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Abstract

A k-linc-distinguishing coloring of a graph G = (V, E) is a parti-
tion of V into k sets V1,..., Vi such that g({Vi)) < 1 fori=1,...,k
and ¢(V;,V;) < 1for1 <i< j < k. If the color classes in a line-
distinguishing coloring is also independent, then it is called a harmo-
nious coloring.. A coloring is minimal if, when two color classes are
combined, we no longer have a coloring of the given type. The upper
harmonious chromatic number, H(G), is dcfined as the maximum
cardinality of a minimal harmonious coloring of a graph G, while the
upper line-distinguishing chromatic number, H’(G), is defined as the
maximum cardinality of a minimal line-distinguishing coloring of a
graph G. For any graph G of maximum degree A(G), H'(G) > A(G)
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~and H(G) > A(G)+1. We characterize connected graphs G that con-
tain neither a triangle nor a 5-cycle for which H(G) = A(G)+1. We
show that a triangle-free connected graph G satisfies H'(G) = A(G)
if and only if G is a star K a(c). A partial characterization of con-
nected graphs G for which H’(G) = A(G) is obtained.

Keywords. Upper harmonious chromatic number, upper line-distinguishing
chromatic number

1 Introduction

Graph theory terminology not presented here may be found in [1]. Let
G = (V,E) be a graph with n vertices. If A C V and B C V, we will
use (A, B) to denote the number of edges between the sets A and B. Let
S C V. The set S is independent if for distinct u,v» € S, uv € E, while S
is a packing if every two vertices in S are at distance at least 3 apart in G.
The subgraph induced by S is denoted by (S). The distance d(v, S) from a
vertex v to the set S is defined as the minimum distance from v to a vertex
of S. If v € V, then the open neighborhood of vis N(v) = {u € V |uv € E}
and the closed neighborhood of v is N[v] = {v} U N(v).

A k-coloring of G is a partition IT of V into k sets, Vi, Va, ..., Vi. A proper
k-coloring is a k-coloring such that each V; is independent. A k-coloring is
a complete coloring if for every 4,5, 1 <i<j <k, q(V;,V;) > 1.

The chromatic number x(G) is defined as min{k | G has a proper k-
coloring}, while the achromatic number ¥(G) is defined as max{k | G has
a proper complete k-coloring}.

A k-line-distinguishing coloring of G is a partition of V into k sets
Vi,..., Vi such that q({(V;)) < 1 for i = 1,...,k and ¢(V;,V;) < 1 for
1<i<j<k

If a line-distinguishing coloring is also a proper coloring, then it is called
a harmonious coloring. In other words, the partition {V;,V5,...,Vi} is a
harmonious coloring of G if and only if ¢((V;)) =0 for i = 1,...,k and
dViVj) <1, 1<i<j<k.

The line-distinguishing coloring number h'(G) is defined as min{k | G
has a k-line-distinguishing coloring}, while the harmonious coloring number
h(G) is defined as min{k | G has a k-harmonious coloring}.

The achromatic number was first introduced and studied by Harary,
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Hedetniemi and Prins [6]. The line-distinguishing number, k'(G), was in-
troduced independently by Frank, Harary and Plantholt [7] and Hopcroft
and Krishnamoorthy [8] even though the latter authors called it the har-
monious coloring number. Harmonious colorings were introduced by Miller
and Pritikin in [9] and further investigated in [4] and [5].

Consider a partition I1 = {V;, Va,..., Vi} of V according to some speci-
fied properties P and . By definition this means that (V;) has property P
for i =1,...,k and the bipartite graph (V;, V;) has property Q for distinct
1,7 € {1,...,k}. The partition is minimal with respect to properties P and
Q if any partition I1' obtained from I by combining color classes V; and V;
no longer satisfies properties P and Q. The smallest and largest cardinality
of minimal partitions with respect to properties P and @ give rise to two
parameters associated with a graph. For example, the chromatic and achro-
matic numbers are, respectively, the minimum and maximum cardinality
of a minimal partition where the property P specifics that the induced
subgraph of each set in the partition contains no edge.

