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Abstract

We define the B2 block-intersection graph of a balanced incom-
plete block design (V,B) having order n, block size k, and index
A, or BIBD(n,k, ), to be the graph with vertex set B in which
two vertices are adjacent if and only if their corresponding blocks
have exactly two points of V in common. We define an undirected
(resp. directed) hinge to be the multigraph with four vertices which
consists of two undirected (resp. directed) 3-cycles which share ex-
actly two vertices in common. An undirected (resp. directed) hinge
system of order n and index A is a decomposition of AK,, (resp.
AK}) into undirected (resp. directed) hinges. In this paper, we show
that each component of the Bz block-intersection graph of a sim-
ple BIBD(n, 3,2) is 2-edge-connected; this enables us to decompose
pure Mendelsohn triple systems and simple 2-fold triple systems into
directed and undirected hinge systems, respectively. Furthermore,
we obtain a generalisation of the Doyen-Wilson theorem by giving
necessary and sufficient conditions for embedding undirected (resp.
directed) hinge systems of order n in undirected (resp. directed)
hinge systems of order v. Finally, we determine the spectrum for
undirected hinge systems for all indices A > 2 and for directed hinge
systems for all indices A > 1.
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1 Introduction

We define an undirected (resp. directed) hinge to be the undirected (resp.
directed) multigraph on four vertices which consists of two undirected (resp.
directed) 3-cycles which share exactly two vertices. Figure 1 gives two
conceivable examples of a directed hinge, but for the purposes of this paper
we will consider only directed hinges of the type on the left of the figure. For
the undirected cases, we often omit the word ‘undirected’ when referring to
graphs and graph decompositions.

A hinge system of order n and index X is a decomposition of the edges
of AK,,, the complete multigraph of order n having A edges between each
pair of vertices, into hinges. Similarly, a directed hinge system of order n
and index A is a decomposition of the arcs of AK?;, the complete directed
multigraph on n vertices having A arcs from each vertex to each other
vertex, into directed hinges.

Figure 1: Examples of Directed Hinges

A balanced incomplete block design of order n, having block size & and
index A, or BIBD(n,k, ), is a pair (V,B), where V is a set of n points
and B is a collection of k-subsets of V' known as blocks such that every
pair of points in V occurs in exactly A blocks of B. Any BIBD(n,3, ) is
also referred to as a A-fold triple system (or TS(n,A)) and corresponds to
a decomposition of AK, into 3-cycles (or triples). The block-intersection
graph of a BIBD (V, B) is the graph with vertex set B in which two vertices
are adjacent if and only if their corresponding blocks share at least one
point of V. We define the B; block-intersection graph of (V,B) to be the
graph with vertex set B in which two vertices are adjacent if and only if
their corresponding blocks share exactly ¢ points in common.

A Mendelsohn triple system of order n, MTS(n), is an ordered pair
(V,C), where V is a set of n points and C is a collection of cyclic triples
defined on V such that each ordered pair of vertices in V is contained in
exactly one cyclic triple of C. A cyclic triple (z,y, z) covers the ordered
pairs (z,y), (y,2), and (2,z). Many times a MTS(n) is thought of as a
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decomposition of the edges of the complete directed graph K into directed
3-cycles. Removing the orientation from the cycles in the MTS(n) produces
a triple system of order n and index 2 known as the underlying 2-fold triple
system. A MTS(n) is said to be pure if its underlying 2-fold triple system
contains no repeated triples, while a triple system is called simple if it
contains no repeated triples.

We say that a directed hinge system of order n is derived from a MTS(n),
(V,C), if the directed 3-cycles of C can be paired together to form a directed
hinge system.

In this paper we focus on establishing the spectrum for directed hinge
systems of all indices, as well as for undirected hinge systems of all indices
A 2 2. The first of our main results applies to directed hinge systems:

Theorem 1.1 A directed hinge system of order n and index 1 can be de-
rived from any pure MTS(n) for alln =0 or 1 (mod 3), where n > 4, and

n#6.

Theorem 1.2 A directed hinge system of order n and index )\ exists if and
only if n > 4 and

(a) A=0 (mod 3),
(b) A=1 (mod3) andn =0 or1 (mod 3) (but if A\ =1 thenn # 6), or
(¢) A=2 (mod 3) andn=0 or1 (mod 3),

An undirected (resp. directed) hinge system (V, B) of order n is said
to be embedded in an undirected (resp. directed) hinge system (V’, B’) of
order vif V C V' and B C B’. A number of Doyen-Wilson type results have
been established for various combinatorial objects: necessary and sufficient
conditions for the embedding of Steiner triple systems of all indices [8, 20],
Mendelsohn triple systems [18], pure Mendelsohn triple systems [16, 19],
extended triple systems of all indices [10, 14], bowtie systems [2], and 5-
cycle systems [6] have been obtained. We add to this collection by proving
the following result concerning embedding hinge systems:

Theorem 1.3 Let n > 4. A directed hinge system of order n and index 1
can be embedded in a directed hinge system of order v and index 1 if and

only if
(a) v=0or1 (mod3),
(b)) v=norv>2n+1, and
(c) v#£6.
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Furthermore, conditions (a) and (b) are necessary and sufficient for embed-
ding undirected hinge systems of order n and indez 2 in undirected hinge
systems of order v and indez 2.

After presenting our results for directed hinge systems, we proceed to
consider undirected hinge systems. Notice that an undirected hinge con-
tains an edge of multiplicity 2, and so there can be no undirected hinge
system with index 1. We establish the spectrum for undirected hinge sys-
tems: ‘

Theorem 1.4 An undirected hinge system of order n and indez \ exists if
and only if A\ > 2, n >4, and

(a) n=10r9 (mod12) if x\=1 or5 (mod 6),
(b)) n=0o0r1 (mod3)if \=2 or 4 (mod 6),
(¢) n=1 (mod4) if A=3 (mod 6), or

(d) no additional restrictions onn if A =0 (mod 6).

2 Preliminary Results

We start with a lemma found in [3] which is a corollary of Tutte’s famous
1-factor theorem.

Lemma 2.1 Any 3-regular graph without cut edges has a 1-factor.

The following lemma is important when embedding (directed) hinge
systems.

Lemma 2.2 ([16]) Any pure Mendelsohn triple system of order n can be
embedded in a pure Mendelsohn triple system of order v if and only if
nv=0orl (mod3) andv>2n+1,v>4, andv #B6.

Let K, \ K, (resp. K} \ K};) denote the complete (directed) graph of
order v with the edges of a complete (directed) graph of order n removed.
Lemma 2.2 leads us to the following proposition.

Proposition 2.3 Letn > 4. Any MTS(n) having ezactly t repeated triples
can be embedded in a MTS(v) without introducing any more repeated triples
if and only if n,uy=0o0rl (mod3) andv=n orv>2n+1, v #£86.
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Proof. Necessity: Clearly, it is necessary that n,v =0 or 1 (mod 3) and
n,v # 6, since a MTS can only exist for these values [12]. Let (V,C) and
(V’,C") be a MTS(n) and a MTS(v), respectively, such that V' C V' and
C C C'. Now every cyclic triple which contains a point in V but is not
entirely contained in V' must contain two points in V/\ V. Therefore, for
every two arcs which have one endpoint in V' and the other in V/\ V, there
must be an arc whose endpoints both lie in ¥V’ \ V. So the total number
of arcs which have exactly one endpoint in V' and exactly one endpoint in
V’\ V must be at most twice the number of arcs with both endpoints in
V’\ V. This implies that either v = n or n(v — n) < 2(*3;"), sov=nor
v>22n+1.

Sufficiency: Since embedding a MTS(n) in a MTS(v) can be thought
of as finding a decomposition of the arcs of K} \ K} into cyclic triples, we
find that this decomposition does not at all depend upon what the triples
of the MTS(n) are. Therefore, since a pure MTS(n) exists for all n = 0
or 1 (mod 3), where n > 4 and n # 6 [1], we find that Lemma 2.2 allows
us to embed any MTS(n) having exactly ¢ repeated triples in a MTS(v)
without introducing any more repeated triples if n,v» =0 or 1 (mod 3) and
v22n+1,v>4,and v #6. (m]

Also, we will use the following result of Shen:

Lemma 2.4 ([17]) Let (V,B) be a simple A-fold triple system of order n.
Then (V, B) can be embedded in a simple \-fold triple sytem of order v > n
if and only if n > A+2, Mv—1) =0 (mod 2), Av(v—1) =0 (mod 6), and
v>22n+1.

