Some New Bush-Type Hadamard Matrices of
Order 100
and Infinite Classes of Symmetric Designs

Dean Crnkovié !
Department of Mathematics
Faculty of Philosophy
Omladinska 14, 51000 Rijeka, Croatia

and

Dieter Held
Fachbereich Mathematik
Johannes Gutenberg-Universitat
55099 Mainz, Germany

Abstract

There are at least 52432 symmetric (100, 45, 20) designs on which
Frobio x Z> acts as an automorphism group. All these designs corre-
spond to Bush-type Hadamard matrices of order 100, and each leads
to an infinite class of twin designs with parameters

v=100(81" +81™7" +... +81+1), k =45(81)™, A = 20(81)™,
and an infinite class of Siamese twin designs with parameters
v =100(121™ +121™" 4. .4+12141), k = 55(121)™, A = 30(121)™,

where m is an arbitrary positive integer. One of the constructed
designs is isomorphic to that used by Z. Janko, H. Kharaghani and
V. D. Tonchev [4].
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1 Introduction and Preliminaries

A symmetric (v, k, \) design is a finite incidence structure (P, B, I), where
P and B are disjoint sets and I C P x B, with the following properties:

1. [P|=|B|=1v;
2. every element of B is incident with exactly k elements of P;

3. every pair of distinct elements of P is incident with exactly A elements
of B.

The elements of the set P are called points and the elements of the set B
are called blocks.

Given two designs D; = (Py,B1, 1) and D2 = (P2, B2, I2), an isomor-
phism from D; onto D is a bijection which maps points onto points and
blocks onto blocks preserving the incidence relation. An isomorphism from
a symmetric design D onto itself is called an automorphism of D. The set
of all automorphisms of the design D forms a group; it is called the full
automorphism group of D and denoted by AutD.

Let D = (P, B,I) be a symmetric (v, k, A) design and G < AutD. The
group action of G produces the same number of point and block orbits
(see [9, Theorem 3.3, p. 79]). We denote that number by ¢, the point
orbits by Py,...,P:, the block orbits by By, ..., B, and put [P;| = w, and
|B;| = €. We shall denote the points of the orbit Py by ro, ..., w1, (i-e.
P, = {roy---)Tw.—1}). Further, we denote by i, the number of points
of P, which are incident with a representative of the block orbit B;. The
numbers v;, are independent of the choice of the representative of the block
orbit B;. For those numbers the following equalities hold (see [5]):

t

Z'Yir = k1 (1)

r=1

%
Wy sr [)r

r=1

AQj +8i5 - (k= A). (2)
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Definitionr 1 Let (D) be a symmetric (v,k,)) design and G < Aut D.
Further, let Py,...,P, be the point orbits and By, ..., B, the block orbits
with respect to G, and let wy,...,w; and Qy,...,Q; be the respective orbit
lengths. We call (Py,...,P:) and (By,...,B;) the orbit distributions, and
(w1y...,ws) and (,...,9) the orbit size distributions Jor the design and
the group G. A (t x t)-matriz (v;y) with entries satisfying conditions (1)
and (2) is called an orbit structure for the parameters (v, k, ) and orbit
distributions (Py,...,P;) and (By,...,B:).

The first step — when constructing designs for given parameters and
orbit distributions - is to find all compatible orbit structures (yir). The
next step, called indexing, consists in determining exactly which points from
the point orbit P, are incident with a chosen representative of the block
orbit B; for each number 7;,. Because of the large number of possibilities,
it is often necessary to involve a computer in both steps of the construction.

Definition 2 The set of those indices of points of the orbit P, which are
incident with a fized representative of the block orbit B; is called the index
set for the position (i,r) of the orbit structure and the given representative.

It is well known that the existence of a symmetric design with parame-
ters (4u?, 2u®—u, u2—u) is equivalent to the existence of a regular Hadamard
matrix of order 4u? (see [15, Theorem 1.4 p. 280]). Thus, symmetric de-
signs with parameters (100,45,20) have been known to exist for a long time.
However, this fact did not impede combinatorialists from constructing new
designs with that parameter triple (see [11], [14]).