Let P be the property “contains no edges” and @ be the property “con-
tains at most one edge”. If I1 = {Vi,...,Vi} is a partition according to
the properties 7 and @, then Il is a harmonious coloring of G. If we
change property P to “contains at most one edge”, then Il becomes a line-
distinguishing coloring of G. Before proceeding further, we statc a charac-
terization of minimal harmonious and minimal linc-distinguishing colorings
of a graph, as given in [2].

Lemma 1 (Chen et al. [2]) A harmonious coloring {V,..., Vi} is minimal
if and only for distinct 4,5 € {1,...,k}
(1) q(V,V;) =1, or

(2) if V;UV; is independent, there is ant € {1,...,k} — {i,7} such that

Lemma 2 (Chen et al. [2]) A line-distinguishing coloring {V1,..., Vi} is
minimal if and only for distinct 1,5 € {1,...,k}

(1) ¢((Vz U VJ)) >1, or

(2) if q(Vi U V;)) < 1, there is an T € {1,...,k} — {4,5} such that
q(Vi,Ve) =1 and q(V;,V;) = 1.
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The upper harmonious chromatic number, H(G), is defined as the max-
imum cardinality of a minimal harmonious coloring of a graph G, while
the upper line-distinguishing chromatic number, H'(G), is defined as the
maximum cardinality of a minimal line-distinguishing coloring of a graph
G. These parameters were first introduced and studied in [2]. In particular,
it was shown that the decision problems corresponding to the computation
of H(G) and H’(G) for a gencral graph G are NP-complete, that the two
parameters are incomparable, even [or trees, and, lastly, H(P,) and H'(P,)
were determined for the path P, of order =.

For any graph G of maximum degree A(G), H'(G) > A(G) and H(G) >
A(G) + 1. In this paper, we characterize connected graphs G that contain
neither a triangle nor a 5-cycle for which H(G) = A(G)+ 1. We show that
a triangle-free connected graph G satisfies H'(G) = A(G) il and only if G is
a star Ky a(c)- A partial characterization of connected graphs ¢ for which
H'(G) = A(G) is obtained.

2 - Graphs G satisfying H(G) = A(G) + 1

For any graph G, H(G) > A(G) + 1. Our aim in this section is to char-
acterize graphs G that have neither a triangle nor a 5-cycle for which
H(G) = A(G) +1. We begin with two lemmas.

Lemma 3 If F is an induced subgraph of a greph G, then H(G) > H(F).

Proof. Let C be a minimal harmonious coloring of I that uscs I/([)
colors. Then, C satisfies conditions (1) and (2) of Lemma 1. We show that
C can be extended to a minimal harmonious coloring of G. We consider
cach vertex v of V(G) — V(F) in turn. If v can be added to any one of
the existing color classes so that the resulting coloring remains harmonious,
then we add v to that color class; otherwise, we leave v uncolored. Once
all vertices of V(G) — V(F) have been considered in turn, we give to every
remaining uncolored vertex, if any, a different color. No new color class
can be combined with any original color class by construction. If no new
colors are used, we have a minimal harmonious coloring of G that uscs all
the original H(f") colors, and so H(G) > H(['). On the other hand, if
new colors are used, then we simply combine pairs of the new color classes
as long as the resulting coloring remains harmonious. When we reach a
point where no further pairs of new color classes can be combined (without
destroying the harmonious coloring), then the coloring must be minimal.
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Hence we have a minimal harmonious coloring of G that uses the original
colors and at least one new color, and so H(G) > H(F)+1.0

Lemma 4 Let G be a connecled graph with mazimum degree A and lel x
be a vertez of degree A. If H(G) = A + 1, then every vertex of G is within
distance 2 from z.

