e.c., if for each n-subset S of vertices, and each subset T
of S, there is a vertex not in S joined to each of the vertices of T and
to no vertex in S\T. Therefore, a graph is 3-e.c. if for each triple of
distinct vertices S there are eight vertices joined to the vertices of S in
all possible ways. Graphs with the n-e.c. property were first explicitly
studied in Caccetta et al. [10] (who referred to them as graphs with
property P(n)). However, the earlier work of Erd6s and Rényi {13]
proved that almost all graphs are n-e.c. As discussed in [5], few explicit
examples of n-e.c. graphs are known. The Paley graph of order g, where
g = 1 (mod 4) is a prime power, is the graph with vertices the elements
of the finite field with g elements GF(g), where two distinct vertices x
and y are joined if z — y is a square in GF(qg). In [6, 7] it was shown
that sufficiently large Paley graphs are n-e.c. Adjacency properties of
Paley graphs have also been studied by Ananchuen and Caccetta [2],
who proved among other things that a Paley graph with at least 29
vertices is 3-e.c. Constructions of 1-e.c. and 2-e.c. graphs were given in
(8], and it was shown there that a 3-e.c. graph must have at least 20
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vertices. Constructions of 3-e.c. graphs using Hadamard matrices were
given in [9]. Recent constructions, using probability theory, of many
non-isomorphic n-e.c. graphs are given in [12].

In the present article, new 3-e.c. graphs are constructed using finite
affine planes. In particular, we consider partial planes formed by delet-
ing exactly half the parallel classes of affine planes of order g, where q is
odd. A 3-e.c. graph is formed by taking the points of the partial plane
as vertices and joining two vertices if the points are on a line of the
partial plane; see Theorem 1. The 3-e.c. property can be unwieldy to
verify for a graph with large order because of the number of cases that
must be checked. The advantage of using an incidence structure with
strong regularity properties Lo construct 3-e.c. graphs is that there are
fewer cases to verify: the triple of points need only be among a small
number of geometric configurations (see the proof of Theorem 1). We
note that no restriction is placed on the properties of the affine planes
used.

In addition, we show that many vertices may be deleted from our
graphs and the 3-e.c. property is preserved; see Corollary 1. Paley
graphs of order ¢ are recovered in our construction; see Lemma 1. We
show that for orders 7 and 9, our methods produce two non-isomorphic
3-e.c. graphs of orders 49 and 81, respectively. See Corollaries 2 and
3. We close with the introduction of a new 3-e.c. preserving operation
which gives examples of 3-e.c. graphs that are not Paley graphs. See
Theorem 4.

All graphs considered are finite and simple. For a graph G, the vertex
set of G is written V(G), and the edge set is written E(G). Edges are
written Ty, and we say that x and y are joined. Given a fixed vertex z,
the neighbour set of x is the set of vertices joined to x, written N(z).
A non-neighbour of z is a vertex not joined to and not equal to z, and
the co-neighbour set of z is the set of all non-neighbours of z, written
N¢(z). The vertices that are not in a set S of vertices will be written
S (this should not be confused with the complement of G, which is
written G). The complete graph, or clique, of order n is written K,,.

Throughout, ¢ > 7 will be odd and our affine plane A will be of order
g- That is, A is a 2-(¢°,q, 1) design (with “blocks” called “lines™), and
hence satisfies the property that given any point z and line ¢, there is a
unique line L(z, £) parallel to £ that goes through z. As is well known,
such a plane has ¢? points, g%+ g lines, and each line contains exactly g
points. The relation of parallelism on the set of lines is an equivalence
relation, and the equivalence classes are called parallel classes. Each
parallel class contains g lines, and there are g + 1 parallel classes. A



partial plane results from an affine plane A if we delete some set of
lines of A. If P is a partial plane resulting from A, then the incidence
graph of P is the graph with vertices equal to the points of A, with two
vertices joined if they are joined by a line of P.

If a point z is on the line ¢, then we write /4. Each pair of non-
parallel distinct lines £ and m intersect in a unique point, which we will
write £ A m. Each pair of distinct points z, y is joined by a unique line
that we write as zy. (This notation conflicts with our earlier notation
for edges of a graph. We keep both notations since they are standard.)
If two lines £ and m are parallel, then we write £||m.

2. THE GRAPHS G(q,U, A)

Fix A an affine plane of order ¢ > 7, and consider the partial plane
that results from deleting the lines of some fixed set of half of the
parallel classes of A. The set of lines of this partial plane will be denoted
by U and the set of deleted affine lines (which are non-lines of the

partial plane) will be denoted U’. Hence, [U| = |U'| = L) The
graph G = G(q,U, A) is the incidence graph of this partial plane. It is
not hard to check that G is strongly regular: G is regular of degree 9%,
each pair of joined vertices has 9% common neighbours, and each pair
of non-joined vertices has 9—2—'—1 common neighbours We summarize
this information by saying that G is a SRG(q?, L1, £=8 97"‘-).
Our main theorem is the following.

