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Abstract: For k > 0, we call a graph G = (V,E) k-magic if there exists a
labeling I: E(G) — Z,* such that the induced vertex set labeling I': V(G) — Z,,
defined by I'(v) = Z{l(,v): (u,v) € E(G)} is a constant map. We denote the set
of all £ such that G is k-magic by IM(G). We call this set the integer-magic
spectrum of G. We investigate these sets for trees, double trees and abbreviated
double trees. We define group-magic spectrum for G similarly. Finally we show
that a tree is k-magic, k > 2, if and only if it is k-label reducible.

1. Introduction.

Magic squares are popular mathematical puzzles that appeared more
than a thousand years ago in different countries. In the early 1960s people try to
generalize the concept of magic squares to magic graphs. A natural
generalization is view a n-order magic square as an adjacency matrix of a
complete bipartite graph K(n,n) with the magic labeling.

The original concept of a magic graph is due to J. Sedlacek [19,20],
who defined it to be a graph with real-valued edge labelings such that (i) distinct
edges have distinct nonnegative labels, and (ii) the sum of the labels of the edges
incident with a particular vertex is the same for all vertices.

Let A be an additive abelian group in which we denote A* = A - (0},
where 0 is the zero element. Any mapping I: E(G) — A* will be called a
labeling. Given a labeling of the edge set of G we define a vertex set labeling

I*: V(G) - A as follows:

I'(w) = Z{l(u,v): (4,v) € E(G))
A graph G is called A-magic if there is a labeling I: E(G) — A* such that for
each vertex v the sum of the labels of the edges incident with v are all equal;
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i.e., I'(v) = ¢ for some fixed c in A. In general, a graph G may admit more than
one labeling as an A-magic graph. The following are two Klein 4 group-
magic labelings of K,\ e (see Figure 1)

Figure 1

When the group A = Z,, we shall refer to a Z,-magic graph as k-magic.
Graphs that are k-magic have been studied in [12,13,16,23]. Doob [3.4,5]
considered A-magic graphs where A is an Abelian group. At present, given an
abelian group, no general efficient algorithm is known for finding A-magic
labelings for general graphs.

When a graph has an A-magic labeling and A = Z, we say the graph is Z-
magic. Some special classes of Z-magic graphs have been considered in the
literature (see [17, 22,23, 24]). A graph G=(V,E) is called magic (8, 9, 10, 11,
14, 16, 18, 26, 27] if there exits a mapping I: E(G) » {1,2,...,} that induces a
constant vertex set labeling [': V(G) = N, 1'(v)=Z {l(u,v) : (u,v) in E(G)}.

A magic graph is called supermagic if the magic mapping
I E(G) = {1,2,...|E|} is a bijection ([7, 24, 25, 27]). It is well-known
that a graph G is magic if and only if each edge of G is contained in a
1-factor (a perfect matching) or a {1,2)-factor ([11, 18, 28]). Some
general constructions of magic graphs is considered in [27] and an
effective algorithm to find magic labeling is introduced in [26]. Berge
[1,2] called a graph regularisable, if a regular multigraph could be
obtained from G by adding edges parallel to the edges of G. In fact, a
graph is regularisable if and only if it is magic. Figure 2 depicits a

grid graph P xP, which is Z-magic but not magic.
Figure 2.
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Stanley considered Z-magic graphs in [21,22]). He pointed out that the
theory of magic labelings could be put into the more general context of linear
homogeneous diophantine equations. A generalization of supermagic graphs is

introduced by the first author in [14]. The reader is referred to ([15, 21]) for
some of the properties and conjectures of edge-magic graphs.

Given a graph G, we denote the set of all k£ > 0 such that G is k-magic
by IM(G). A /-magic graph will refer to a graph that is Z-magic. We call this
set the integer-magic spectrum of G. Likewise, we denote AM(G)={
A € Ab: G is A-magic} as the group-magic spectrum of G. These sets
for general graphs were investigated in [15, 16].

Hartnell and Kocay [5] introduced a class of graphs that are formed by
stars. For each k > 1, they take isomorphic copies of star St(k) with k + 1
vertices and connect k pairs of corresponding leaf vertices with edges. The
resulting graph is called a double star DS(k). We generalize this construction to
any tree T and we use the symbol DT to present the double tree of T. See Figure
3.

Let the tree T = (V,E) with V(T) = {v,,..., vn} and E(T) = {e,,....€n1},
and let T* be the mirror image of T with T* = (V,E) with V(T¥) = {v|*,..., v*)
and E(T*) = {e/*,....en.1*} . We denote V(DT) = {v,..., Vm, Vi*,..., Vp* } and
E(DT) = {e,..-€m-1» €1%,-...€m 1 * JU{(v,v*): v and v* are end vertices in T and
T*, respectively }.See Figure 3.