For A = 2, we have the following corollary:

Corollary 2.5 Let n > 4. Any 2-fold triple system of order n having
exactly t repeated triples can be embedded in a 2-fold triple system of order
v without introducing any more repeated triples if and only if v =0 or 1
(mod3) andv=norv>2n+1.

Proof. We can think of embedding a TS(n,2) in a TS(v,2) as a decom-
position of the edges of 2K, \ 2K, into triples. The decomposition does
not depend upon what the triples of the TS(n,2) are, so we are allowed
to replace the original TS(n,2) with a simple TS(n,2). The result then
follows directly from Lemma 2.4. a

3 Directed Hinge Systems

Theorem 3.1 A directed hinge system of order n and index 1 can be de-
rived from any pure MTS(n) for alln =0 or 1 (mod 3), where n > 4, and

n # 6.
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Proof. Let (V,C) be a pure MTS(n). These exist for all positive integers
n =0 or 1 (mod 3), where n # 1,3, or 6 {1]. Let (V,B) be the underlying
2-fold triple system of (V,C), and let G be its block-intersection graph.
Every point z € V induces a clique in G since all vertices corresponding to
blocks in B which contain a point z are adjacent in G. Now consider Gs,
the By block-intersection graph of (V,B). Since (V,C) is a pure MTS(n),
it follows that each vertex of G has degree 3 in Gy, for each vertex {z,y, z}
will be adjacent to three other vertices which represent triples, and each
of these triples contains exactly one of the pairs (z,y), (z, z), and (y, 2).
Therefore, G is a 3-regular spanning subgraph of G.

Consider the clique in G induced by the vertex z € V. This clique
contains some edges which also occur in G3. These edges of G3 form a
2-factor within the z clique, since every vertex {z,y, z} is adjacent in G2 to
some vertex {z,y,a} (the unique neighbor which contains the pair (z,y))
and to another vertex {z,z,b} (the unique neighbor which contains the
pair (z,z)). Note also that the third neighbor of {z,y,z} in G, contains
the pair (y,z) but not the vertex z since (V,C) is pure. Thus, every edge
in Gy is contained in a cycle in G2 within some clique of G. Therefore,
no component of Gs contains a cut edge, so by Lemma 2.1, G5 contains a
1-factor.

Let F be a 1-factor in Gy. For every edge {{a,b,c}, {a,d,b}} € F, let
the triples {a,b,c} € C and {a,d,b} € C form a directed hinge. Clearly,
since the cycles in C partition the arcs of K, we have a partition of the
arcs of K into directed hinges. Therefore, if n = 0 or 1 (mod 3), where
n # 1,3 or 6, we can derive a directed hinge system of order n from a pure

MTS(n). o

Corollary 3.2 An undirected hinge system of order n and index 2 can be
derived from any pure MTS(n) for alln =0 or 1 (mod 3), where n > 4,
and n # 6.

Proof. To derive an undirected hinge system of order n and index 2, we
may simply derive a directed hinge system of order n and index 1 from a
pure MTS(n) and subsequently remove the orientation from the arcs of the
directed hinges. 0

Theorem 3.3 A directed hinge system of order n and index X\ exists if and
only ifn >4 and

(a) A=0 (mod 3),
() A\=1 (mod3) andn=0 orl (mod 3) (but if \ =1 thenn #6), or
(c) A\=2 (mod 3) and n=0 or1l (mod 3),
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Proof. Necessity. Clearly, since a directed hinge contains four vertices, we
must have n > 4. Furthermore, the number of arcs in a directed hinge must
divide the number of arcs in AK;. Hence it is necessary that 6 | An(n — 1),
which is always true when A = 0 (mod 3), but for A = 1 or 2 (mod 3) is
only true when n =0 or 1 (mod 3).

In addition, the existence of a directed hinge system of order 6 and
index 1 would imply the existence of a MTS(6) (simply break each hinge
apart to produce pairs of cyclic triples). Since there is no MTS(6), there
cannot be a directed hinge system of order 6 and index 1.

Sufficiency. By Theorem 3.1, a directed hinge system of order n and
index 1 can be derived from any pure MTS(n) for all n = 0 or 1 (mod 3),
where n > 4, and n # 6.

We must now consider indices A > 1. If A > 2, n = 0 or 1 (mod 3),
and n # 6 then we may obtain a directed hinge decomposition of AK}; by
taking A copies of a directed hinge decomposition of K.

Two cases now remain: n = 6 with A > 1, and A = 0 (mod 3) with
n =2 (mod 3).

Consider the case in which n = 6 and A > 1. In the appendix we present
directed hinge decompositions of 2K§ and 3K§. Thus, if A is even such that
A = 2k, we can obtain a directed hinge decomposition of AK§ by taking
k copies of a directed hinge decomposition of 2K¢g. And if A is odd such
that A = 2k 4 3, we can obtain a directed hinge decomposition of AK¢ by
taking one copy of a directed hinge decomposition of 3K§ and k copies of
a directed hinge decomposition of 2K3.

Now consider the case in which A = 0 (mod 3) and n = 2 (mod 3).
Given a directed hinge decomposition of 3K, we could obtain a directed
hinge decomposition of AK; by simply taking A/3 copies of a hinge decom-
position of 3K*. We now complete the proof by presenting a directed hinge
decomposition of 3K}. As ingredients, we use directed hinge decomposi-
tions of 3K?, 3K}, 3K},, 3K}y, and 3(K3 \ K3), all of which are provided
in the appendix. We therefore also assume that n = 14,17 or n > 23.

Let v=(n—2)/3 and let S = {s1,52,...,84}. Let V = (S x {0,1,2})uU
{001,002} represent the vertex set of 3K,. On the 3K} subgraph of 3K},
induced by the vertex set ({s1} % {0, 1,2})U{c01, 002} place a directed hinge
decomposition of 3K?. On each 3(K; \ K3) subgraph that is induced by the
vertex set ({s;}x{0,1,2})U{co1, 002}, for 2 < i < v, in which the vertex set
{001,002} induces the 3K5 whose edges are missing, we place a directed
hinge decomposition of 3(KZ \ K3). Now let L be an idempotent self-
orthogonal latin square of order v; since n ¢ {8, 11,20}, we have v ¢ {2,3,6}
and so such a latin square is known to exist [4, 5, 7]. We assume L to be on
the symbol set {1,2,...,v} and we let L(, ) denote the symbol contained
in cell (3, 5) of L. For each cell (3, j) for which i < j, we take 3 copies of the
directed hinge having the two ordered triples ((s;, 2), (s5,2), (5L(,5), 2+ 1))
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and ((s;, 2), (14,5, 2+ 1), (s, 2)), for z € {0,1,2}, where we take addition
modulo 3. Notice that arcs such as ((s;,0), (sj,1)) will be used by hinges
that are generated from the cells (i, k) and (k,i) where either L(i,k) = J
or L(k,1) = j.

Corollary 3.4 If n.=0 or 1 (mod 3) and n > 4, then there exists an
undirected hinge system of order n and index 2.

Proof. If n = 0 or 1 (mod 3), n > 4, and n # 6, then we obtain an
undirected hinge system of order n and index 2 by simply removing the
orientation on the arcs of a directed hinge system of order n and index 1.
Now consider the case n = 6. Let a hinge consisting of the triples
{z,y,2} and {z,y,a} be denoted by (z,y, 2) — (z,y,a). Let V ={1,...,6},
andlet W = {(1,4,2)—(1,4,5),(5,6,2)—(5,6,4), (1,6,2)—(1,6,3), (3,5,1)—
(3,5,2),(3,4,2)—(3,4,6)}. Then the hinges in W form an undirected hinge
system of order 6. O

Now that we have established the spectrum for directed hinge systems
of index 1, we focus on finding necessary and sufficient conditions for em-
bedding (directed) hinge systems in larger (directed) hinge systems:

Theorem 3.5 Let n > 4. A directed hinge system of order n and index 1
can be embedded in a directed hinge system of order v and index 1 if and

only if
() v=0orl (mod 3),
(b)) v=norv>2n+1, and
(c) v#6.