Theorem 1. The graph G = G(q,U, A) is 3-e.c. and is a SRG(¢?, =
9;5 9_)

Proof. For each triple z,y, z of distinct vertices in V = V(G), we need
only show that each of the eight sets
Sl (SL) n Sg(y) N S;;(Z),

where S; € {N, N¢}, is non-empty. We actually prove the stronger fact
that

2.1) 1S1(z) N Sa(y) N Sa(2)] > ";—1 >0,

(Observe that 2} may not be an integer, in which case |S1(z) N S2(y) N
S3(z)] = [%2].) Choose three distinct vertices x,y,z € V. Since the
lines (and the parallel classes) of A are divided evenly between U and
U’', the proofs that we give will still hold if we interchange U/ and U/,
so we need only consider the following cases.

(1) The vertices z,y, z form a triangle in A with
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i) all three sides in U;
ii) exactly two sides in U; without loss of generality zy,yz €
Uu.
(2) The vertices z,y, z are collinear in A, with z,y,2/¢ and £ € U.
We recall that for every v e V,
2
-1

IN@)| = V()| = T

Case 1.i) The three lines zy,zz, yz are distinct and in U.

There are &L — 3 lines of U\ {zy, 2z, L(z,yz)} through z, and they
meet yz in dlstmct points different from y and 2. These points are
all in N(z) N N(y) N N(z). Similarly, each of the lines zy and zz also
contain 9%’— — 3 points of this set. Therefore,

|N(z) N N(y) N N(z)| >3 (" 5) > "; L
There are 92—- lines of U’ through z, and they meet yz in distinct
points different from y and 2. Therefore,

q + 1 q -1
T

Consider a fixed line m € U\{zy,zz} wnth zIm. The %2 lines of

U’ through y meet m in 9—- distinct points that are dlfferent from

z. Similarly, the 9;—' distinct. lines of U’ through 2 meet m in 9*2'—1

distinct points that are different from z. Since m only contains g

points including z, the line m must cont,a.m at leasl, two points of

IN(z) N N(y) O N(2)| 2 ——

N(z) N N¢(y) N N(2). Since there are L& — 2 = £=2 such lines m, we
have that
IN(@) N V() NV (2)] 2 2 (%) —g-3>221

Consider a fixed line n € U’, with zIn. The %3 lines of U'\{L(y, n)}
through y meet n in %5+ distinct points dlfferent from z and n A yz.
Similarly, the 5 lines of U'\{L(z,n)} through z meet n in 23} distinct
points dlfferent, from  and n Ayz. As n contains only ¢ pomts, there
must be at least one point of n in N¢(z) N N°(y) N N°(z). However,
there are 5—';—' such lines n, so

q + 1 q -1

IN“(z) N N(y) N N(2)| 2 —— > ——

The other cases follow by symmetry.

Case 1.i) Suppose that zy,yz € U and zz € U'.
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There are %52 lines through z in U\{yz, L(z,zy)}. These lines meet
zy in 9;—3 distinct points different from z and y. Therefore,
-3 -1
IN@ NN NNE| > 2> =,
There are 23* lines through y in U'\{L(y,z2)}. These lines meet zz
in 9;—' distinct points different from z and 2. Hence,
[Ne(z) N N ()| 2 L >
There are 9;—1 lines through z in U'\{xz}. These lines meet zy in 3+
distinct points different from z and y, so
. -1 _g¢-1
IN@) NN NN 2 = > T =
Choose any line m € U\{zy} through z. There are Z5* lines through
zinU\{L(z,m)} that meet m in L distinct points of m different from
z. In addition, there are 2 lines through y in &/’ that also meet m in
distinct points different from z. Hence, m contains at least one point
in N(z) N N(y) N N(z). However, there are 43* such lines m, so
V@ AN NG > L= > T
Each such line m € U\{zy} through z also meets the 9;—' lines of
U'\{zz} through z in distinct points different from z, so m contains at
least one point of N(z) N N¢(y) N N°(z), and as above,
ING) 0 Ne() A V(@) 2 Lo > L
Finally, the 9—;—3 lines through y in U\{zy,yz} meet 2z in distinct
points, so
- ~1
N(z) 0 V() A N)] 2 102 > L0
The remaining cases follow by symmetry.

