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Abstract

Consider a graph G in which the vertices are partitioned
into k subsets. For each subset we want a set of vertices of G
that dominate that subset. Note that the vertices doing the
domination need not be in the subset itself. We are interested
in dominating the entire graph G as well as dominating each
of the k subsets and minimizing the sum of these k£ + 1 domi-
nating sets. For trees and for all values of k, we can determine
an upper bound on this sum and characterize the trees that
achieve it.
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1 Motivation

We observe that the connections in a computer network between a
workstation and its local file server can be modelled as domination
in a graph.

Some files (data and text files for instance) are compatible with all
computers on the network while other files (such as binary code files)
are only compatible with a particular type of workstation (Mac, Sun,
Sparc for example).

The file server ordinarily is shared among the workstations and it
must be located either at the workstation it caters to or one commu-
nication step away.

We model the computer network by a graph, where each workstation
and each file server is represented by a vertex. The requirement that
the file server is, or is adjacent to, the workstation it serves corre-
sponds in the model to demanding that some collection of text file
servers must dominate every vertex of the graph, since each worksta-
tion shall have access to common requirements of data, text, latex,
emacs files, internet connection, open windows, dos etc. The work-
stations are of type 1,2,---,k, and for each i, 1 < i < k, some
collection of file servers must dominate every vertex of the graph of
type .

We wish to minimize the number of file servers. That is, the sum
Y+71+72+- - -+, where -y is the number of text file servers needed so
that every workstation has access to data, text, internet connection,
latex, emacs files, and +; is the number needed of specialized file
servers for workstations of type .

2 Definitions

A vertex of valency one is called a leaf and the unique neighbour
of a leaf is called a stem. A path on £ vertices is denoted P,. A
block graph is a graph in which each block is a complete graph. In
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particular, a tree is a block graph since each block is a Ky. A cactus
is a connected graph in which each block is a circuit or a Kj, while
an n-cactus is a cactus with n circuits. A packing is a set of vertices
pairwise at distance at least three apart.

D is called a dominating set of a graph G if each vertex not in D
has a neighbour in D. The domination number (G) of G is the
smallest cardinality of a dominating set D of G.

Let k be a positive integer and G a graph with at least k vertices. By
a partition of V(G), denoted by #y = {V, V4, -+, Vi }, we understand
k disjoint, nonempty subsets whose union is V(G).

For each i,1 < i < k, let D; be a smallest sized subset of V(G) such
that each vertex from V; either belongs to D; or has a neighbour in
D;. We define Yi = 'YG(Vi) = |D,| and ’YG(@) =0.

3 Theorems

In this paper we restrict our attention to connected graphs. We shall
establish upper bounds for

k
Y(Gme) =v(G) + Y ve(Vi).
i=1

In addition, for all k¥ we also characterize those extremal graphs G
and the associated vertex partition w3, which achieve the upper bound
of ¥(G, m) = max{y(G, 7)|r is a partition of V(G) into k sets}.

We first observe that for £ = 1 we have Vi = V(G) and if |V (G)| > 2
we have for a graph with no isolated vertex that y(G, ) = v(G) +
7(G) < |V(G)| [6, Prop. 1], [1, Th. 1]. The inequality is sharp, since
Y(Pyym) = 4.

For k = 2 we formulate the following for a tree T with partition
2, V(T)=V'1UV2a ‘/ln‘/2=07 1/'17{'0’ 1/25&@
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Theorem 1 Let T be a tree with at least two vertices and let s(T)
denote the number of stems in T with exactly one leaf attached to
it. Then for any partition mo of V(T') we have

s(T)

YT, m2) = (T) +yr(V1) + yr(V2) < V(D) + =~

Proof: We first observe that the theorem holds for a path, a star,
and for a star with some of its edges subdivided.

(1)

(2)

3)

For a path on £ vertices, Pp = z1Z2...%g, £ > 2, we have for
£=3n,n>1lorf=23n+2 n>0, that v(P) = [£] and
3[£] < £+1 = [V(P)| + 4E2, s0 the theorem holds in these
cases.