Furthermore, conditions (a) and (b) are necessary and sufficient for embed-
ding undirected hinge systems of order n and index 2 in undirected hinge
systems of order v and index 2.

Proof. Throughout this proof, whenever an index is not explicitly stated,
it is assumed that the index is 1 (resp. 2) when referring to directed (resp.
undirected) hinge systems.

Necessity. By Theorem 3.3, the spectrum for directed hinge systems
of order v and index 1 is precisely the set of all v =0 or 1 (mod 3), v # 1, 3,
or 6. Furthermore, any hinge system can trivially be embedded in itself.
However, embedding an undirected (resp. directed) hinge system (V, W)
of order n in an undirected (resp. directed) hinge system (V’, W’) of order
v can be thought of as finding a decomposition of the edges of 2K, \ 2K,
(resp. K\ K};) into undirected (resp. directed) hinges. Now, for every two
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edges connecting vertices in V' to vertices in V/\ V, there must be an edge
entirely contained in V/\ V. There are n(v—n) edges which connect vertices
in V' to vertices in V/\ V, so there must be at least n{v —n)/2 edges which
have both ends in the set V/\ V. This implies that n(v —n)/2 < (“3"), so
v>2n+1. Clearly, if n > 4 and v > 2n + 1, then v > 9, so v can never
be 6. However, it is worth mentioning that an undirected hinge system of
order 6 can trivially be embedded in itself, so condition (c) is not necessary
for embedding undirected hinge systems.

Sufficiency. Let (V, W) be an undirected (resp. directed) hinge system
of order n. Since n = 0 or 1 (mod 3) and n > 4 (and n # 6 in the
directed case), we can form a MTS(n) (V, C) or a TS(n,2) by breaking each
undirected (resp. directed) hinge apart to form pairs of undirected (resp.
directed) 3-cycles. By Proposition 2.3, if n > 4, any MTS(n) (V,C) can
be embedded in a MTS(v) (V/,C’) without introducing any more repeated
triples if and only if v = 0 or 1 (mod 3) and v = nor v > 2n+1, where v # 6.
(By Corollary 2.5, the same is true when embedding a TS(n, 2) in a TS(v, 2),
except that v can be 6). Let (V,B) and (V’,B’) denote the underlying 2-
fold triple systems of (V, C') and (V’, C’), respectively. Let G and G2 denote
the block-intersection graph and Bs block-intersection graph, respectively,
of (V/,B’). Every new triple that is introduced when embedding (V,C) in
(V’,C") contains at most one vertex from V. Therefore, in G2, no vertex
which corresponds to a block in B’\ B will be adjacent to any vertex which
corresponds to a block in B. Consider the vertices which correspond to
blocks in B’ \ B. In G, there is a 3-regular subgraph which spans these
vertices, since every vertex {z,y,z} € B’ \ B is adjacent to three other
vertices in B’ \ B which correspond to distinct triples which each contain
exactly one of the pairs (z,y), (¥, 2), and (z, 2z). Now consider the clique in
G induced by a vertex z € V' \ V. Every vertex {z,y,z} € B’ \ B in this
clique will have degree 2 in G, within this clique. Therefore, every edge in
G2 which contains vertices in B’\ B is contained within a cycle within some
clique in G. Therefore, no component of G which contains only vertices in
B’ \ ‘B contains a cut edge. So by Lemma 2.1, the subgraph in G5 induced
by the vertices in B’ \ B contains a 1-factor.

Let F be the 1-factor just obtained. Now the blocks of B were already
paired into hinges, so we use F to pair the remaining blocks into hinges. For
each edge {{z,v, z},{z,y,a}} € F, pair the triples {z,y,z} and {z,y,a}
to form a hinge. Clearly, we have a partition of the blocks in B’ \ B into
hinges, and this produces an embedding of (V,B) in (V’,B’). Since (V,B)
and (V’, B’) were derived from (V, C) and (V’, C’), respectively, we have the
desired embedding of the directed hinge system (V,C) in (V, C’). Clearly,
the same procedure can be used for embedding undirected hinge systems
of order n in undirected hinge systems of order v. m]
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4 Undirected Hinge Systems

Our goal in this section is to establish the spectrum for undirected hinge
sytems of order n, for all indices A > 2. We begin with a few lemmas which
support the main result.

Lemma 4.1 Ifn =1 (mod 4) and n > 4, then there erists an undirected
hinge decomposition of 3K,,.

Proof. We consider n modulo 48 and present a method for constructing
hinge decompositions of 3K,, from decompositions of smaller graphs. Re-
quired for this construction are hinge decompositions of 3K, 3Ky, 3K;7,
3K21, 3K41, 3K45, 3K89, 3K93, 3K4,4,4, and 3K3,3'3, each of which is pre-
sented in the appendix of this paper.

Case 1: n = 5, 13, 29, or 37 (mod 48). Let v = (n — 1)/4 and
observe that v =1 or 3 (mod 6). Hence there exists a Steiner triple system
of order v, so let (S,7) be a Steiner triple system of order v such that
S = {s1,52,...,80}. Let V = (S x {0,1,2,3}) U {00} represent the vertex
set of 3K,.

Each triple (s;, s;, sk) € T corresponds to the subset {s;, s;, sk} x{0,1,2, 3}
of V. By partitioning this subset into three parts, namely {s;} x {0, 1,2, 3},
{s;} x{0,1,2,3}, and {sx} x {0,1,2, 3}, we establish a correlation between
each triple in 7 and a subgraph 3K4 4,4 of 3K,,. On each of these 3Ky 4,4
subgraphs we place a hinge decomposition.

Now, each of ({sz} x {0,1,2,3}) U{oo}, for z € {i, j, k}, corresponds to
a 3K subgraph onto which we place a hinge decomposition.

Case 2: n =1, 9, 25 or 33 (mod 48). Let v = (n—1)/4 and observe
that v = 0 or 2 (mod 6). Hence there exists a maximum partial Steiner
triple system of order v whose leave is a 1-factor. Without loss of generality,
we let (S, T) be a maximum partial Steiner triple system of order v such that
S = {s1, s2,...,5, } and such that the edges {s1, s2}, {s3,84},..., {Sv—1,80}
comprise the 1-factor leave of (S,7). Let V = (S x {0,1,2,3}) U {oo}
represent the vertex set of 3K,.

Each triple (s, s, sx) € T corresponds to the subset {s;, s;, sk} x{0,1,2,3}
of V. By partitioning this subset into three parts, namely {s;} x {0, 1,2, 3},
{s;} x{0,1,2,3}, and {sx} x {0,1,2, 3}, we establish a correlation between
each triple in ¥ and a subgraph 3K, 44 of 3K,,. On each of these 3K4,4,4
subgraphs we place a hinge decomposition.

Now, for each edge {s2i—1,s2:} of the 1-factor leave of (S,7), con-
sider the subgraph 3Ky of 3K, induced by the vertex set ({s2i—1,S2:} X
{0,1,2,3})U{co}. On each such 3Ky subgraph we place a hinge decompo-
sition.

Case 3: n = 17 (mod 48). Let v = (n — 1)/8 and observe that
v = 2 (mod 6). Hence there exists a maximum partial Steiner triple system
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of order v whose leave is a 1-factor. Without loss of generality, we let
(S,7) be a maximum partial Steiner triple system of order v such that
S = {s1,82,..., 8y} and such that the edges {s1, 2}, {53, 84}, ..., {Sv—1, 50}
comprise the 1-factor leave of (S,7). Let V = (S x {0,1,2,3,4,5,6,7}) U
{oo} represent the vertex set of 3K,.

Each triple (s;, s, sx) € T corresponds to the subset {s;, s;, sx}x {0,1,2,
3,4,5,6,7} of V. By partitioning this subset into three parts, namely {s;} x
{0,1,2,3,4,5,6,7}, {s;}x{0,1,2,3,4,5,6,7}, and {sx} x{0,1,2,3,4,5,6,7},
we establish a correlation between each triple in 7" and a subgraph 3Kz g g of
3K,. On each of these 3Kj3 g subgraphs we place a hinge decomposition.