Case 2. Suppose that z,y, z lie on a line £ € U.
The ¢ — 3 points on £ not equaling one of z, ¥, nor 2 all lie in
N(z) N N(y) N N(z). Therefore,

-1
IN@) NN NN 2 q-3> L.
Choose any line m through z in U\{£}. The % lines of &’ incident

with y meet m in & distinct points different from z as do the £
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lines of U’ through 2. Therefore, m contains at least two points of
N(z) N N°(y) N N°(z). Since there are 45+ such lines m, we have that

IN() N N N Ne() 2 g = 1> T2,

Next, we note that
IN@ NG AN = IN)| = IN() N NG| - V() n N )]
+|N%(z) N N(z) N N(y)l
= |N%(z)| - |N°(z) N N°(2)| — [N°(y) N N°(2)|
+|N¢(z) N N°(y) N N°(2)]

2 2
_g-1 _fg-1
= 3 2(4)

+|Ne(z) N Ne(y) N N°(z)]
= |N®(z) N N°(y) N N°(z)],
the second equality holding since z and y are joined to 2. Similarly,
IN°(z) N N(y) N N(z)| = [N(z) N N(y) N N(2)| = [N*(z) N Ne(y) N
N¢(z)|. Therelore, to finish the remaining cases, we need only show
that |[NS(zx) N N°(y) N N°(2)| > &*. To obtain a contradiction, suppose
that

IN¥(z) N N(y) N N(a)] = k < L.
Let
B = (N%(z) N Ny) N N(2)) U (N(z) N N(y) N N°(2))
U (N(z) N N°(y) N N(2)) U (N(z) W N(y) N N(z)).
Then |B| = 4k.
There exists a line £'||¢,¢ # ¢, that contains no points of B since
4k < g — 1 (recall that there are ¢ lines in cach parallel class). So
IN)NN@y) Nl = |IN@)NNy)NN(z)NE|
IN()NN(z)N |
= |[N)NNE)NL|.
By the fact that |[N¢(z) N N(y) N N°(2) N €| = 0 and the Principle
of Inclusion-Exclusion, we have that
g=1¢] = |(N@)UN(y)UN())NZ|
= 3IN@E)Nl|=3IN@Z)NNE) N+ |N@)NNy)NNEZ)NL|
= 3IN(x)N¥l|-2|NE)N N N¥L|

= 3 ("—;—1) _2N@) N N2,
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)
(2.2) |NE@)NN@E)n?l|= ‘I_Z_‘? € Z and g = 3 (mod 4).

If k > 0, then choose any point p € N¢(z) N N¢(y) N N¢(z) C B.
Then the lines pz,py, and pz are all in U’. The line px contains p,z
and exactly %2 points of each of (N°(z) N N°(y))\{p} and (N°(z) N
N¢(2))\{p}; hence, pz contains at least one point of N°(z) N N(y) N
N(z) € B. Therefore, pz contains at least two points of B. Since
4k -2 < (g—1) -2 = g — 3, at least one of the ¢ — 3 lines parallel
to pz, but not incident with z, y, nor 2, must contain no points of B.

Call this line n. See Figure 1.

FIGURE 1. The line n in the case when k > (0.

If £ = 0, then let n be any line of U’ that is not through x, y, nor 2.
In either case, since n contains no points of BB, we have that

g=|n| = |(N(z)UN(y)UN(z))Nn|
3|N(z) Nn| = 3|N(x) N N(y) Nn|+ |N(z)N N(y) N N(z) Nn|
3|N(z) Nn| - 2IN(z) N N(y) Nn|

=3 (%1) — 2IN(z) " N(w) N 7l.

Hence, |N(z)NN(y)Nn| = &2 € Z, so ¢ = 1 (mod 4), which contradicts
(2:2). Therefore, |N¢(z) N N°(y) N N°(z)| > &2, as desired. O

By (2.1) in the proof of Theorem 1, we can remove any set of n
vertices from G, where n is an integer satisfying 0 < n < 9%5-, and the
resulting graph G, = (V,,, E,) (with |V;| = ¢ — n) will remain 3-e.c.
(Observe that the first ¢ where this is possible is ¢ = 9.) In general,
the graphs G, are no longer regular since removing one vertex, say
z, reduces the cardinality of the neighbour sets of precisely half the
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remaining vertices (those in N(z)) by one, but leaves the cardinality
of the neighbour sets of the vertices in N°(z) unchanged.

Corollary 1. If n is an integer satisfying0 <n < 9:—5, then the graph
formed by deleting any set of n vertices from the graph G(q,U, A) is
S-e.c.

Let g be the power of an odd prime. We denote the Paley graph
of order ¢ by Pz. As noted in the paragraph before Theorem 1,
the graph G(q,U, A) is a SRG(q?, 927'1-, 9-2{—5,9%), and therefore has
the same parameters as Pz. A natural question, which we answer in
the affirmative in the next lemma, is whether Pgp is isomorphic to a
G(q,U, A) for some suitable set U/ and affine plane A. For ¢ a prime
power, AG(2,q) denotes the unique affine plane of order g built from
the field of order g.