Proof. Suppose there exists a vertex z at distance 3 from z in G. Let
z,u,v, z be a z-z path and let I be the subgraph of G induced by N[z]U
{v,2}. We now construct a minimal harmonious coloring of F that uses
at least A + 2 colors. The vertices in N[z] require A + 1 colors in any
harmonious coloring of F'. Let = and 2 be colored with color 1, the A
vertices in N(z) with the colors 2,...,A + 1, and let v be colored with
the color A + 2. Let WV}, V,,..., Va2 denote the color classes containing
the vertices of colors 1,2,...,A + 2, respectively. Then, no two of the
color classes Vi, V3,...,Va42 can be combined since the vertex in cach of
Va, ..., Va42 is adjacent to a vertex in Vi. Hence, by Lemma 1, there exists
a minimal harmonious coloring of F* that uses at lecast A + 2 colors, and
so H(F) > A + 2. Hence, by Lemma 3, H(G) > A + 2, a contradiction.
Hence, every vertex of G is within distance 2 from z. O

Recall that a packing in G is a set of vertices that are pairwisc at distance
at least 3 apart in G. For disjoint nonempty subsets A = {ay,...,a¢} and
B of V(@G), if there exists a partition By,...,Bs of B such that for all
i=1,...,¢ {a;}UB; is a packing in G and for all 4,7, 1 <i < j < ¢, there
is at most one edge between {e;} U B; and {a;} U B;, then we say that A is
specially matched to B. Morcover, if |B;| =1 for i = 1,...,¢ then we say
that A is specially 1-malched to B.

Theorem 5 Let G = (V, E) be a connected graph that has neither a tri-
angle nor a 5-cycle and lel = be a vertex of mazimum degree A. For a
packing DCV — Nfz] in G, let Rp = {v eV — N[z] - D | d(v, D) = 2},
Sp =N(z)NN(D) and Tp = N(z) —Sp. Then H(G) = A+1 if and only

if

(1) ewery vertez of G is within distance 2 fromn z, and
(2) for every packing DCV — N(z] in G, T, # 0 and if Ry #0, then

(a) Tp cannot be specially 1-matched lo a subsel of Rp, and

(b) for all nonempty subsets S’ of Sp and all subsets R’ of V—N|z]-
D such that |S'| < |R'| either S’ cannot be specially matched to

169



R' or Tp — N(R') cannot be specially 1-malched Lo a subset of
Rp -~ R

Proof. Suppose, first, that H(G) = A + 1. Then Condition (1) holds by
Lemma 4. Let D C V — N|z] be a packing in G.

Claim 1 If Tp = 0, then H(G) > A+ 2.

Proof. Since Tp = 0, Sp = N(z). Let F be the subgraph of G induced
by N[z] U D. We now construct a minimal harmonious coloring of I that
uses at least A + 2 colors. The vertices in N{z] require A +1 colors in any
harmonious coloring of F. Let z be colored with color 1, the A vertices
in N(z) with the colors 2,...,A + 1, and each vertex in D with the color
A+2. Let V,Va,..., Va+2 denote the color classcs containing the vertices
of colors 1,2,...,A + 2, respectively. Since V5 contains a vertex which is
adjacent to a vertex in V; and to a vertex in Va .o, the color classes V) and
Va+2 cannot be combined. Furthermore, by Lemma 1, Vo2 cannot be
combined with any of the color classes V3, ..., Va4 since, by assumption,
the vertex in each such color class is a vertex of N(z) which is adjacent to
some vertex of D. It follows that no two of the color classes V1, Vs, ..., Va2
can be combined. Hence, by Lemma. 1, there exists a minimal harmonious
coloring of F that uses at least A + 2 colors, and so [/{(F) > A +2. lence,
by Lemma 3, H(G) > A+2.0

By Claim 1, Tp # 0. Assume then that Rp # 0.

Claim 2 IfTp can be specially 1-matched to a subset of Rp, then IH(G) >
A+2.