A Hadamard matrix of order m is an (m x m)-matrix H = (h;;),
hi; € {-1,1}, satisfying HHT = HT H = mlI, where I is the unit matrix.
A Bush-type Hadamard matrix of order 4n? is a Hadamard matrix with
the additional property of being a block matrix H = [H;,;] with blocks of
size 2n x 2n, such that H;; = J,, and H;jJon = JonH;; = 0, i # j,
1< i< 2n, 1< < 2n, where Ja, is the all-ones (2n x 2n)-matrix.

H. Kharaghani [8] showed that a Bush-type Hadamard matrix of or-
der 4n? with 2n — 1 or 2n + 1 a prime power can be used to construct
infinite classes of symmetric designs. Z. Janko, H. Kharaghani and V. D.
Tonchev [4] have constructed a Bush-type Hadamard matrix of order 100
using a symmetric (100, 45,20) design admitting an automorphism group
isomorphic to Frobyg x Zyo acting in 20 orbits of length 5 on points and
blocks.

For a {0,+1}-matrix K let K = K+ — K~, where K+ and K~ are
{0, 1}-matrices and K = K+ + K~ is a {0,1}-matrix. A {0,+1}-matrix
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D is called a twin design if both Dt and D~ are incidence matrices of
symmetric designs with the same parameters. A {0,+1}-matrix S is called
a Siamese twin design sharing the entries of I, if S = I + K — L, where
I, K, L are non-zero {0, 1}-matrices and both I+ K and I+ L are incidence
matrices of symmetric designs with the same parameters.

Definition 3 Let G be a group written multiplicatively. A balanced gener-
alized weighing matriz BGW (v, k, \) over G is a (v X v)-matriz W = (gi;)
with entries from G = G U {0} such that each row of W contains ezactly
k nonzero entries, and for every a,b € {1,...,v}, a # b, the multiset
{ga,'gb',.1| 1< i< v, gai #0,90i # 0} contains exactly ]-"G-[ copies of each
element of G.

2 Symmetric (100,45,20) Designs

Lemma 1 The following matriz, denoted by OS, is an orbit structure for
the parameter triple (100, 45, 20) and orbit distributions resulting in an orbit
size distribution (5,...,5) for blocks and points:

( 0 0 2 3 3 2 3 2 2 3 2 3 3 21 4 1 4 3
o0 0 3 2 2 3% 2 3 3 2 3 2 2 3 41 41 2
2 3 0 60 2 3 3 2 3 23 2 2 3 3 21 41
3 2 0 0 3 2 2 3 2 3 2 3 3 2 2 3 41 4
3 2 23 00 2 3 3 21432233 21
2 33 200 3 2 2 3 41 2 3 3 2 2 3 4
3 2 3 2 2 3 00 2 3.1 414 3 2 2 3 3
2 3 23 3 2003 2 4141 23 3 2 2
2 3 3 2 3 2 2 3 00 3 2141 43 2 2
3 2 2 3 2 332002 3 41412 33
2 33 21 41 43 2 060 3 2 2 3 2 3 3
3 2 2 3 41 41 2 3 00 2 3 3 2 3 2 2
3 2 2 3 3 2 1 41 4 3 2 060 3 2 2 3 2
2 3 3 2 2 3 41 412 3 00 2 3 3 2 3
1 4 3 2 2 3 3 2 1 4 2 3 3 2 003 2 2
4 1 2 3 3 2 2 3 413 2 23500 2 3 3
1 4 1 43 2 2 3 3 2 2 3 23 3 2 00 3
4 1 41 2 3 3 2 2 3 3 23 2 2 3 00 2
3 21 41 4 3 2 2 3 3 2 23 233 20

k 2 3 41 41 2 3 3 2 2 3 3 2 3 2 2 3 0

Proof. Use equations (1) and (2). O
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Theorem 1 Up to isomorphism there are ezactly four symmetric (100, 45, 20)
designs admitting an automorphism group G isomorphic to Frobyg X Zs
which operates in such a way that Frobig acts in 20 orbits of length 5 on
points and blocks and induces the orbit structure OS from Lemma 1. Fur-
ther, a generator of Zs acts as the permutation

(1,3,5,7,9)(2,4,6,8,10)(11, 13,15,17,19)(12, 14, 16, 18, 20)

on the 20 point and block orbits of the group Frobyo. The full automorphism
groups of these four designs are all isomorphic to Frobiox Z19. The designs
are not self-dual.