For £=3n+1, n > 1 we define

D = {z2,T5,-..,%243i---1%3n—1, T3n+1}
D, = {z2,T5,-..,Z243i--- T3n—1} U ({Z3ns1} N V1)
Dy = {z2,Z5,...,%243is--- T3n—1} U ({T3n+1} N V2)

and we obtain y(P,) = |[D| = n+1, v¢(V1) < |D1], vr(V2) <
|Da|, s(P:) = 2, and hence y(Pz)+7vp, (V1) +7p,(V2) < 3n+2 =
|V (Pg)| + ﬁ%}_ Thus the theorem holds for a path.

For a star T = Kjp_1,p > 2, with central vertex z let D =
Dy = Dy = {z}. Then 4(T) +7r(V1) + 7r(V2) =3 < p+ .
For T a star with some edges subdivided,
V(T) {(II} U {'wh ter vwm} U {yl’ 21,Y2,22y- -« aynazn}a
E(T) = (UZizw)VULi{zy,vz}), n2lm20,

andn+m>2
we define

{y1,-->un}s ifm=0andn >2

b= { {z}U{y1,...,yn} otherwise

Dy = {x}u({zlv--azn} n"’l),

Dy = {z}U({z1,...,z} NV2).
Then

Y(T)+yr(Vi)+yr(Va) < |DI+|D1|+|De| < [V(T)|
s(T)
—2_,
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if $(T") > 2; s = 0 cannot occur since n > 1 and y; is a stem
with a single leaf; if s(T') = 1 then » = 1,m > 2 and we obtain
ID| + |Dy| +|D2| < [V(T)| < [V(T)| + 2L, So the theorem is
proven for case (3).

We proceed by induction on p = |V(T')|, the number of vertices
of T. The cases p = 2,3,4 are proven above. Let p > 5 and
assume the theorem is true for trees with at most p—1 vertices.

Assume T as a subgraph contains a path zyzw pendant from
w, i.e., dr(z) = 1, dr(y) = dr(z) = 2 and consider the tree
T' =T - {z,y,2}. From p > 5 it follows that |V (T")| > 2.
If one of V| = Vi nV(T), V3 = VanV(T') is empty, it is
easy to verify the theorem, since y(T") + (yr (V{) + v (V3)) <
2;—3 + ”;—3 and adding y to each of the three dominaton sets in
T’ we obtain (T, m2) < p. Otherwise {V/, VJ} is a partition of
V(T") and by the induction hypothesis

s(T’ ) s(T)
= 2

YWT') + (Vi) + v (V3) <p— 3+ —— 3+

Adding y to all three domination sets in 7' we obtain the de-
sired inequality for 7T'.

If T contains at most one vertex of degree at least three, then
one of the above cases occurs and the theorem holds. So, we
may assume that T contains two vertices of degree at least
three.

Let z122... 2z¢, £ > 2, be a path such that dr(z) > 3, dr(z) >
3 and
dr(z) =2, 2<i<f-1.

T — 2123 consists of two trees, namely T, containing z; and
T,, containing z,. Both have at least two vertices.

By the induction hypothesis we have

sl
YTz) + 91, i NV (Ty)) + 1., (V2N V(T)) <9 + oL

"
W) + 72, (Vi NV (T)) +7m, (N V(T2) <97+ 5

where
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P =V(To)l, p" = V(T v +0" =p=V(T)|;
s' = s(Ty,), §" = s(T,); s = s(T).

If £ = 2 then s’ + 5" < s and the theorem holds.. So we may
assume £ > 3, and hence s’ + s < s + 1.

(T, mp) satisfies y(T,mo) < p+ l%i + %J =p+ [%ij I s(T)
is even, then (T, ;) < p+ § and the theorem holds. So we
may assume that s(7T") is odd. Then s’ +s” = s+ 1 is even and
either s',s"” are both odd or both even. If s',s" are odd, then

! )

l%J + l%J = 251 < £ and the theorem holds. If s',s" are
both even, then we use for the induction argument T — z,_; 2z,
where the tree containing zy has an odd number, namely s” — 1,
of vertices with exactly one leaf attached. This completes the
proof of Theorem 1.

Corollary 1 Theorem 1 also holds for a block graph.