Now, for each edge {s2i_1,52:} of the 1-factor leave of (S,7), con-
sider the subgraph 3K); of 3K, induced by the vertex set ({s2i—1,52:} X
{0,1,2,3,4,5,6,7}) U {cc0}. On each such 3K, subgraph we place a hinge
decomposition. :

Case 4: n = 21 (mod 48). The case of n = 21 is handled in
the appendix, so we assume that n > 69. Let v = (n — 1)/4 and let
S = {s1,82,...,8v}. Let V = (S x {0,1,2,3}) U {oo} represent the vertex
set of 3K,,.

On the 3K5; subgraph of 3K, induced by the vertex set ({si, s2,...,55}
x{0,1,2,3}) U {cc}, place a hinge decomposition of 3K>;.

On each of the 3K} subgraphs induced by ({s;} x {0, 1,2,3})U{oo}, for
i€ {6,7,...,v}, place a hinge decomposition of 3K.

Now notice that v — 5 = 0 (mod 6). Hence, by a result of Rees [15],
there exists a decomposition of K,_5 into ¢ 1-factors and k — ¢ triangle-
factors provided that (v —5)/2+ 1 < k < (v —5) — 2. In particular, we
want k = (v — 1)/2 and t = 5, which satisifies the hypothesis of Rees’
result whenever n > 53. Let {F}, F2, ..., F5} be the set of 1-factors in such
a decomposition of K,_5 where {sg, $7,...,8,} are the vertices of K,_s.
Now for 1 < i < 5 and for each edge (s;,sx) € F;, we place a hinge
decomposition of 3K4 44 on the subgraph of 3K, induced by the sets of
vertices {s;} x {0,1,2,3}, {s;} x {0,1,2,3}, and {sx} x {0,1,2,3}.

Lastly, on each triangle, (s;,s;, sk), of the decomposition of K,_s, we
place a hinge decomposition of 3Ky 4,4 on the subgraph of 3K, induced by
the sets of vertices {s;}x{0,1,2,3}, {s;}x{0,1,2,3}, and {sx}x{0,1,2,3}.

Case 5: n = 41 (mod 48). The cases of n = 41 or 89 are handled
in the appendix, so we assume that n > 137. Let v = (n — 1)/8 and let
S = {s1,82,...,50}. Let V.=(5x%x{0,1,2,3,4,5,6,7}) U{oo} represent the
vertex set of 3K,,. ‘

On the 3K 4 subgraph of 3K,, induced by the vertex set ({51, s2,...,85}
x{0,1,...,7}) U {oc}, place a hinge decomposition of 3K,;. ,

On each of the 3Ky subgraphs induced by ({s;} x {0,1,2,3,4,5,6,7})U
{00}, for i € {6,7,...,v}, place a hinge decomposition of 3Kjs.

Now notice that v — 5 = 0 (mod 6). Hence, by a result of Rees [15],
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there exists a decomposition of K,._g into ¢ 1-factors and k — ¢ triangle-
factors provided that (v —5)/2+4+1 < k < (v —5) — 2. In particular, we
want k = (v — 1)/2 and t = 5, which satisifies the hypothesis of Rees’
result whenever n > 105. Let {F}, F5,...,F5} be the set of 1-factors in
such a decomposition of K,_5 where {ss,s7,...,5,} are the vertices of
K, 5. Now for 1 < i < 5 and for each edge (s;,sx) € F;, we place a
hinge decomposition of 3Ksggs on the subgraph of 3K, induced by the
sets of vertices {s;} x {0,1,2,3,4,5,6,7}, {s;} x {0,1,2,3,4,5,6,7}, and
{sx} x {0,1,2,3,4,5,6,7}.

Lastly, on each triangle, (s;,s;,sk), of the decomposition of K,_s, we
place a hinge decomposition of 3Kgg s on the subgraph of 3K, induced
by the sets of vertices {s;} x {0,1,2,3,4,5,6,7}, {s;}x{0,1,2,3,4,5,6,7},
and {si} x {0,1,2,3,4,5,6,7}.

Case 6: n = 45 (mod 48). The cases of n = 45 or 93 are handled
in the appendix, so we assume that n > 141. Let v = (n — 1)/4 and let
S = {s1,82,...,80}. Let V =(S x {0,1,2,3}) U {co} represent the vertex
set of 3K,,. ,

On the 3K 45 subgraph of 3K, induced by the vertex set ({s1, s2,...,511}
x{0,1,2,3}) U {oo}, place a hinge decomposition of 3K s.

On each of the 3K subgraphs induced by ({s;} x {0,1,2,3})U{oo}, for
i € {12,13,...,v}, place a hinge decomposition of 3Ks.

Now notice that v — 11 = 0 (mod 6). Hence, by a result of Rees [15],
there exists a decomposition of K,_;; into ¢t 1-factors and k — t triangle-
factors provided that (v —11)/2+1 < k < (v — 11) — 2. In particular,
we want k = (v — 1)/2 and t = 11, which satisifies the hypothesis of Rees’
result whenever n > 99. Let {F, F»,...,F1;} be the set of 1-factors in
such a decomposition of K,_;; where {s;2, $13,...,8y} are the vertices of
Ky-11. Now for 1 < i < 11 and for each edge (s;,s¢) € F;, we place a
hinge decomposition of 3K} 4,4 on the subgraph of 3K, induced by the sets
of vertices {s;} x {0,1,2,3}, {s;} x {0,1,2,3}, and {sx} x {0,1,2,3}.

Lastly, on each triangle, (s, s;, sk), of the decomposition of K,_;;, we
place a hinge decomposition of 3Ky 4,4 on the subgraph of 3K, induced by
the sets of vertices {s;} x{0,1,2,3}, {s;}x{0,1,2,3}, and {s¢}x{0,1,2,3}.
a

Before proceeding further, we need an existence result for latin squares.
An almost-self-orthogonal latin square of order 2n with holes of size 2 is a
latin square of order 2n such that cell (z, j) contains the same symbol as
cell (4,1) if and only if

() i=1,
(b) iisodd and j =i+ 1, or
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(c) iiseven and j =i — 1.

Almost-self-orthongal latin squares with holes of size 2 are similar in concept
to frame self-orthogonal latin squares (see [7]), but differ in that the holes
are filled with symbols (and also in that the symbols placed in the holes
make each hole symmetric). An almost-self-orthogonal latin square of order
6 having holes of size 2 is illustrated in Figure 2. Given a latin square, L,
we let L(4,j) and L(j,%) denote the symbols contained in cells (i,7) and
(4,7) of L, respectively.

122|566 344
1 5 3
6551344122
6 3 1
433 211|566
4 2 5

Figure 2: An Almost-Self-Orthogonal Latin Square of Order 6 with Holes
of Size 2

Lemma 4.2 An almost-self-orthogonal latin square of order 2n with holes
of size 2 exists for all n > 3.

Proof. Begin with an idempotent latin square, L, of order n, on the symbol
set {1,2,...,n}; such latin squares are known to exist for all n > 3. For
each cell of L we will create a two by two latin sub-square of our desired
almost-self-orthogonal latin square. For each cell (3, ) of L that is either on
or above the main diagonal of L, create the two by two sub-square shown
below:

2L(3,5) | 2L(i,j) -1

For each cell (%, ) of L that is below the main diagonal of L, create the
two by two sub-square shown below:

2L(3,5) | 2L(i,5) -1
2L(i,7) -1 | 2L(3,J)

The resultant 2n by 2n latin square will be almost-self—orthogonal with
holes of size 2. Furthermore, observe that the ith hole of this almost-self-
orthogonal latin square contains only the symbols 2i — 1 and 2i, such that
the symbols on the main diagonal of this almost-self-orthogonal latin square
consist only of odd numbers. 0
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Lemma 4.3 Ifn =2 (mod 3) and n > 4, then there exists an undirected
hinge decomposition of 6K,.

Proof. We consider n modulo 12 and present a method for constructing
hinge decompositions of 6K,, from decompositions of smaller graphs. Re-
quired for this construction are hinge decompositions of 6Ks, 6K11, 6K14,
6(Ks\ K2), and 6(K1; \ Ks), each of which is presented in the appendix of
this paper.