Proof. Suppose Tp can be specially 1-matched to a subset ), of Rp. Let
F be the subgraph of G induced by N[z]U D U R},. We now construct
a minimal harmonious coloring of F' that uscs at least A + 2 colors. Let
the vertices in N[z] U D be colored as in the proof of Claim 1. We now
extend the colors of Tp to R}, by coloring cach vertex in 12}, with the same
color used to color the corresponding vertex of Ty, with which it is specially
1-matched. Let Vi, Vs, ..., Va2 denote the color classcs containing the
vertices of colors 1,2, ..., A + 2, respectively. The color class Va1 cannot
be combined with any of the color classes that contain a vertex ol S by
Property 1 of Lemma 1. Since each vertex in R, is at distance 2 from a
vertex of D, the color class Va2 cannot be combined with any of the color
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classes that contain a vertex of Tp by Property 2 of Lemma 1 (since each
such color class also contains a vertex of Rp). Hence, since G is triangle-
free, there is a minimal harmonious coloring of F’ with at least A+ 2 colors,
and so by Lemma 3, H(G) > H(FF) > A+2.0

By Claim 2, Tp cannot be specially 1-matched to a subset of Rp, i.e.,
Condition 2(a) holds.

Claim 3 If there is a nonemply subset S’ of S and a subset R' of V —
Nlz] — D such that |S'| < |R'|, S’ can be specially matched to R’ and
Tp — N(R') can be specially 1-malched to some subset of Rp — R’, then
H(G)>A+2.

Proof. Tori =1,...,|5, let {s;} U R; be the spccial matching of S’ to
R, while for j =1,...,|Tp — N(R')|, let {¢;,7;} be the special 1-matching
of Tp — N(R') to some subset R}, of Rp — R'. Let I be the subgraph of G
induced by N[z]JU DU R’ U RR},. We now construct a minimal harmonious
coloring of I that uses at least A+ 2 colors. Let the vertices in N[z]U D be
colored as in the proof of Claim 1. Color each vertex of ?; with the same
color that s; (¢ = 1,...,|S’|) received and color r; with the same color
that t; ( =1,...,|Tp — N(R’)|) received. Let V, Vs, ..., Va2 denote the
color classes containing the vertices of colors 1,2,...,A + 2, respectively.
Then by the dcfinition of a spccial matching and since ¢; ¢ N(R') for
j=1,...,|Tp — N(R')| and since G has neither a triangle nor a 5-cycle, it
follows that there is at most one edge between any two of the color classes
Viand V;, 1 < i< j < A+1. (Note that if we relax the condition that
G has neither a triangle nor a 5-cycle, then it is possible, for example, for
s1 to be adjacent to ¢; and for a vertex of R; to be adjacent to ry, thereby
producing at least two edges betwecn the color class {s;}UR; and the color
class {¢;,71}.)

The color class Va2 cannot be combined with any of the color classes
that contain a vertex of Sp by Property 1 of Lemma 1. Furthermore, Va2
cannot be combined with any of the color classes in N(R') N N(z), since
every vertex in N(R') N N(z) is adjacent to a vertex in a color class in R’
which also contains a vertex adjacent to some vertex in V.. Since each
vertex in Rp — R’ is at distance 2 from a vertex of D, the color class Va2
cannot be combined with any of the color classcs that contain a vertex of
Tp — N(R') by Property 2 of Lemma 1 (since each such color class also
contains a vertex of Rp — I'). Ilence, there is a minimal harmonious
coloring of F' with at least A + 2 colors, and so by Lemma 3, JI(G) >
HF)>zA+2.0O
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By Claim 3, Condition 2(b) holds. This proves the nccessity.