Lemma 1. Let g be the power of an odd prime. The graph Pp is
isomorphic to a G(q,U, AG(2,q)) for a suilable choice of parallel classes
Uu.

Proof. Let K = GF(g®) and let F denote its subfield of order q. Then
K is a 2-dimensional vector space V over F. We use the standard
vector space construction for A = AG(2, q) (see, for example, p. 66 of
[4]). Namely, the set of points are the vectors in V, and the lines are
cosets of the form ¥ + (&), where @ € V\{0} and 0 is the zero vector.
(Note that this representation of a line is not unique. We have that
T+ (@) = v* + (@*) if and only if v* — 7 = k@ and u* = 24 for some
ke Fand £ € F\ {0}.) Incidence is containment, so w/ (7 + (@)) il
and only if W = ¥ + k4@ for some k € F. Then

(O + (@)||(V2 + (G2)) iff (@) = (G2).

Hence, each parallel class is determined by a 1-dimensional subspace
(@). In what follows, we use (@) as a name for the parallel class it
determines. Two distinct points, say 4 and v, are joined by the unique
line ¥ + (T — 7).

Next we note that every element of F is the square of an element in
K. To see this, observe first that the multiplicative groups ol invertible
elements of the ficlds K and F, called K* and F*, respectively, are
cyclic groups of order g% — 1 and order g — 1, respectively. Hence, the
elements of F* are (g + 1)st powers of the elements of K*. (Note that
g+ 1is even.) So il @ is a square in K, then every element of (Z) is
also a square in K.

We now choose U to be the set of lines from the parallel classes in A
associated with (&), where @ is a square in K. Note that || = ﬂ’zi'-)-.
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Therefore, % and ¥ are joined in the graph G(q,U, A) if and only if
U+ (4 — U) € U. However, the latter statement is equivalent to the
statement that @ — 7 is a square in K, which precisely defines the edges
of the Paley graph Pp. O

Using known results on adjacency properties of Paley graphs (see
[7, 6]), Lemma 1 demonstrates that for a fixed integer n and sufficiently
large g, the graph G(g,U, A) is n-e.c. for a suitable choice of U and A.
We conjecture that for a fixed integer n, there is an integer N so that
if ¢ > N, the graph G(q,U, A) is n-e.c. for all choices of U and A.

3. NON-ISOMORPHIC 3-E.C. GRAPHS OF ORDERS 49 AND 81

In Lemma 1 we showed that the Paley graph P is isomorphic to a
graph G(q,U, A) for some choice of parallel classes ¢ and A. In this
section, we show that in the cases where ¢ is 7 or 9, our construction
also provides a 3-e.c. graph that is not isomorphic to a Paley graph.
Theorem 2. Up to isomorphism, there are exactly two graphs G(7,U,
AG(2,7)).

Proof. In this proof we represent the 2-dimensional vector space over
F = GF(7) by F x F; that is, the set of points of A = AG(2,7) is
Fx F. Let.
U= {i+ (v) : 7€ {(1,0),(0,1),(1,1),(1,8)} },

where 2 < t < 6. Since an automorphism of A that maps U to U,
induces a graph isomorphism from G(7,U, A) to G(7,U,, A), it is suf-
ficient for the proofl that there are ‘al most two isomorphism types to
show that for any parallel class U, there is an affine plane isomorphism
which either maps U to Us or maps U to Us.

It is well known and easy Lo verify that any three distinct lines
through 0 can be mapped by an affine plane isomorphism of the form

(z,y) = (az + cy, bz + dy),
with ad — bc # 0, to
{((1,0)),((0,1)),((1,1))}.

Thus, each parallel class &4 in A can be mapped to U, lor some ¢t €
{2,3,4,5,6}. Now observe that (z,y) — (5z+y,y) is an automorphism
of A which maps U, to Us, (z,y) — (6z + y,y) is an automorphism of
A which maps Uy to Us, and (z,y) — (5z,y) is an automorphism of A
which maps Us to Us.

In order to prove there are at least two isomorphism types, we first
prove the following Claim.

73



Claim 1: A set S = {a,b,c,d} of points from A is the set of
vertices of a K, in G if and only if one of the following holds:
i) S is a set of four points on a line of U;
ii) S consists of three points on a line k € U together with
a point off line k which is joined to each of the first three
points by a line of Uf;
iii) up to renaming of points, the six lines ab, ac, ad, bc, bd,

and cd are distinct lines of U and abl|cd, ad||bc.