Sketch of proof. The designs have been constructed by the method
described in [1] and [3]. We denote the points by 1;,...,20;,i=0,1,2,3,4
and put G = (p, 0, 7) where the generators for G are permutations defined
as follows:

p=(lo,h,I,13,1,), I =1,2,...,20,
o = (Ko)(K1, K4)(K2, K3), K =1,2,...,20,

= (1, 3;,5:, 75, %) (24,44, 61, 84, 10;) (114, 13;,15;,17;, 19;)
(12, 14:, 165, 18;, 20;), i = 0, 1, 2, 3, 4.

To eliminate isomorphic structures during the indexing process we have
used the permutation which ~ on each (p)-orbit — acts as z -+ 2z (mod 5),
and those automorphisms of our orbit structure O which commute with
.

As representatives for the block orbits we chose blocks fixed by ().
Therefore, the index sets — numbered from 0 to 6 — which could occur in
the designs are among the following:

0=0, 1={0}, 2={1,4}, 3=1{23}, 4={0,1,4}, 5=
{0,2,3}, 6=1{1,2,3,4}.

The indexing process of our orbit structure OS led to four designs,
denoted by Dy, D2, D3 and D4. Using a computer program by V. Kréadinac
(see [7], [10]) we get that (Dy,D3) and (D3, Dy) are pairs of mutually dual
designs. We write down base blocks for the designs D; and D, in terms of
the index sets defined above:
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D,
B;:00244352242442161653
By:00423425424224616135
B;;:24531616420053253453
B12:42356161240035524335

D,
B;:00244352242442161653
B;:00423425424224616135
B11:35421616530042253442
B12:53246161350024524324

We have determined the automorphism groups of the constructed designs
using GAP [2] and a program by V. D. Tonchev [13]. O

Theorem 2 There are at least 52432 pairwise nonisomorphic symmetric
(100,45,20) designs admitting an automorphism group H isomorphic to
F robm X Zz.

Sketch of proof. The designs are obtained from the orbit structure oS
together with the assumed group H. We put H = {p,0, ), where the
generators of H are permutations defined as follows:
P= (IOy I, Iz, I, I4)a I1=1,2,..., 20,
o = (Ko)(K1, K4)(K2, K3), K =1,2,...,20,
T= (1,', 2,‘)(3,‘,4,‘)(5,‘, 6.‘)(7.‘,8;‘)(9.', 10,')(11,', 12;)(13,‘, 14;)(15,’, 16,') (17.‘, 18.’)
(19;,20;),i=0,1,2,3,4.

We have constructed 104864 designs. Among them there are 52432 de-
signs with mutually different statistics of intersections of any three blocks.
All constructed designs except the designs described in Theorem 1 have
Frobig x Z3 as full automorphism group. 0O

3 Bush-Type Hadamard Matrices of Order
100 and Classes of Symmetric Designs

Replacing each zero by 1 and each one by —1 in the incidence matrix of
each symmetric (100, 45, 20) design from Theorem 2 results in a Bush-type
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Hadamard matrix of order 100. Some of these Hadamard matrices might
be equivalent.

Let U = cire(0,1,0,...,0) be the circulant matrix of order 10 and
N = diag(-1,1,1,...,1) be the diagonal matrix of order 10. Let E =UN
and Gy = {E'®Io|i = 1,2,...,20}, where E®1I, is a Kronecker product,
and Ijo is the unit matrix of order 10. Then E is a signed permutation
matrix of order 10, Gy is a cyclic group of order 20, and X4eq,, g = 0.