Case 1: n = 2 or 8 (mod 12). The cases of n = 8 or 14 are handled
in the appendix, so we assume that n > 20. Let v = (n — 2)/3 and let
S = {s1,82,...,8v}. Let V = (S x {0,1,2}) U {o01,002} represent the
vertex set of 6K,,.

On the 6K subgraph of 6K, induced by the vertex set ({si1,s2} X
{0,1,2}) U {01,002}, place a hinge decomposition of 6K3g.

On each 6(K3 \ K3) subgraph induced by the vertex set ({s2i—1,s2i} X
{0,1,2}) U {001,002}, for 2 < i < v/2, in which the vertex set {co1, 002}
induces the 6 K, whose edges are missing, we place a hinge decomposition
of 6(Ks \ K>).

Now let L be an almost-self-orthogonal latin square of order v having
holes of size 2. We further require that L is on the symbol set {1,2,...,v},
that symbols 2 — 1 and 2i are the symbols of the ith hole of L, and that
the symbols of the main diagonal of L consist only of odd numbers. By
Lemma 4.2, such a latin square is known to exist for v > 6 (i.e. n > 20).

For each cell (i,5) for which i < j and L(3,5) # L(j,4), we will create
six hinges of 6K, (these cells are precisely those not contained in the holes
of size 2). Using the notation introduced in the proof of Corollary 3.4,
we take 6 copies of each of the hinges ((si,2),(s;,2),(sL(i )2 + 1)) —
((siy 2), (85, 2), (LG40 2 + 1)), for z € {0,1,2}, where we take addition
modulo 3. Notice that edges such as {(s;,0), (s;,1)} will be used by hinges
that are generated from the cells (i, k) and (k,) where either L(i,k) = j
or L(k,?) = j.

Case 2: n = 5 (mod 12). Notice that if n =5 (mod 12) thenn =1
(mod 4) and so, by Lemma 4.1, there exists a hinge decomposition of 3K,,.
To obtain a hinge decomposition of 6K,,, simply combine two copies of a
hinge decomposition of 3K,.

Case 3: n = 11 (mod 12). The case of n = 11 is handled in
the appendix, so we assume that n > 23. Let v = (n — 5)/3 and let
S = {s1,82,...,8v}. Let V =(S x {0,1,2}) U {00,003, ...,005} represent
the vertex set of 6K,.

On the 6K, subgraph of 6K,, induced by the vertex set ({s1,s2} x
{0,1,2}) U {001,002, . ..,005}, place a hinge decomposition of 6Ky;.

On each 6(K); \ Ks) subgraph induced by the vertex set ({s2i_1,82:} X
{0,1,2}) U {o01,002,...,005}, for 2 < i < v/2, in which the vertex set
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{o01,009,...,005} induces the 6K5 whose edges are missing, we place a
hinge decomposition of 6(Ky; \ Ks).

Now let L be an almost-self-orthogonal latin square of order v having
holes of size 2. We further require that L is on the symbol set {1,2,...,v},
that symbols 2i — 1 and 2i are the symbols of the ith hole of L, and that
the symbols of the main diagonal of L consist only of odd numbers. By
Lemma 4.2, such a latin square is known to exist for v > 6 (i.e. n > 23).

For each cell (4, 7) for which ¢ < j and L(%,5) # L(j,1), we will create
six hinges of 6K, (these cells are precisely those not contained in the holes
of size 2). Using the notation introduced in the proof of Corollary 3.4,
we take 6 copies of each of the hinges ((si,2),(s;,2),(sL(ij),2 + 1)) —
((si,2), (84, 2), (sL(4,0), 2 + 1)), for z € {0,1,2}, where we take addition
modulo 3. Notice that edges such as {(s;,0), (sj,1)} will be used by hinges
that are generated from the cells (¢, k) and (k,:) where either L(i,k) = j
or L(k,i) = j. o

Theorem 4.4 An undirected hinge system of order n and index X exists if
and only if A > 2, n >4, and

(a) n=10r9 (mod12) if \=1 or5 (mod 6),

(b)) n=0o0r1 (mod3)if \=2 ord (mod6),

(¢c) n=1 (mod4) if \=3 (mod 6), or

(d) no additional restrictions onn if A =0 (mod 6).

Proof. Necessity: Clearly it is necessary that n > 4 since a hinge
contains 4 vertices. Now observe that AK,, contains An(n —1)/2 edges and
that a hinge contains 6 edges. For a hinge decomposition to exist, it is
therefore necessary that 6 divide An(n — 1)/2. Also, since each vertex of
a hinge has even degree, it is necessary that the degree, A(n — 1), of each
vertex of AK,, is even.

If A =0 (mod 6), then 6 always divides An(n — 1)/2, and A(n — 1) is
even. Therefore, there is no restriction placed on n other than that n > 4.

If A =1 or 5 (mod 6), then 6 must divide n(n — 1)/2. Hence, 12 must
divide n(n — 1) and so n =0, 1, 4, or 9 (mod 12). Since A(n — 1) must be
even, we must have odd n. Therefore, n =1 or 9 (mod 12). Also, A # 1
since a hinge contains a multiple edge.

If A =2 or 4 (mod 6), then 3 must divide n(n — 1)/2. Therefore, n =0
or 1 (mod 3).

If A = 3 (mod 6), then 2 must divide n(n — 1)/2. Hence 4 must divide
n{n—1) and so n =0 or 1 (mod 4). Since A(n — 1) must be even, we must
have odd n. Therefore n =1 (mod 4).
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Sufficiency: We first observe that by Corollary 3.4 there exists an
undirected hinge system of order n and index 2 for each n = 0 or 1 (mod
3) where n > 4. Hence, an undirected hinge system of order n = 0 or 1
(mod 3) with n > 4 and index A =0, 2, or 4 (mod 6) can be constructed
by taking A/2 copies of an undirected hinge system of order n and index 2.

For even )\, it therefore only remains to consider the case in which A =0
(mod 6), n =2 (mod 3), and n > 4. By Lemma 4.3 it follows that a hinge
decomposition of 6K, exists for each n = 2 (mod 3) such that n > 4. Note
now that hinge decompositions for indices A = 0 (mod 6), with n = 2 (mod
3) and n > 4, can be obtained by taking A\/6 copies of a hinge decomposition
of 6K,,.

We now consider the cases in which A is odd. Necessarily A > 3 since
no hinge decomposition of index 1 can exist (recall that a hinge contains a
multiple edge). The situation in which A =3 and n =1, 5, or 9 (mod 12)
was handled in Lemma 4.1. So now we must consider A > 5.

First we consider A = 3 (mod 6) withn =1, 5, or 9 (mod 12) and n > 4.
Necessarily ) is then an odd multiple of 3, and hence a hinge decomposition
of MK, can be obtained by taking A/3 copies of a hinge decomposition of
3K,. And by Lemma 4.1, such a decomposition of 3K, is known to exist.

Now suppose that A =1 or 5 (mod 6), n =1 or 9 (mod 12), and n > 4.
Then A = A, + 3 where A = A — 3. Thus, to find a hinge decomposition
of AK,, it would be sufficient to find hinge decompositions for each of
AeKn and 3K, and then combine these two decompositions. Note that
Ae=A—3=4or2(mod6)andifn=1o0r9 (mod 12) thenn =1o0r 0
(mod 3), and so it follows from our earlier statements in this proof that a
hinge decomposition of A, K, must exist. Note that a hinge decomposition
of 3K, also exists, by Lemma 4.1. m]

5 Appendix

5.1 A Directed Hinge Decomposition of 2Kg

Consider 2K on the vertex set V = {0,1,2,3,4,5}. Let H = {(1,4,5) —
(4,1,3), (1,5,0) - (0,5,2), (1,5,3) — (3,5,2), (1,2,5) — (2,1,4), (2,1,0) -
(2,0,3), (1,2,3) — (3,2,4), (1,0,4) — (1,3,0), (2,4,0) — (4,2,5), (3,4,5) —
(3,5,0), (3,0,4) — (4,0,5)}, where (a, b, ¢) —(d, e, f) denotes the hinge con-
taining the directed triples (a,b,c) and (d, e, f). Then (V, H) is a directed
hinge decomposition of 2Kjg.