We call these configuralions of types i), ii), and iii), respectively. The
proof of the “if” part of Claim 1 is straightforward, so we verify the
“only if” part. Fix a set of four points of A that form a clique in G.
If the four points are collinear, then we have a configuration of type i).
Otherwise, if exactly three points are collinear, then we obtain a con-
figuration of type ii). Suppose that no three points are collinear. Then
the six lines joining the points pairwise are distinct. Since there are
only four parallel classes in U, then two applications of the Pigeonhole
Principle ensures that there must be two pairs of parallel lines among
the six lines, so without loss of generality, abl|lcd and ad||bc, and we
obtain a configuration of type iii). Claim 1 follows.

We observe that for each choice of U, there are exactly 28 - (]) con-
figurations of type i) and exactly 49-4 - 6 configurations of type ii). To
obtain two non-isomorphic graphs of the form G(7,U, A), we need only
show that by choosing appropriate sets of parallel classes U, we obtain
different numbers of configurations of type iii), which in turn yields a
different number of subgraphs isomorphic to K4. More explicitly, we
show that if U = Us, then there is at least one configuration of type
iii), and if U = Us, then there are no configurations of type iii).

To see this, note that if &/ = Us, then the four points (0,0),(1,0),
(1,1), (0,1) form the required configuration. Consider now the case
when U = Uy, and suppose, in order to obtain a contradiction, that
there is a configuration of type iii) present in G(7,U3, A). We select
two distinct parallel classes (v7) and (¥2) in Us to be the parallel classes
containing the lines ab and ad, respectively. Then b=ad+kv andd =
@ + kovs, for some scalars ki, ko # 0. Further, @ + kyu; + movs =
b+moty = €= d + mU; = @ + kot + ™, 13, for some scalars m, and
ms. Since U7 and 7 are linearly independent, we have that k; = m,
and k; = m,. Therefore, the parallel class containing the line ac is
(¢ - @) = (k10) + k2v2), and the parallel class containing bd is (d-b) =
(kovs — k1uy). Using the fact that (¢ — @) € Us, direct computation
then yields the following table:
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(5i) and (53) | (€—a) | (d-D)
(1,003, 0, 1)) | (T, 1)) [ (L, 6))
((1,3)) | ((1,4))
(1,000, 41, 1)) | (0, 1)) | {(1,9))
((1,3)) | {(1,2))
(1,000, 4(1,3)) | {0, 1)) | {(1,5))
(1,1 | {(1,4))
(0,133, 41, 1)) | {(1,0)) | ((1,2))
(1,3)) | {(1,6))
(0, 1)), 4(1,3)) | {(1,0)) | ((1,6))
((1,1)) | {(1,5))
(1, 1),41,9) [ ((0,1)) | ((1,2))
((1,0)) | {(1,5))

Since none of the lines in the third (d — b) column gives a parallel
class in U3, we obtain a contradiction. 0

Corollary 2. The graph G(7,U,AG(2,7)), for a suilable chuice of U,
is a SRG(49,24,11,12) thal is nol isomorphic Lo Pyy.

We now consider the case ¢ = 9.
Theorem 3. Up lo graph isomorphism, Lhere are ezactly lwo graphs
G(9,U,AG(2,9)).

Proof. In this proof, we represent the elements of F' = GF(9) by {a+bi :
a,b € Z3} and use the operations defined by

(a+bi)+(c+di) = (a+c)+(b+d)i,
(a+bi)(c+di) = (ac—bd)+ (ad + be)i,
where arithmetic between elements of Z3 is the modulo 3 arithmetic of
Z3. Then A = AG(2,9) can be viewed as the two-dimensional vector

space over F; thus, the set of points of A is F' x IF. The line which is
the coset

T+ (@) = (v, v2) + (w1, u2))
is the set of all solutions (x,y) of the equation: z = v, il u; =0, and
y = (u2(w) ™z + (u1ve — uovy)(w1) ™!, il uy # 0. Observe that these
equations (of the form y = mx + k or z = j) are unique. In the first
case, we say the line has slope 0o, and in the second case we say the
line has slope us(u,)~". Lines are parallel if and only il they have the
same slope. Thus, there is a one-to-one correspondence between the
set of parallel classes and the set {oo} U F of slopes. In this proof, we
name a parallel class by its slope, so if B € F U {c0}, then we can
view B as a set of slopes, the corresponding set of parallel classes, or
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as the set of all lines contained in these parallel classes, whichever is
appropriate.

First we prove that there are at most two non-isomorphic graphs
G = G(9,U, A). Since an automorphism of A that maps U to some
U* induces a graph isomorphism from G(9,U, A) to G(9,U*, A), it is
sufficient to show that for any set U of parallel classes, there is an
automorphism of A that maps U to one of U; = {00,0,1,—1,%} or
Uy = {00,0,1,1 +1%,-1+1}.