The g-ary simplex code S4(q) of length (¢4 — 1)/(g — 1), where d > 2
and ¢ is a prime power, is a linear code over GF(q) with a generator matrix
having as columns representatives of all distinct one-dimensional subspaces
of the d-dimensional vector space GF(q)?. The code S4(q) is the dual of the
unique linear perfect single-error-correcting code of length (g% — 1)/(g — 1)
over GF(q). We use the following theorem of Jungnickel and Tonchev [6]:

Theorem 3 Any (¢°—1)/(g—1)x(g?—1)/(g—1) matriz M with rows a set
of representatives of the (¢® —1)/(g — 1) distinct one-dimensional subspaces
of S4(q) is a balanced generalized weighing matriz with parameters

, k=qd—1, A=qd—l_qd—2

over the multiplicative group GF(q)*.

Corollary 1 There exists a balanced generalized weighing matriz BGW (g™ +
¢ 4. 4g+1,q™, g™ —q™ 1) over the group Gap for each positive integer
m and g € {81,121}.

Proof. This is a direct consequence of Theorem 3, because 81 and 121
are prime powers and 20 divides 80 and 120. O

Each Bush-type Hadamard matrix of order 100 leads to infinite classes
of twin and Siamese twin designs.

Theorem 4 Let m be a positive integer, H any Bush-type Hadamard ma-
triz of order 100, and M = H — I10 ® Jio. Further, let W = [w;;] be
the balanced generalized weighing matriz BGW (81™ +81™~1 4+ ...+ 81+
1,81™,81™ — 81™~1) from Corollary 1. Then, the matriz D = [Mw;j] is a
twin design with parameters

(1) »=100(81™+81™ ! 4...4+81+1), k=45(81)", X =20(81)™.
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Proof. We follow the proof by H. Kharaghani ([8, Theorem 8, p. 8]). Let
P = Jyoo — I10 ® J1o. For a matrix w;; = [ax] denote by |w;;| the matrix
[laki|]- The matrices

1 1

are symmetric designs with parameters (1).

To prove that D is a symmetric (v, k, ) design we have to prove that
DYDY = AJ + (k= N)I.

For k #1,
2(81 o +31+1)ka (Mw,z)' _ 2(81 +.. +81+1)M(wkjwltj)Mt =

81"' g1m-1
M s Mt =0
F’gr k=1,
2;8—11 +. ..+81+1)ka ’(ijk)t — SlmMMt.

Therefore, [Mw;;][Mw;;]* = 81™ (Isym4...+8141 @ M M*). Also, for every
iy j, ks Ly (Plwis|) (Mwp)* = (Mwg)(Plwi])* = 0.

‘Thus, we have,
4Dt DYt =[P Iwu N[Pwisl)* + [Mwi;][M w,,]‘
[Plwi;[)[Plwil]* + 81™ (Is1m+...48141 @ M M?*).

For k#1,
mE ASLED) Pl | (Pluozl)t = = @ A8 Pl | Pt =

817817 p(J19 ® I10) Pt = 80(81)™ J100-

For k =1,
Slm(PPt + MMt) = 81m(1001100 + 80J100)
Therefore, Dt is a symmetric design with parameters (1). In a similar

way one can prove that D~ is also a symmetric design with parameters (1).
]

Theorem 5 Let m be a positive integer, H any Bush-type Hadamard ma-
triz of order 100, and M = H — I1o ® Jio. Further, let W = [w;;] be the
balanced generalized weighing matriz BGW (121™ + 121™~! + ... + 121 +
1,121™,121™ — 121™-1) from the above corollary. Then, the matmces

1 1
5[((J10+I1o) ® Jio)|wij|+ Mwi;] and 5[((J10+110) ® J10)|wij| — Mwij)
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are symmetric designs with parameters
v =100(121™ + 121™~ 1 4 ... + 121 + 1), k = 55(121)™, A = 30(121)™.

sharing the entries of I = [(I10 ® J1o)|wijl]-

Proof. Similar to the proof of Theorem 4. O
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