5.2 A Directed Hinge Decomposition of 3K

Consider 3K on the vertex set V = {0,1,2,3,4}. Let H; = {(0+4,1 +
§,241) —(0+4,3+4,1+14)|0<i<4},and Hy = {(0+1,2+4,1 +1) —
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(0414,1414,3+14) | 0 < i < 4}, where addition is taken modulo 5. Then
(V, H, U H2) is a directed hinge decomposition of 3Kj.

5.3 A Directed Hinge Decomposition of 3K

Consider 3K on the vertex set V = {0,1,2,3,4,5}. Let H = {(1,2,3) —
(1,3,4), (1,4,5) — (1,5,2), (1,2,0) — (0,2,3), (1,0,5) — (5,0,2), (1,3,2) —
(2,3,5), (1,0,4) — (2, 4,0), (1,2,5) — (5,2,0), (0,1,3) — (0,3,5), (1,4,0) —
(0,4,2), (1,5,3) - (3,5,4), (1,0,3) — (3,0,5), (1,5,4) — (4,5,3), (1,4,2) —
(2,4,3), (2,5,4) — (4,5,0), (2,4,3) — (3,4,0)}. Then (V,H) is a directed
hinge decomposition of 3Kg.

5.4 A Directed Hinge Decomposition of 3K

Consider 3K} on the vertexset V = {0,1,2,3,4,5,6,7}. Let H = {(1,2,3)—
(7,2,1), (1,3,2) — (1,2,5), (1,3,5) — (1,5,7), (1,4,6) — (1,2,4), (1,4,6) —
(1,5,4), (1,5,2) — (2,5,3), (1,6,4) — (1,4,0), (1,7,0) — (1,0,86), (1,7,0) —
(7,1,6), (2,4,7) — (3,7,4), (2,4,0) — (4,2,6), (2,5,6) — (2,6,3), (2,7,4) —
(2,6,7), (2,7,5) — (5,7,6), (2,0,4) — (0,2,3), (2,0,6) — (0,7,6), (3,4,5) —
(1,3,5), (3,4,7) — (4,3,6), (3,5,0) — (5,3,7), (3,6,0) — (6,3,1), (3,7,6) —
(2,3,6), (3,0,4) — (4,0,5), (4,5,0) — (2,0,5), (4,7,3) - (7,4,5), (5,6,7) —
(6,5,0), (6,0,5) — (6,5,4), (7,0,2) — (0,7,1), (0,3,1) — (0,7,3)}. Then
(V, H) is a directed hinge decomposition of 3K3g.

5.5 A Directed Hinge Decomposition of 3K7,

Consider 3K?; on the vertex set V = {0,1,...,10}. Let H; = {(0+4,5 +
ia4+i)_(5+i70+i’2+i)IOSiSIOL H2={(0+7:11+ia2+i)—'(0+
§,2+14,3+1) | 0 < i < 10}, Hg = {(0+4,4+3, 6+1)— (4+1,7+4,6+i) | 0 <
i <10}, Hy = {(0+1,5+4,4+1i) — (5+4,0+4,7+1) | 0 <i < 10}, and
Hs={(0+i,3+1¢,7+1i)—(3+4,0+1%,8+1) |0 < i< 10}, where addition
is taken modulo 11. Then (V, H; U Ho U H3 U H4 U H;) is a directed hinge
decomposition of 3K7;.

5.6 A Directed Hinge Decomposition of 3K,

Let S = {s1, s2, 53, 54} and let the vertex set of 3K3, be V = §x{0,1,2,3,4}.
We first place a directed hinge decomposition of 3K on each of the vertex
sets s; % {0,1,2,3,4} for 0 < < 3.

The remaining arcs of 3K3, induce the multipartite graph 3K3¢ s s,
which we now decompose into directed hinges. Let H; = {((s1,0+%), (s2,0+
i)v (34,0+i)) —((Sg,O-i-'i), (31’0"'7:)’ (33’0+i)) | 0<i< 4}’ Hp = {((31’0+
i), (s2,1 + ), (54,3 + 7)) — ((s2,1 + 1), (81,0 + 1), (53,2 +1)) | 0 < i < 4},
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HS = {((31)0+i): (327 2+i)) (34, 1-{-1:))—((82, 2+7‘)s (31, 0+7‘)s (33, 4+7')) | 0 <
i < 4}, Hy = {((s1,0+1), (s2, 3+1), (s4,4+1%))—((s2, 3+1), (s1,0+2), (53, 1+
1‘)) l 0<:i< 4}7 Hs = {((81,0+i), (3274+i)a (341 2+i))—((32,4+i), (81,0+
i)’ (33, 3+7')) l 0<i< 4}$ H6 = {((84,0+‘l:), (33)0+i)) (31,0+i))—((83,0+
i), (54,0 +2), (52,0 +4)) | 0 < i < 4}, Hy = {((54,0 + 2), (83,1 + 1), (51,3 +
'L)) - ((83,1 + 1:),(84,0 + i),(32,2 + 1,)) | 0 S ) S 4}, Hg = {((34,0 +
i)’ (33’2 + 7‘)) (sla 1+ 1‘)) - ((3312 + Z); (3410 + 'b), (3234 + 7‘)) | 0 <1< 4}1
H9 = {((34’ 0+"’): (337 3+2)1 (31, 4+z))-—((33, 3+1), (347 0+l), (321 1+7')) l 0 <
1< 4}1 and H10 = {((34)0 + 1')1 (3314 + 7’)1 (sla2 + 1’)) - ((8374 + z)’ (84,0 +
i),(s2,3 +1)) | 0 < i < 4}, where addition is taken modulo 5. Taking 3
copies of each of the 5 hinges generated by each H;, we obtain a directed
hinge decomposition of 3K3 g s 5.

5.7 A Directed Hinge Decomposition of 3(Kj; \ KJ)

Consider 3(K;5 \ K3) on the vertex set V = {0,1,2,a,b}. We form a di-
rected hinge decomposition by taking 3 copies of each of the following three
directed hinges: (1,2,b) — (2,1,a), (2,0,b) — (0,2,4a), (1,0,a) — (0,1, d).

5.8 An Undirected Hinge Decomposition of 2K,

Consider 2K4 on the vertex set V = {0,1,2,3}. Let H = {(0,1,2) —
(0,1,3),(0,2,3)—(1,2,3)}. (V,H) is an undirected hinge decomposition of
2K,.

5.9 An Undirected Hinge Decomposition of 2Kj33 s

Consider the multigraph 2K3 33 with vertex tripartition V = ({0,1,2} U
{3,4,5}u{6,7,8}). Let H = {(0, 3,6)—(0, 5,6),(0,3,7)—(0,4,7), (0,4, 8)—
(0,5,8),(1,3,6) — (1,4,6),(1,4,7) — (1,5,7),(1,3,8) — (1,5,8),(2,4,6) —
(2,5,6),(2,3,7)—(2,5,7),(2,3,8) —(2,4,8)}. Then (V, H) is an undirected
hinge decomposition of 2K3 3 3.

5.10 An Undirected Hinge Decomposition of 2K333 3

Consider 2K3 3,33 on the vertex set {0,1,...,11}. The partition is formed
by the sets {0, 1,2}, {3,4,5}, {6,7,8},{9,10,11}. The first step is to obtain
a decomposition of 2K3 3 3,3 into copies of 2K4. We do this by obtaining two
copies of each Ky in the set {{0,3,6,11}, {0,4,7,10}, {0,5,8,9},¢ .,3,7,9},
{1,4,8,11},{1,5,6,10}, {2,3,8,10},{2,4,6,9}, {2,5,7,11}}. Nox =ach copy
of 2K4 can be decomposed into hinges, and this gives us the d:sired de-
composition of 2K3 33 3.
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5.11 An Undirected Hinge Decomposition of 2(Kjs \
K>) :

Consider 2(Ks \ K3) on the vertex set V = {0,1,2,3,4}. Furthermore,
assume that in 2(K;s \ K3), no edges join vertices 0 and 1. Let H =
{(0,2,3) — (1,2,3),(0,2,4) — (1,2,4),(0,3,4) — (1,3,4)}. Then (V,H) is
an undirected hinge decomposition of 2(K; \ K3).