It is well known and easy to verify that any three distinct slopes
(and therefore, any three distinct parallel classes) can be mapped by
an automorphism of A of the form (z,y) — (ax + cy, bz + dy), for
some ad — bc # 0, to the slopes 00,0,1. Therefore, we need only show
that any one of the (7) = 21 slope sets of the form {c0,0,1,m,n} for
m,n # 00,0,1 with m # n, can be mapped to either U, or U,. Note
that the mapping of points, defined by

(z,y) = (ax +cy+ebz+dy+ )
for ad — bc # 0, induces the mapping of slopes, or slope map, defined
by

[ b+dm)e+ en)™! ifm#—ac ' ore=0;
o0 otherwise;
{ de™! if c#0;
00 .
oo  otherwise.
This set of 720 distinct slope maps forms a group under composition
that we name G. The order three slope map f € G defined by m —
(1 —m)~!, fixes —1 and has the action
oo — (=1 00,
i = (=1=8)—(1+1i)—1,
-t = (=148~ (1—-1)— -1
Using [ and f2, we can map any one of the 21 distinct slope sets U
containing 00,0, 1 to one of the slope sets U, Us,
Uy = {00,0,1,3,—1+1}, Uy = {0,0,1,1 — 3, -1 + 3},
u5 = {00,0, 1:] + i: -1- 1'}: u5 = {00:01 l,i, _i}:
Z/I7 = {00,0,],—1,—1:}.
(More formally, the subgroup of G generated by [ acts on the set
of all U containing oc, 0, 1; it has 7 orbits with 3 elements cach, and

Uy, ..., Us are representatives of these orbits.) The following table,
which gives a slope map in the first column, and the corresponding
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action on certain slope sets in the second column, completes the proofl
of the at most two part.

slope map action on slope sets
mi— (1+1)m. Uz toUs
me— (m—1+4+49m™! U, to Uy
m»—»(—1+i)m+1 Us to Uy
m e im Ug to U,
mw— —m Uz to U

To prove that there are ai least two non-isomorphic graphs, we first
prove the following Claim.

Claim 2: A set S of 9 points in A is the set of vertices of a Kg
in G if and only if
i) The set S consists of 9 points on a line of U; or
ii) The set S is an image of the 9 element set

{(2.7) : Z,J € {—1:01 ]}}

under the group (with the operation of composition) of all
mappings

(z,y) — (az +cy +e,bx +dy + f)

with a,b,c,d,e, f € F and ad - bc # 0.

To prove Claim 2, notice first that the proof of the “if” part is
straightforward. Therefore, we may assume that S is the set of vertices
of a Ky in G, and that S in not the set of all points on some line of U.
We show that S is a set with the properties of part i) of Claim 2.

A line of U will be called a j-secant if it has exactly j points of S on
it. Under our assurnptions, a j-secant exists only for j < 9. So for any
j-secant there is a point r of S off the j-secant. Then there are lines
through r from j parallel classes of U and these classes do not contain
the j-secant. Thus, j+ 1 < 5 and so j < 4.

Suppose there is a point s of § which has either two 4-secants through
it or has both a 4-secant and a 3-secant through it. By using an auto-
morphism (z,y) — (ax+cy+e,bz+dy+ [) of A, we may assume that
(0,0),(1,0), (a,0),(0,1),(0,b), (0,d) are in S with a # 0,1, b # 0,1, 4,
d # 0,1,b. Observe that this implies that 00,0 € U. There are six
other field elements which arise as slopes of lines between these points.
These field elements are — 1, —b, —d (which are distinct and nonzero so
that U = {00,0,—1,—b,—d}) and —a~', —a~'b,—a"'d. Since a # 1,
we have that a=! = b or d. Without loss of generality, a=' = b. Then
{v?,bd} = {1,d}. Since b # 1, we must have that bd = 1 and b* = d.

77



Thus, d = b~! and so b*> = b~}. But then b* = 1. However, in F (which
is of characteristic 3) this implies that b = 1, a contradiction.

Now let y be a point of S and for a fixed j, let y; be the number
of j-secants through y. Using y; = 0 for 7 > 4 and counting first all
secants through y, and then second all edges with vertex y, we obtain
the linear system

nty+tyst+ys = 9
Yo+ 2y3 + 3ys
The previous paragraph implies that

I
o

ya=0o0r (ya=1 and xya=0)..

Solving this linear system for nonnegative integer solutions gives y, = 0
(so there are no 4-secants) and (y1,%2,¥3) = (1,0,4) or (0,2, 3).

Consider a fixed m € Y. Let m; be the number of i-secants in the
parallel class m, and let e, denote the number of edges of G which
lie on a line of m. By counting lines in m, points of S, and edges on
secants we obtain the linear system

mo+mi+me+mz = 9
(31) my + 2m2 + 3m3 =9
Mo +3ms = €n.