To prove the sufficiency, suppose that Conditions (1) and (2) hold but
H(G) > A +2. Then there is a minimal harmonious coloring C of G using
the colors 1,2,...,¢, where ¢ > A 4+ 2. Let V1, V5,,...,V, denote the color
classes containing the vertices of colors 1,2,...,¢, respectively. We may
assume that the A vertices in N[z] are colored with the colors 2,...,A+1
and that z is colored with color 1. By Condition (1), each vertex of V — N|z]
is adjacent to some vertex of N(z). Hence since G has ncither a triangle
nor a 5-cycle, the sets N(z) and V — N{z] are both independent. We now
consider the set Va2 which is contained in V — N[z]. Let ) = Va2, and
note that D is a packing of G.

Since C is a minimal harmonious coloring of G, the color class Va2
cannot be combined with any color class that contains a vertex of Tpp. Let
u € Tp and let C, be the color class of C that contains %. Since there is no
edge between Va2 and Tp, and since the set V — N|[z] is independent, the
set C, U Va o is independent. Hence, by Property 2 of Lemma 1, we must
have a color class, B, say, which contains a vertex adjacent to a vertex of
C, and a vertex adjacent to a vertex of D. Either B, C N(z), in which case
|Bu| =1 and C, also contains a vertex from R2j (since G is triangle-frece),
or By € N(z), in which case [ByNN(z)| =1 and B,N(V - N[z] - D) # 0.
If B, € N(z), wesay that u is a vertex of T, of type-1, while il 3, C N(z),
we say that u is of type-2. If Tpp has at lcast one vertex of type-1, then let
{ui;...,ue} denote the vertices of Tp of type-1. Let S’ = (Uf_By,,) N Sp
and let R' = (Uf_;B,;)—S’. Then, 8 C Spand ¥ CV — N[z]- D
such that |S’| < |R| and S’ can be spccially matched to R'. Supposc
Tp — N(R') # 0. Then each vertex of Tp — N(R') is of type-2. For cach
vertex u € Tp — N(R'), let r, € C, N(V — N|z]) and let R = U{r,} over
all vertices u € Tp — N(R'). Then R C Rp — R/, and Tp — N(R') can
be specially 1-matched to R. Thus we have established the existence of a
subset S’ of Sp and a subset ¥’ of V — N[z]— D such that |S’| < |I¥'|, S’ can
be specially matched to R’ and Tp — N(R') can be specially 1-matched to
a subset of Rp — I¥’. This, however, contradicts Condition (2). We deduce,
therefore, that H{(G)=A+1.0

Note that if G is a graph in the statement of Theorem 5 that satisfies
H(G) = A + 1, then G is in [act bipartite. Following the notation intro-
duced in the statement of Theorem 5, we have the [ollowing immediate
consequence of Theorem 5.

Corollary 6 Let G = (V, E) be a connecled graph that has neither a iri-
angle nor a 5-cycle and let = be a vertex of mazimum degree A. Suppose
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every vertex of G is wilhin distance 2 from z. Then, H(G) > A +1 if and
only if there exists a packing D C V — Nlz] in G such that either Tp = 0
or Rp # 0 and

(1) Tp can be specially 1-matched to a subset of Ry or

(2) there exists a nonemply subset S’ of Sp and a subset ' of V —
Nlz] - D such that |S’}| < |R'|, S’ can be specially malched to V', and
. Tp — N(R') can be specially 1-matched to a subset of Rp — IY'.

As a consequence of Theorem 5 when the graph G is a tree, we have the
following characterization of trees T for which H(T) = A(T) + 1 due to
Domke and Jonck [3].

Theorem 7 (Domke and Jonck [3]) Let T = (V, E) be a tree of mazimum
degree A and let z be a verlex of degree A where [ C N(z) is the sel of all
leaves adjacent to z and |L| = €. Then, IHI(T) = A+ 1 if and only if the
Jollowing three condilions hold:

(1) V — Niz] is an independent sel,
(2) ¢>1, and
(3) cvery set S C N(z) — L where |S| =k has |[N(S)| < k+¢.