Proof: From the definition of domination we have that (G, n;) <
(T, mx) where k is a positive integer, G is a connected graph with
at least k vertices, my is a partition of V(G) and T is a spanning tree
for G. Consider a spanning tree by selecting for each interior block
a Hamilton path between two of its cut vertices and selecting ¢ — 1
leaves in each end block with ¢ vertices. a

The inequality of Theorem 1 has been proven valid for graphs with
minimum degree two by Seager [7); in particular v(G, ) < |V (G)|
for such graphs.

The following result shows that the trees which achieve the upper
bound for (T, 72) have the same structure as those which are op-
timal for (T, ), namely that each vertex either is a leaf or has
exactly one leaf as a neighbour, and furthermore , once the leaves
are removed, the resulting tree also has that structure.
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Theorem 2 Let T be a tree with p vertices, p > 3. For any partition
o = {V1,Va} of V(T') we have

(T, m3) = 4(T) + 12 (Vi) + 10(Va) < 2 (1)

Z-
Y(T,m3) = %2 occurs if and only if

(i) p=0 (mod 4),
(ii) every vertex is a leaf or has precisely one leaf attached to it,

(iii) every vertex of degree three or more has precisely one P, at-
tached.

(iv) Ifw is a vertex of degree 3 or more and z is its unique leaf, and
wxy is its unique attached P,, then y and z must belong to
one class V;, while z must belong to the other class V3_; where
1 =1 ori=2 and w can be in either of the two classes.

Proof: In any tree on p vertices, p > 3, the number s = s(T’) of stems
with precisely one leaf attached obviously is at most £. Together with
Theorem 1 that implies the inequality. Equality in (1) is attained for
a tree with the structure described in (i)-(iv), when Vi, say, contains
all leaves, V; contains all degree two vertices and vertices of degree
2 3 are distributed arbitrarily between V; and V5.

Conversely, if equality holds, then p = 4a, a > 1, since éf is an
integer. It remains to prove that equality in (1) implies (ii) and (iii).
We shall do that by induction on p.

A tree on four vertices is K 1,3 or Py. The path P; has the structure
of (ii) and (iii), the star K; 3 does not, but equality cannot occur for
K, 3 since y(K3,72) = 3 for any partition.

Let p > 4, and assume equality in (1) implies (ii) and (iii) for trees
with fewer than p vertices. Assume T and Vi, V, satisfies

9T) +90(V) +r(V) = 2.
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We shall prove (ii) and (iii). Obviously s(T') < £ and together with
Theorem 1 that implies y(T,m2) = —2 <p+ @ < —E Hence

s(T) = £ and by definition of s every vertex of T elther 1s a leaf or
has exactly one leaf attached to it. That proves (ii).

Let :1:( ):z:( ):1:311:4 .Z¢ be a longest path in 7. It is easy to see that
s = 2 1mp11es that T = P4, for which (iii) is true, or ¢ > 5, as we

assume henceforth. From (ii) it follows that degT(:z ) = 2, and to

z3 is attached a single leaf w. Further, there are attached m Py’s to

x3, one of which is mgl)x(zl)m, namely

(ll)a:gl), a:(2)x(2) .3 x(lm)a:gm), m > 1.

T — z374 has precisely two components. Let T' be the component
containing z4. Define V/ = ViV (T"), V5 = VNV (T"). Even if one
of V{, V4 is empty we have (using the definition yr () = 0)

HT) 490 () + 90 (V) < SV = S(a—2m=2) (2

Let D', D}, D} be the sets in V(T") which dominate V(T"), V{, V3,
respectively. Then the three sets

D = D'u{w, wgl),a:() (3),... :cgm)}

Dy = Dju{z3}u {-’1"(11);-'13(12), ,-’E(1m)} NV1) in T dominate,
D, = Dyufzs}u ({=V,2?,...,z{"}n W,
respectively, V(T'), V; and V2. We infer that

5 11—
5a = Y(T)+yr(Vi)+yr(Va) < Z(4a—2m—-2)+(m+1)+2+m = 5a+ 5
so that m = 1. Thus |V(T")| = 4a — 4 and T", VY, V; achieve equal-
ity in (2). Hence by the induction hypothesis T' has the structure
described in (i)-(iii), implying that T" has the structure described in
(i)-(iii). Finally, it is easy to verify that the partition must satisfy
(iv). a
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Figure 1: Note that the bound given in equation 3 of Theorem 3 is
sharp for p = 0 (mod 10). Simply take copies of a graph with the
indicated partition and join the vertices labelled w.