Since the total number of edges between vertices of S is 36 and the
number of parallel classes is 5, there must exist an m with e,, > 8.
Assume that e, > 8 for this m. Solving the linear system (3.1) for
nonnegative integer solutions gives (mg,m;, ma,m3) = (6,0,0,3) with
em = 9. Consider U\ {m}. Here the total number of edges is 369 = 27
in four parallel classes so we may choose an n € U \ {m} with e, >
7. Solving the linear system (3.1) for nonnegative integer solutions
gives that (ng, n;,n2,n3) = (5,1,1,2) with e, = 7, or (ng,ny,ng,n3) =
(6,0,0,3) with e, =9.
As indicated earlier, there is an automorphism of A

(z,y) — (ax +cy +e, bz +dy+ [)

which maps m to oo and n to 0. Let g be the point of intersection
between a 3-secant through oc and a 3-secant through 0. Let A be the
point of intersection between another 3-secant through oo and another
3-secant through 0 (we use here the facts that mg,n3 > 2). Since
all points of S are on the three 3-secants in the parallel class with
slope o0, it follows that the points g and h are in S. Also, the slope
of the line through g and & is neither co nor 0. So some mapping
(z,y) — (az + e,dy + f), with a,d # 0, maps the point g to (0,0)
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and point & to (1,1). Then 1 € Y. Also, (1,0) and (0,1) € S and so
-lel.

Suppose the third point of S on the line with equation y = 0 is (a, 0)
with a # 0,1. Then (a,1) € S and the slope of the line through (0,0)
and (a,1) is ™!, and slope of line through (0,1) and (a,0) is —a™".
So {00,0,1,-1,a"},—a"'} C U. Now a # 0,1 and |U| = 5 implies
a = —1. Suppose the third point of S on the line with equation z =0
is (0,b) with b# 0,1. Then (1,b) € S and the slope of the line through
(0,0) and (1,d) is b, and slope of line through (1,0) and (0,b) is —b.
So {00,0,1,-1,b,—b} CU. Now, b# 0,1 and |U| = 5 implies b = —1.
We have now determined 8 points of S, and the ninth point is (-1, d)
for some d # 0,1. The slope of the line through (0,0) and (-1,d) is
—d. The slope of the line through (1,0) and (-1,d) is d(-2)"' = d
(because 3 = 0 in GF(9) = GF(3?%). So {00,0,1,-1,d,—-d} C U.
Now, d # 0,1 and |U/| = 5 implies d = —1. Hence, S is the desired set
of points in part ii) of Claim 2.

For all choices of U, the graph G(9,U, A) has exactly 45 pairwise
distinct subgraphs isomorphic to a Ky of the type in item i) of Claim
2. A graph G(9,U, A) has a subgraph isomorphic to Ky of the type in
item ii) of Claim 2 if and only if {00,0,1,~1} C U. This is the case
for U, (defined earlier in the proof). To prove that there are at least
two non-isornorphic graphs of the form G(9,U, A), we need only show
that some choice of U/ contains no G image of the set {00,0,1,—1} of
slopes.

Recall that the group G has order 720. The stabilizer in G of {00, 0, 1,
—1} includes all 24 of the elements of G with coefficients in the order
3 subfield of F. So this stabilizer has order at least 24. So the orbit
of {00,0,1,—1} under G has size at most 720/24 = 30. Hence, the
cardinality of the set of all &/ which include {00,0,1,—1} is at most
306 = 180 < 252 = ('), which equals the cardinality of the set of all
the U. Therefore, some set of parallel pencils &/ contains no G image
of {00,0,1,-1}. O

Corollary 3. The graph G(9,U,AG(2,9)), for a suitable choice of U,
is ¢ SRG(81,40,19,20) that is not isomorphic to Py,.

We conjecture that for each odd g > 11 such that g is the order of
an affine plane, there is a suitable choice of &/ and A so that there are
at least two non-isomorphic graphs G(q,U, A).

4. A NEW 3-E.C. PRESERVING OPERATION

The symmetric difference of G and H is the graph with vertices
V(G)x V(H) and (a, b) is joined to (¢, d) il and only if a is joined Lo ¢ in
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G and bis not joined to d in H or a is not joined to cin G and b is joined
to d in H. The symmetric difference operation is a commutative binary
operation on graphs. In [8], it was proved that symmetric diflerence
preserves 3-e.c., but other well-known graph operations, such as join,
Cartesian product, and categorical product, do not. We present the
following new graph operation, and we prove in Theorem 4 that it
preserves the 3-e.c. property.

Definition 1. Let G be a graph with V(G) = {zi,...,Zm}, and let
H be a graph with V(H) = {1,...,n}. le$k<n Let G; be an
isomorphic copy of G, disjoint from G and the other G; if i # j, with
verter xx called i, where 1 < k < m.