5.12 An Undirected Hinge Decomposition of 3K, 4.4

Consider 3K44,4 with vertex tripartition V = ({1,2,3,4} U {5,6,7,8} U
{9,10,11,12}). Let H = {(1,5,11)—(1,5,12),(1,6,10)—(1,6,11), (1,7,9)—
(1,7,10), (1,8,9)—(1,8,12), (1,5,10)—(2,5, 10), (1,6,9)—(2,6,9), (1,7, 12)—
(2,7,12), (1,8,11)—(2, 8, 11), (2,5,9)—(3,5,9), (2, 6,12)—(3,6,12), (2,7, 11)—
(3,7,11), (2,8,10)—(3, 8, 10), (2,5, 11)— (4,5, 11), (2, 6, 10)—(4, 6, 10), (2,7, 9) -
(4,7,9),(2,8,12)—(4,8,12), (3,5, 10)—(3,5,12), (3,6,9)—(3,6,11), (3,7, 10)—
(3,7,12), (3,8,9)—(3,8,11), (4,5,9)— (4,5,12), (4,6, 11)—(4, 6, 12), (4,7, 10)—
(4,7,11),(4,8,9) — (4,8,10)}. Then (V, H) is an undirected hinge decom-
position of 3Ky 4 4.

5.13 An Undirected Hinge Decomposition of 3Kj

Consider 3K defined on the vertex set V = {0,1,2,3,4}. Let H = {(0 +
4,1+4+14,2+14)—(0+14,1+14,3+1%) |0 <4< 4}, where all sums are reduced
modulo 5. Notice that the differences 1 and 2 have been covered three times
each by the base hinge (0,1,2)—(0,1, 3). Therefore, (V, H) is an undirected
hinge decomposition of 3K5.

5.14 An Undirected Hinge Decomposition of 3Ky

Consider 3Ky defined on the vertex set V = {0,1,...,8}. Let H; = {(0 +
i1 +4,4+1) — (0+4,1+4,6+1) | 0<i<8},and Hy = {(0+4,2+1%,3 +
i) —(0+1,2+14i,4+1) | 0 < i < 8} where all sums are reduced modulo
9. Notice that the differences 1, 2, 3, and 4 have each been covered three
times by the base hinges (0,1,4)—(0, 1,6) and (0, 2,3)—(0,2,4). Therefore,
(V, Hy U H,) is an undirected hinge decomposition of 3Kj.

5.15 An Undirected. Hinge Decomposition of 3K~

Consider 3K7 defined on the vertex set V = {0,1,...,16}. Let Hy =
{O+4,1+4,84+4)—(0+4,1+4,10+14) |[0<i<16}, Ho = {(0+14,2+
i,6+4) —(0+i,2+14,7+14) |0<i<16}, H3 = {(0+14,3+4%,6+1)—
(0+43+48+1i)|0<i<16}, and Hy = {(0+¢,4+1,5+12) - (0+
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i,441,6 +1) | 0 < i < 16}, where all sums are reduced modulo 17. Notice
that the differences 1 through 8 have each been covered three times by the
base hinges (0,1,8) - (0,1,10), (0,2,6) — (0,2,7), (0,3,6) — (0,3,8) and
(0,4,5) — (0,4, 6). Therefore, (V, HUHyUH3U H,) is an undirected hinge
decomposition of 3K7.

5.16 An Undirected Hinge Decomposition of 3K5;

Consider 3K5, defined on the vertex set V = {0,1,...,20}. Let H; =
{(0+%,641,5+14)—(0+14,6+41,8+1) | 0 < i < 20}, Hy = {(0+1, 7+1,3+14)—
(044, 744,4+1) | 0 < i < 20}, H3 = {(0+4, 8+, 3+i)—(0+i,8+4,6+i) | 0 <
1 <20}, Hy = {(0+4%,9+14,44+1)—(0+3,9+4,7+1%) | 0 < i < 20}, and Hs =
{(0+44,104+14,9+44) — (0+4,10+1%,20+3) | 0 < i < 20}, where all sums are
reduced modulo 21. Notice that the differences 1 through 10 have each been
covered three times by the base hinges (0, 6,5) — (0, 6, 8), (0,7,3) — (0,7, 4),
(0,8,3) - (0,8,6), (0,9,4) — (0,9,7) and (0,10,9) — (0,10, 20). Therefore,
(V,HyUHU---U Hp) is an undirected hinge decomposition of 3K5;.

5.17 An Undirected Hinge Decomposition of 3Ky

Let S = {s1,s2,...,810}, and consider 3Ky, defined on the vertex set
(S x {1,2,3,4}) U {o0}. We define the hinge decomposition of 3Ky, in
the following manner.

(1) Place a hinge decomposition of 3K7 on the vertex set ({sy, s2, 53, 54} X
{11 21 3) 4}) U {OO}.

(2) For 3 < i < 5, place a hinge decomposition of 3Ky on each of the
vertex sets ({s2i—1,52i} % {1,2,3,4}) U {o0}.

(3) We first consider G = Kq \ K, defined on the vertex set S in which
the edges between pairs of vertices in {si, s, 3,54} have been re-
moved. Our first goal is to partition the edges of G—{{ss, s6}, {s7, 8},
{s9,s10}} into triples. we consider K¢ defined on the vertex set
{ss,86,-..,810}. Now K¢ contains a 1-factorisation Fy, Fi,..., Fy, in
which we can assume, without loss of generality, Fy contains the edges
{ss,56}, {57, 58}, {9, 510} which correspond to the sets ({s2i—1, s2:} x
{1,2,3,4}), for 3 < i £ 5. For 1 < ¢ < 4 and for each edge
{Sa,sp} € Fi, we can form a triple {sq,ss,5:}. Notice that these
triples partition the edges of G—{{ss, s¢}, {57, ss}, {50, s10}}. Each of
these triples {s,, s5, sc} will correspond to a copy of 3K} 4 4 defined on
the vertex set {sq, 85, sc} X {1,2,3,4}, which can be decomposed into
hinges. Since each of these triples corresponds to a copy of 3Ky 4,4,
we have a partition of the remaining edges of 3K, into hinges.
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5.18 An Undirected Hinge Decomposition of 3Ks

Let S = {s1,82,...,511}, and consider 3K,5 defined on the vertex set
(S x {1,2,3,4}) U {oo}. We define the hinge decomposition of 3Kys in
the following manner.

(1) Place a hinge decomposition of 3K>; on the vertex set ({s1, $2, 53, 54, S5}
x{1,2,3,4}) U {oo}.

(2) For 6 < i < 11, place a hinge decomposition of 3K5 on each of the
vertex sets ({s:} x {1,2,3,4}) U {o0}.

(3) We first consider G = K1; \ Ks defined on the vertex set S in which
the edges between pairs of vertices in {si, s2, 83,54, 55} have been re-
moved. Our first goal is to partition the edges of G into triples. Next,
we consider K defined on the vertex set {ss,s7,...,511}. Clearly, K
contains a 1-factorisation F,..., Fs. For 1 <1 <5 and for each edge
{sa, s} € F;, we can form a triple {sq,ss,5:}. Notice that these
triples partition the edges of G. As in the previous example, each of
the triples {sq, b, sc} will correspond to a copy of 3K4,4,4 defined on
the vertex set {s,, S5, Sc} X {1,2,3,4}, which can be decomposed into
hinges. Therefore, we have a partition of the remaining edges of 3K45
into hinges.

5.19 An Undirected Hinge Decomposition of 3Kgo

Let S = {s1,52,...,511}, and consider 3Kgq defined on the vertex set (S x
{1,2,...,8}) U {oo0}. We define the hinge decomposition of 3Kgg in the
following manner.

(1) Place a hinge decomposition of 3K4; on the vertex set ({s1, s2, 53, 54, 55}
x{1,2,...,8}) U {co}.

(2) For 6 < ¢ < 11, place a hinge decomposition of 3Kg on each of the
vertex sets ({s;} x {1,2,...,8}) U {co}.