Theorem 3 Let p be an integer, p > 3. Let T be a tree on p vertices,
such that T ¢ {P4, Py} and let m3 ={V},Vs,V3} be a partition of
V(T). Then

T, m) = (D) + () +9r(%) + () < 2. (3)

Y(T,m3) = .—’gl occurs if and only if T = Ps, T = Pyg or T is composed
of graphs from fig. 1 with vertex partition w3 as indicated on fig. 1.

Ify(T,m3) = 353 then p =5 or p =0 (mod 10).

Proof:

A path Py = 122324 with partition 73 = {{z1,z4}, {z2}, {z3}} has
Y(Py,m3) =6 > %-4 and a path P; = 2129237475767 With partition
m3 = {{z1, 24,27}, {72, 25}, {x3,26}} has y(Pr,m3) =10 > -7, s0
P4 and P; do not satisfy inequality (3).

We use induction on p. The inequality is easily verified for Pj, for
the star on four vertices, and for the three trees on five vertices. We
note that for p = 5 equality in (3) can only occur for T' = Ps. Let
P > 5, assume the result is true for trees on at most p — 1 vertices,
and let T be a tree on p vertices such that T # P;.

Assume that some vertex y in T has two leaves z,z2 attached to
it. We shall then prove that (3) holds with strict inequality. Define
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T =T —-z;. f T' = P;, we can verify the result. Otherwise, let
VI=VinV(T"), 1 <i<3; ny ={V,V;,V3}. We then have

AT, 7) = AT) + 9 (V) + 9 (V) + e (V) < £ = 1.

If nf = {V{,V4,V4} is a partition of V(T") this inequality follows
from the induction hypothesis and we can obtain that v(T, m3) < -E
If V{, V4, V4 is not a partition of V(T") then one of the sets, say V3, is
empty. That implies V] = Vl, V2 = V3, V3 = {z1}, and by Theorem 2
there exist subsets D', D}, D} of V(T') which dominate respectlvely
V(T"),V{, and V3, and Wthh satisfy |D'| + |D}| + |Dj| < $(p — 1).
Since in 7" there is a leaf attached to y, we may assume y € D', so in
T the sets D = D', D; = D!, Dy = D}, D3 = {z,} dominate respec-
tively V(T), V1, V2 and V3 and thus we have the desired inequality
¥(m3, T) < %(p -1)+1< %p < %p. We observe from the arguments
above that an extremal graph for inequality (3) cannot have a stem
with more than one leaf.

We may now assume that no vertex in T has more than one leaf

attached to it. Consider a longest path m(ll)mgl) :r:( ):v4 ...zpin T.

Then x(l ) is the only leaf attached to x(l) Let there be precisely m

paths on two vertices a:(l) (1), x(z)m(z), ce} :vgm)rcgm), m 2> 1,

attached to :z:gl) and at most one leaf. Assume first that no leaf is
attached to :1::(31). Let T” be the component of T — a:gl) which contains
zgand let V/ = V,NnV(T), 1<i<3 m={W,V,V}If
|V(T')| < 4 or T’ = P; we can verify case by case that inequality (3)
holds for T. Hence we assume 5 < |V(T")| < p, T' # Py, and by

the induction hypothesis, or by Theorem 2 as explained below, we
obtain

AT + 9 (V) + e (V) + (V) < V(@Y. (&)

If V/ # 0,1 < i < 3, then =} is a partition of V(T") and by the
induction hypothesis (4) holds. If precisely one of the sets V is
empty, say V3 = 0, we recall that by definition vy () = 0 and we
obtain from Theorem 2 that y(T") +vyr (V{) + v (V3) < 3|V(T")| <
5IV(T’ )|, so (4) holds. Finally, if two of the sets V' are empty, say
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V3 = V{ =0, then y(T") + vy (V{) < |V(T")| < Z[V(T")|. So in each
case T' and VY, V3, V4 satisfy (4). We note that if one or two of the
sets V{, V3, V4 is empty, then T’ is not extremal.