We define a graph H(G) to have vertices |J,<;<n, V(Gi) and edges
those of each G; and the following edges between the G;. If i and j are
joined in H, then z; is joined to the neighbours of zjx in G; and Tk
is joined to the neighbours of Ty in Gi. If i and j are not joined in H,
then zi is joined to the non-neighbours of zjx in G; excluding xjr and
zjk is joined to the non-neighbours of zix in G excluding Tik.

For example, if P is the path with three edges, then Py(/%) is the
graph in Figure 2. Observe that for any graph H, H(K) is isomorphic
to Kjv(w) and K,(H) is isomorphic to H.

X11 X21 X3t
Xi2 X32
X413 X23 X33

FIGURE 2. The graph Ps(Ps).

Our new operation is distinct from the symmetric difference opera-
tion defined earlier. For example, the reader may. verify that Ka(K3)
is 1somorph1c to the disjoint union of two edges, K 2(K K>) is isomorphic
to K4, while the symmetric difference of K2 and K> is isornorphic to
the 4-cycle.

We now introduce sorne notation that was first used in (8]. For a posi-
Ty ... In

; 2
1 o0 In

tive integer i, an n-e.c. problem in G is a 2Xn matrix
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where S = {z,,...,z,} is an n-element subset of V(G), and for 1 <
j <mn,i; €{0,1}. A solution to this problem is a vertex y € V(G)\ S
so that y is joined to x; if i; = 1 and y is not joined to z; if ¢; = 0.
Observe that a graph G is n-e.c. if and only if each n-e.c. problem in
G has a solution.

Theorem 4. If G and H are 3-e.c. graphs, then the graph H' = H(G)
is 3-e.c.

Proof. Fix a, b, and ¢ in V(H’), and consider the 3-e.c. problem

(4.1) (za, ; zi)

in H', where i; € {0,1} are fixed. We consider cases depending on the
location of a, b, and c¢. To ease notation, we can always assume that by
reordering V(H) that a, b, and ¢ are in G, Gq, or Gs.

Case 1. The vertices a, b, and ¢ are in three distinct ;. Without
loss of generality, suppose that a is in Gy, b is in G,, and c is in Gj,
and that a = z;,, b = 74, and ¢ = z3,.

Case 1.3) |{r,s,t}| =3

In this case, since H is 3-e.c. we may choose a vertex k in H joined
to each of 1, 2, and 3. Let u be a solution to = xz';‘ "Eiz‘ in Gg.
Then u is a solution of (4.1) in H'.

Case 1.it) |{r, s, (}] = 2. We assume without loss of generality that
r=s.

By the 3-e.c. property for H, we may choose a vertex k in H joined
to each of 1, 2, and 3, and we may choose £ & {1,2,3} to be a vertex
Zkr Tkt

s
(4.1) in H’ when (3;,12,13) is an element of the set {(1,1,1), (0,0,0),
(1,1,0),(0,0,1)}. (That is, when %; = i;.) The remaining cases are
Ler Lt
i i

joined to 1 and 3 but not to 2. A solution of in Gy solves

solved by considering solutions of in Ge.
Case 1.iii) |{r,s,t}| = 1.

Using the 3-e.c. property for H, we can find vertices k), k2, k3, and k4
of V(H)\ {1,2,3} with the following properties: k, is joined to 1,2, 3;
k2 is not joined and not equal to 1 but joined to 2,3; k3 is joined to 1
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and 3 but not joined and not equal to 2; and k, is joined to 1,2 and
not joined and not equal to 3.

Let u be a vertex of G, that is joined to zx,, and let v be a vertex of
Gy, that is not joined and not equal to zy,,. Then u solves (4.1) with
(%1,1%2,%3) = (1,1,1), and v solves (4.1) with (3;,12,33) = (0,0,0). In
a similar fashion, neighbours and non-neighbours of zx,, in G, solve
(4.1) when (i1, 92, 43) is one of (0,1, 1) and (1,0, 0); neighbours and non-
neighbours of zx,, in G, solve (4.1) when (%,,142,%3) is one of (1,0,1)
and (0,1,0); and neighbours and non-neighbours of z,r in Gg, solve
(4.1) when (4,,19,13) is one of (1,1,0) and (0,0,1).

Case 2. The vertices a,b, and c are in exactly two G;.

Without loss of generality, we may suppose that a = z,, b = z,,
and ¢ = zq,. The cases when the indices r, s, and t are all distinct, and
when r = s, are similar to Cases 1.i) and 1.ii), respectively, and so are
omitted. The case when the vertices a, b, and ¢ are all in the same G;
is obvious, since each G; is 3-e.c. by hypothesis. O

By Theorem 4, we may construct 3-e.c. graphs that are not Paley
graphs by considering graphs of the form H(G), where H is some graph
H(q,U, A), and G is some graph G(r,U’, A’) with r > 7 relatively prime
to q.
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