< <

st DSI(3)

SN

Figure 3.
There are many trees T with IM(T) = @, e.g., K,,. However, for any tree
T, the double tree DT always has a non-empty IM set. In this paper we
investigate IM sets of double trees and abbreviated double trees. In the last

section we give a characterization of trees which are k-magic.
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2. All double trees DT are Z-magic.
We have the following

Observation 1. A graph is 2-magic if and only if the degree of every vertex is
of the same parity (see [15]).
Observation 2. A double tree has vertices of even degree.

Theorem 1. The double tree DT is Z-magic for any tree T.
Proof. We show that every edge of DT is in a perfect matching, thereby proving
the statement.

Choose any edge of the tree T and either of its vertices to be the root.
Place this edge into a set S. Using a depth-first search algorithm take the next
edge the algorithm yields that is not adjacent to any edge already in S. Place
this edge into the set S and continue placing edges in S in this manner until the
algorithm terminates. The corresponding edges of the mirror image tree T* are
also placed in S. At this point in the algorithm every vertex of T is incident with
an edge in S except, possibly, some end vertices. If any end vertex v of the tree
T is not incident with any edge in S, we place (v,v¥) into S. This produces a
perfect matching.

We have now shown any edge of the subgraphs T or T* in DT is in a
perfect matching. To show that any edge (u,u*) is in a perfect matching, we
consider an adjacent edge (#,w) and any edge incident to the vertex w, say (w,x).
The choice of (w,x) as an edge in a perfect matching forces the edge (u,4*) into
the set S. If there is no w in V(T) or x in V(T), we have the trivial cases DT =

K, or DT =C,, respectively. See Figure 4.

u w u ut
X
Tree T Double tree DT
Figure 4.

3. _Double trees DT with N — {2} ¢ IM(DT).

Theorem 2. If T is a tree then N - {2}c IM(DT).
Proof. We will show that the double tree DT has a labeling I: E(DT) — Z,*, k >
2, in which 1*(v) = 0 for all v e V(DT).
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It is easily shown that the equation Zx,. =, has a solution for all ¢

i=1
€ Z*, such that x;€ Z,*, k> 2, and d 2 1 and a solution for allc € Z, k > 2,
and d > 1. Take any vertex in T with degree d greater than one, and call it the
root r. Label the d edges incident with r with the labels x; #0 such that

d

Ex,- =(0. Use a depth first algorithm to visit every vertex v € V(T)\{end
i=1
vertices Jexactly once. There is exactly one edge incident with each of these
vertices with a label, say . Label the remaining incident edges with labels x;

(v)-

such that E x, =k —1t =0, where deg(v) - 1 2 1. It follows that I'(v) =k - ¢
i=l

+t=0.

The mirror image of T, T*, is labeled identically. Let «; and u;* be end
vertices in T and T* respectively and (w, ;) and (w*, u;*) be the incident edges.
If Iw, w) = I(w* u*) = ¢, label the edge (u; u;*) with the element k — ¢
providing us with I*(u) = I'(u*) = 0. See Figure 5.

In the case that T = K, the double tree is lsomorphlc to Cq, the cycle
with 4 edges. Label K; and K,* with the element 1 and the remaining two edges
of DK; with the element k-1. Note that that this graph has IM(DK;) = N.

A 5-magic labeling of a double tree
Figure 5§

4. Double trees DT with IM(DT) = N.
.Corollary 3. IM(DT) = N if and only if the degree of every vertex in V(T)\{end

vertices} is of even parity .
Proof. If every vertex in V(T)\{end vertices} is of even parity, then the parity of
every vertex in DT is even. Label each edge with the element 1 € Z,. Then

1*(v) = 0 for all ve V(DT).
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5. _Double trees DT with A-magic labelings
Corollary 4. All double trees DT have A-magic labelings for all finitely

generated abelian groups except for the group A = Z,. The double trees DT
have A-magic labelings for all finitely generated abelian groups if and only if
“every vertex is of even parity.

Proof. Since we know that there is a k-magic labeling for all double trees when
k > 2, by choosing labels from a subgroup B of a finitely generated group A,

such that B = Z;, k > 2, an A-magic labeling is found. We need only be
concerned then with those abelian groups A = Z; x Z,.

If every vertex of DT has even degree we are done. Therefore, choose
a vertex in T with odd degree greater than 1 as the root r. It can be easily shown

d

that the equation Zx,. = ¢ has a solution for all c € Z, x Zy*, such that x;€ Z,
i=1

x Z,*, and d 2 1 and a solution for all ¢ € Z, x Z, when d > 1. The proof of the

corollary continues as in Theorem 2.

6. Abbreviated Double trees ADT with A-magic labelings
Let the tree T = (V,E) with V(T) = {vy,..., Vm,U3,..,us} where {u,,..,u}

are end vertices and E(T) = {ey,....€m1}, and let T* be the mirror image of T
with T* = (V,E) with V(T*) = {v,*,..., vo¥, u/*,..,us*} and E(T*) = {e,*,....epn.
*} . We denote V(ADT) = {vy,..., Vm, Vi*,..., V¥, X},..Xs} where the end
vertices in T have been identified with those in T*, and E(ADT) = {e;,....eq.1,
er*,....em1*}. We call the resulting graph an abbreviated double tree ADT.