We can dominate the rest of T, i.e., T — T', with m + m + 3 more
vertices and thus

¥(T,m3) < g(p—2m—1)+2m+3.

The expression above is < %p for m > 3, equals %p for m = 2, and
for m = 1 we, in fact, only needed 4 more vertices, so in that case as
well

7 7
Y(T,w3) < g(P—3) +4 < 5P

Thus, inequality (3) holds if no leaf is attached to :z;:(;l). Furthermore,

the inequality must be strict as can be verified by checking any op-
timal graph for 7" (by the induction hypothesis T’ equals Ps, Pjg or
is composed of graphs from fig. 1) joined to the central vertex of Ps
(i.e., T — T'" where m = 2).

We assume next that a leaf and m paths on two vertices, m > 1, are
attached to xgl). For 0 < |V(T")| £ 4 and for 7' = P; we can verify
Theorem 3 case by case, so assume |V(T")| > 5 and T' # P;.

As above, dominations in 7" (= the component of T’ —a:(sl) containing
Z4) can be done with at most %IV(T’ ) = %(p— 2m — 2) vertices. The
rest, T — T", can be dominated with 2m + 4 further vertices, namely
m + 1 for overall domination, plus a::(;) once for each of the three
partition classes, plus m vertices at distance two from xgl). We have
%(p—Zm—2)+2m+4 < Ip for m > 2, so we may assume m = 1,

ie., degT(a:gl)) =3.

Consider z4. To 4 there may, apart from the component of T' — x4
containing z5, be attached at most one leaf, g paths on two vertices,
g 2 0, and m paths on four vertices: x(li),a:g),a:;(f),z(i), 1<i<m,
with each xgi) adjacent to z4. We shall treat the remainder of the
proof in two cases.

Case 1. Assume no leaf is attached to z4. In T—z4z5 dominations in

123



the component containing zs can (argue case by case for < 4 vertices
and for P;, so assume that the component has > 5 vertices and is not
P;) be done with < %(p —4m — 2¢q — 1) vertices while the component
containing z4 can be dominated by (2m + ¢) + 3 + (3m + q) more
vertices, and

5m +2q+3 < I(4m +2g+1)
8<3Im+4q

holds, unless

(i) m=2, ¢=0,
(i) m=1, g=0,
(i) m=1, g=1.

In each case we can find dominations of T' with < %p vertices. For the
component of T'— z4z5 containing z4 we can in case (i) use 4 vertices
for overall domination, use another 6 vertices by placing x ) and x( )
in all three domination sets and further use 2 vertices to dommate
two leaves at distance 3 from z4. Adding we obtain 12 < % -9 as
desired. For case (ii) we can dominate with 2 + 3 + 1 = 6 vertices,
and 6 < 7 - 5. For case (iii) we can dominate with 9 vertices and
9 < - 7. Thus, in case 1 inequality (3) holds strictly.

Case 2. Assume a leaf is attached to z4. If the component Ty,
of T — z4z5 containing z5 has 2, 3 or 4 vertices or is Py we can
verify Theorem 3 case by case. Assume T3, has > 5 vertices and
is not P;. Let w3 = {Vj,V2,V3} be a partition of V(T), and let
ny = {V{, V3, V3}, where V! = V;NV(Ty;), 1 < i < 3. Whether 7} is
a partition or not of V(Ty,), we have

7

and we remember for later use that equality can only occur if Ty, is
Ps, Py or composed of graphs from fig. 1.

Denote by T, the component of T — z4z5 containing z4. Recall
that T;, consists of one leaf, ¢ paths on two vertices, ¢ > 0, and m
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paths on four vertices w(li)wgi)x:(,i)z(“ with wgi) joined to x4 for each
i, 1 < i < m. We can do the required dominations in T, with
5m + 2q + 4 vertices. As |V (Ty,)| = 4m + 2q + 2 we want

5m+2q+4§%(4m+2q+2)
or
6 < 3m +4q.