(3) We first consider G = K, \ K5 defined on the vertex set S in which
the edges between all pairs of vertices in {sy, 2, 83, 54,55} have been
removed. Our first goal is to partition the edges of G into triples.
We consider K¢ defined on the vertex set {ss,s7,...,511}. Clearly,
K contains a 1-factorisation Fy, Fs,...,Fs. For 1 < ¢ < 5 and for
each edge {sq,ss} € F;, we can form a triple {ss,ss,s:}. Notice
that these triples partition the edges of G. Each of these triples
{Sa, Sb, Sc} Will correspond to a copy of 3Kjg g g defined on the vertex
set {Sq, Sb,Sc} X {1,2,...,8}, which can be decomposed into hinges.
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Again since each of these triples corresponds to a copy of 3Kggs, we
have a partition of the remaining edges of 3K3g into hinges.

5.20 An Undirected Hinge Decomposition of 3Ky

Let S = {s1,82,...,523}, and consider 3Ky3 defined on the vertex set
(S x {1,2,3,4}) U {00}. We define the hinge decomposition of 3Kg3 in
the following manner.

(1) Place a hinge decomposition of 3K 5 on the vertex set ({s1,82,...,811}
x{1,2,3,4}) U {o0}.

| (2) For 12 < i < 23, place a hinge decomposition of 3K5 on each of the
vertex sets ({s;} x {1,2,3,4}) U {c0}.

(3) We first consider G = Ka3 \ K1, defined on the vertex set S in which
the edges between pairs of vertices in {sy,ss,...,511} have been re-
moved. Our first goal is to partition the edges of G into triples. As in
the previous example, each of these triples {sq, s5, s} will correspond
to a copy of 3Ky 4 4 defined on the vertex set {s4, sp, 8.} x {1,2,3, 4},
which can be decomposed into hinges.

Next, we consider K, defined on the vertex set {s12,513,..., 823}
Clearly, K contains a 1-factorisation Fy, F3,...,Fy;. For1<i< 11
and for each edge {sq,s} € F;, we can form a triple {sq,ss,s;}.
Notice that these triples partition the edges of G. Again since each
of these triples corresponds to a copy of 3Ky 4,4, we have a partition
of the remaining edges of 3Kjy3 into hinges.

5.21 An Undirected Hinge Decomposition of 3Kggg

Let S = {s1,53,..., 56} and consider 3K} g g on the vertex set §$x{1,2,3,4}.
The tripartition of the vertices is formed by the sets {sg;-.1, s2:}%x{1,2,3,4},
for1<i<3.

Now consider K3 3,2 defined on S with vertex tripartition V = ({s, 55},
{s3,54},{55,56}). If we can decompose Ky into copies of K3, then we
can make a one-to-one correspondence between each K3 and a copy of
3K4,4,4- Furthermore, these copies of 3K; 44 will form a decomposition
of 3Kss,5. The set {{s1,s3,55}, {s1,54,56}, {52, 53, 56}, {2, 84, 55}} forms
a decomposition of Ky into triples. Each of these triples {si, s, sk}
corresponds to a copy of 3K4,4,4 on the vertex set {s;,s;, sk} x {1,2,3,4},
and each copy of 3K4 4,4 can be decomposed into hinges. Therefore, we
have the desired hinge decomposition of 3Kszss.
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5.22 An Undirected Hinge Decomposition of 6K

Consider 6K3 defined on the vertex set V = {0,1,...,7}. Welet H =
{(0,1,2) — (0,2,7),(2,4,5) — (3,4,5), (0,1,2) — (1,2,4),(0,3,4) — (3,4,5),
(1,2,3) — (1,3,7),(0,4,6) — (4,6,7),(3,5,7) - (5,6,7),(1,2,5) — (1,5,6),
(2,3,6) — (3,5,6),(0,3,4) — (0,3,6),(1,3,7) — (1,4,7),(0,3,6) — (3,6,7),
(1,4,7) - (4,5,7),(0,2,5) — (0,2,6),(0,1,7) — (1,4,7),(0,1,5) — (1,5,6),
(0,3,5) — (0,5,7),(2,3,7) — (2,6,7),(0,2,7) — (2,3,7),(1,4,6) — (1,5,6),
(0,4,5) — (0,5,7),(0,1,6) — (1,3,6),(2,3,4) — (2,4,6),(2,4,5) — (2,4,6),
(0,6,7) — (4,6,7),(2,5,6) — (2,5,7),(1,2,3) — (1,3,5),(0,1,4) — (0,3,4)}.
Then (V, H) is an undirected hinge decomposition of 6K3.

5.23 An Undirected Hinge Decomposition of 6 K3,

Let S = {s1,52,53}, and define 6K;; on the vertex set (S x {1,2,3}) U
{c01,002}. We define a hinge decomposition as follows:

(1) place two copies of a hinge decomposition of 3K on the vertex set
({s1} x {1,2,3}) U {001, 002};

(2) place three copies of a hinge decomposition of 2(Ks \ K2) on each of
the vertex sets ({s2} x {1,2,3}) U {oo1,002} and ({s3} x {1,2,3}) U
{001,002} (in this decomposition, the pair {co1, 002} does not occur
in any hinge since this pair has already occurred six times in (1));
and

(8) place three copies of a hinge decomposition of 2K3 33 on the vertex
set S x {1,2,3} such that the tripartition is formed by the three sets
({si} x {1,2,3}),for1 <i< 3.

This gives the desired hinge decomposition of 6 K1;.

5.24 An Undirected Hinge Decomposition of 6K;4

Let S = {s1, s2, 53, 4}, and consider 6K4 on the vertex set (S x {1,2,3})U
{o01,002}. Before we describe the hinge decomposition, we note that since
a hinge decomposition of 2Kj 3 3,3 exists, a hinge decomposition of 6K 3,3,3,3
exists, as well. We define the hinge decomposition of 6K14 in the following
manner.

(1) Place a hinge decomposition of 6K on the vertex set ({s1}x{1,2,3})U
{001, 002}.

(2) For 2 < i < 4, place a hinge decomposition of 6(Xs \ K2) on each
of the vertex sets ({s;} x {1,2,3}) U {o01,002}. In each of these
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decompositions, it is important that the pair {c0;, 002} appears in no
hinges, since that pair occurs six times in hinges defined in (1).

(3) Place a hinge decomposition of 6K3,3 3,3 on the vertex set Sx {1,2,3},
where the partition of the vertices is formed by the vertex sets {s;} x
{1,2,3} for1 <i<4.

This forms the desired hinge decomposition of 6K ;4.

5.25 An Undirected Hinge Decomposition of 6(Ks \
K,)

Consider 6(K3s \ K2) defined on the vertex set V = {0,1,...,7}. Fur-
thermore, assume that in 6(K3 \ K>), no edges join vertices 0 and 1. We
let H = {(2,3,6) —(2,4,6),(3,5,7) — (4,5,7),(0,3,4) — (0,4,7),(1,3,5) -

(1’5:6)1(0v3a 6) - (0’6v7)v (1,214) - (1'217) (1 3 4) (1 3, 5):(0 2, 5) -
(0,4,5),(1,4,6) — (1,5,6),(1,2,7) — (1,3,7),(0,2,5) — (0,2,7),(0,2,5) —
(0,5,6),(1,4,6) ~ (1,6,7),(0,3,7) — (0,6,7),(1,2,4) — (2,3,4),(2,3,5) —
(2,3,6),(4,5,7) — (4,6,7),(0,4,5) — (0,4,6),(0,3,4) — (3,4,7),(1,5,7) —
(5,6,7),(1,2,4) — (1,2,7),(1,3,5) — (1,3,6),(0,2,3) — (0,3,7),(0,2,6) —
(2,5,6),(2,4,5) — (4,5,7),(3,4,6) — (3,5,6),(2,3,7) — (2,6,7)}. (V,H) is

an undirected hinge decomposition of 6(K3 \ K>).

5.26 An Undirected Hinge Decomposition of 6(Kj; \
Kj5)

Consider 6(K1; \ Ks) on the vertex set {0,1,...,10} in which there are
no edges between pairs of vertices in the set {6,7,8,9,10}. We define the
hinge decomposition in the following manner.

(1) Place three copies of a hinge decomposition of 2(Ks \ K2) on each of
the vertex sets {0,1,2,9,10} and {3,4,5,9,10}. We should be sure
that the edge {9, 10} occurs in no hinges.

(2) Place three copies of a hinge decomposition of 2K3 3 3 on the vertex
set {1,2,...,9} such that the sets {0, 1,2}, {3, 4,5}, and {6,7, 8} form
the tripartition of 2K3 3 3.
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