Theorem 5. If T is a tree then N \{ 1,2} ¢ IM(ADT).

Proof. Label the edges of the tree T with elements from Z;*, k > 2, as in the
proof of Theorem 2. Label the corresponding edges of the tree T* with the
elements &k - I(u,w) € Z,*, where (u,w) € E(T). For v e V(T)\{end vertices} or
v € V(T*)\{end vertices}, I'(v) = O as in the labeling in the proof of Theorem 2.
For x; € V(ADT), I'(x) = I(x;v,) + I(x;,v*) = 1(x;,v,) - l(x;,v,) = 0. See Figure 6.

A 3-magic labeling of an abbreviated double tree
Figure 6
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. Corollary 6. If T is a tree in which IM(ADT) = N \{1} then the degree of every
vertex in V(T)\{end vertices} is of even parity.

Corollary 7. IM(ADT) = N if and only if ADT = C,,, i.e., T = P,, the path with n
edges.

Proof. Let T be a tree that is not a path. Suppose a matching exists in ADT and
find such a matching. Choose a vertex r with deg(r) > 2. Name the adjacent

vertices such that (r,v;) is an edge in the matching. Choose two other edges
incident with r, and call them (r,v,) and (r,v;). We say that an alternating path in
a graph with a matching is one that alternates between an edge in the matching
and an edge that is not. Find a shortest alternating path from r to r* where the
first edge in the path is (r,v;); find another shortest alternating path from r to r*
where the first edge in the path is (,v;). Both of these paths have an even
number of edges and are nonintersecting implying the last two edges in the paths
are in the matching. But, these two edges are both incident with r* yielding a
contradiction.

7.__A necessary and sufficient condition for trees to be k-magic. k > 2.

We now consider the problem from another direction. That is, can we
find families of graphs that are k-magic?

We define a type of reducibility, k-label reducibility, X > 1, by the
following algorithm. A graph is k-label reducible if the algorithm returns
TRUE.

Algorithm for k-label reducibility
1. Ifatree T=K;, or T =Kl,s, 2<s<k,and (s-1,k)#1, Then
Return True.
2. Delete any and all sets of k leaves incident with the same vertex. Call
the new tree T. Continue with the deletion process until no such sets of
k leaves can be found.
3. Ifthere is a vertex u of degree 2 incident with a leaf,
Return False.
4. LetveV(T) withdeg(v) =¢,2 <t <k, that is incident with exactly ¢ - /

leaves. Delete the r - 1 leaves, and replace the remaining edge (v,w)

with & - ¢ + 2 edges incident with the vertex w. Call the new tree T.

5. IfT=K,,orT=Kls, 2<s<k,and (s-1,k)#1, return True
Else go to step 2. See Figure 7. :
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Figure 7. Algorithm for 3-label reducibility

Theorem 8. A tree is k-magic, k > 2, if and only if it is k-label reducible.
Proof. Assume a tree T is k-magic. We will show the algorithm for k-label
reducibility returns TRUE.

We note that each of the leaves must be labeled with the same element

1. T = K, is k-magic, k=2, and the algorithm returns TRUE. If T
=K,,s , 2<s<k is k-magic then every edge must be labeled with the same
element c implying the vertex of degree s is labeled sc=c and (s-1)c=0
(mod k). Since c#0 then (s-1,k)#1, and the algorithm returns TRUE. See
Figure 8.

O___

5 5

A 215- magic labeling of Kl.4

Figure 8.
2. If there are k leaves incident to the same vertex, the sum of the
labels of these leaves equals 0, so they can be removed without affecting the
labeling. The new tree T has a k-magic labeling. Note that if k=2, then

TEK] .
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3. The algorithm could not produce a vertex u of degree 2
incident to a leaf. The leaf must be labeled with the element ¢, and the other
edge incident with the vertex u could only be labeled with the element 0 to
yield the sum ¢. But, O is not a possible choice for a label of any edge. This
contradicts the assumption that T is k-magic.

4. Let v € V(T) with deg(v) = ¢, 2 < ¢ < k. Since there are exactly
t — I leaves incident with v the sum of the values of the labels of these
leaves is ¢(t — 1) (mod k) implying the remaining edge (v,w) incident with v
must have the label ¢ - ¢(t - 1) = ¢(2 - t) (mod k). Replacing the remaining
edge with (2 - t) (mod k) edges incident with the vertex then yields a new
tree T with I*(w) = c. The new tree T has a k-magic labeling.

5. With each return to Step 2 and consequently Step 4 , the
diameter of T decresases, or FALSE is returned in Step 3. If a vertex u of
degree 2 incident to a leaf is not found in Step 3, then the algorithm ends
where T is a tree of diameter 1 or 2. As in 1) above , this is only when T =
K orT =K,,s , 2<s<k, and (s-1,k)#1. The algorithm returns TRUE. .

If the tree T is k-label reducible, then reversing the algorithm will yield
an k-magic labeling. See Figure 9.

Figure 9. A Z 3-magic labeling.
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