This holds for m > 2. We obtain equality for m = 2,94 = 0. That
case leads to an extremal graph precisely when Ty, is extremal; and
we can verify that T is extremal only if T, and consequently also
T, is composed of graphs from fig. 1.

For m = 1, > 1 we have 6 < 3m + 4q, so inequality (3) holds
strictly. That, in fa,ct is also the case for m = 1,q = 0 since we

combine y(}, T') < I(p— 6) with 8 further vertices for dommatlons
in T, to obtain 'y(7r3,T) < 5(p 6)+8 < I(p—6) +1 5:6= 5p This
finally proves Theorem 3. O
1 I ] 1 1 1
o000
2 3 a 2 3 4

Figure 2: Theorem 4 is best possible. This is demonstrated by this
tree with p = 0 (mod 6).

Theorem 4 Let T be a tree on p vertices, p > 4, where the vertices
are partitioned into k subsets, k > 4. Then y(T)+v1 +v2+...+7 <
2P

Equality, v(T,m) = %p, occurs if and only if p is even and the
following three conditions hold:

(1) every vertex is either a leaf or has precisely one leaf attached,
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(2) the maximum degree of any vertex of T is strictly less than k.
(3) Each V;,1 < i<k, is a packing in T

Proof:

For any tree T on p vertices at most p/2 vertices are required in a
dominating set (see [1]). For the p vertices in the k subsets, at worst
we could let each vertex dominate itself. This establishes the upper
bound.

We first consider the “only if” direction for equality. Let & be at least
4 and let T be a tree with partition 7 : V(T) = ViUV U...U V.
If ¥(T,nx) = 3p/2, then every vertex of T is either a leaf or has
exactly one leaf attached. Otherwise, fewer than p/2 vertices would
be required to dominate T itself, resulting in the total number for 7'
together with the subsets being fewer than 3p/2. So (1) holds. If &
is at least 4 and T, 7, achieves 3p/2, then the maximum degree of
T must be strictly less than k. Assume not. Let v be a vertex of
degree at least k. But then the vertices of the &k subsets V1, Va,...,V}
could be dominated using fewer than p vertices as follows. Using the
vertex v once for each of the k subsets, i.e. & times, the closed
neighbourhood of v would be dominated, leaving fewer than p — k
vertices. Using each one of these to dominate itself results in a total
of fewer than p. Since at most p/2 are needed to dominate the tree T’
itself we have a contradiction. This proves (1) and (2). Recall that
a packing is a set of vertices with the property that no pair of them
are adjacent nor share a common neighbour.

If for some 4, V; contains two vertices which are adjacent or have a
common neighbour we have y(V;) < |Vj| and therefore y(T',7) <
3p/2 proving (3). Thus “the only if” direction follows.

Next consider a tree T' which satisfies conditions (1), (2) and (3).

The first condition guarantees that T itself requires p/2 vertices to
dominate. V(T) is by (3) partitioned into & disjoint packings V;,
so that p vertices will be needed to dominate the vertices of the k
subsets. Thus a total of 3p/2 is forced. This establishes the “if”
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direction. _ O

Remarks.
Again, theorem 4 is best possible as illustrated in Figure 2.

For the if direction we need not assume (3) in the sense, that it is
proven in {2] that when n > k and the maximum degree of T is less
than k, we can partition its vertices into at most & disjoint packings.

We conclude with the following observation.

Theorem 5 IfG is a n-cactus and V1, V; is a partition of its vertices
then v(G) + v¢(V1) +1¢(V2) < p+ § + §, where s is the number of
vertices having exactly one leaf attached to it.

Proof: If G is just a cycle, the theorem is easy to verify. For G
a unicyclic graph delete an edge on a cycle adjacent to a vertex of
degree 3 or more. Apply Theorem 1 and note that the resulting tree
has at most one leaf that G did not have. The result follows.

Assume the result holds for all n-cactus graphs and consider a (n +
1)-cactus. Select an endblock that is a circuit and delete an edge
incident with a degree 3 vertex. By induction the theorem follows.

a

For general graphs we observe that any spanning tree will give an
upper bound. Domination and partitioned domination is also treated
in 4, 5] and [8].
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