Proof. Suppose H(T) = A+1. Then Conditions (1) and (2) of Theorem 5
hold. Since T is a tree, Condition (1) of Theorem 5 implics that no two
vertices of V — N|[z] are adjacent, i.e., Condition (1) of Theorem 7 holds. Let
D be a set of vertices formed by taking for each vertex in N(z)— L, a vertex
in V — N|[z] adjacent to it. Then D is a packing for which T, = L, and by
Condition (2) of Thecorem 5, Tp # 0, i.e., Condition (2) of Theorem 7 holds.
To show that Condition (3) of Theorem 7 holds, suppose to the contrary
that there is a subset S C N(z) — L with [S|=k and IN(S)| 2 k+ £+ 1.
Let D be the packing formed by taking for each vertex in N(z) — L, a
vertex in V — N|[x] adjacent to it. Then, Rp 2 N(S) — D — {z}, |Rp| > ¢
and Tp = L. Thus T can be specially 1-matched to a subsct of 12y, and
so, by Corollary 6, H(T) > A + 1, a contradiction. Thus, Condition (3) of
Theorem 7 holds.

Conversely, suppose Conditions (1), (2) and (3) of Theorem 7 hold. Then
Condition (1) of Theorem 5 holds. 1t remains to show that Condition (2) of
Theorem 5 holds. Let D C V — N[z] be a packing in G for which RRp, # 0.
Note that L C Tp, and so, by Condition (2) of Theorem 7, |Tp| > € > 1.
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Let S = N(z)NN(D). Then N(S)—-D—{z} = Rp, and so, since |D| > S|,
IN(S)| =2 |S| + |Rp| + 1. If Tp can be specially 1-matched to a subsct of
Rp, then |Rp| 2 |Tp| 2 ¢, and so [N(S)| > |S| + €+ 1, which contradicts
Condition (2) of Theorem 7. Hence, T cannot be specially 1-matched to a
subset of Rp. Suppose that there are nonempty subsets S’ of Sp and I’ of
V — N[z] — D with |S’| < |R’| such that S’ can be spccially matched to R’
and Tp — N(R’) can be specially 1-matched to a subset of Rp — R’. Note
that L C Tp — N(R'). Since L is specially 1-matched to some subset of

— R, |Rp| 2> ¢ and so once again [N(S)| > |S|+ £€+1, a contradiction.
Thus, Condition (2) of Theorem 5 holds, and H(T) = A+ 1.0

Our next result provides a simpler characterization of trees T for which
H(T) = A(T) +1 than that presented in Theorem 7.

Theorem 8 Let T = (V, E) be a lreec of order n and mazimum degree A
and let = be a vertex of degree A. Then, II{T) = A + 1 if and only if the
Sfollowing two condilions hold:

(1) V — Niz] is an independent set, and

(2) n < 2A.

Proof. Suppose /(T) = A+ 1. Then Conditions (1) and (2) of Theorem 5
hold. Since T is a tree, Condition (1) of Theorem 5 implics that no two
vertices of V — N|z] are adjacent, i.c., Condition (1) of Theorem 8 holds.
Suppose that n > 2A + 1. Then, |V — N[z]| > A. Let D be a maximum
packing in G consisting of vertices from V — N{z]. Using the notation
introduced in Theorem 5, the sct Tp is nonempty by Condition (2) of
Theorem 5. Since T is a tree, it follows from our choice of the sct D that
|Sp| = |D| and that no vertex of T, is adjacent to any vertex of V — N|z].
In particular, each vertex of Tp is a leafin T and cach vertex of V—N{z]-D
is adjacent to a vertex of Sp. Thus, since |D| + |Rp| = |V — N[z]| > A,
[Rp| 2 A —|D| = A - |Sp| = |Tp|.- The sct Tp can be specially 1-
matched to a subset of Rp, contradicting Condition (2) of Theorem 5.
Hence, n < 2A, i.e., Condition (2) of Theorem 8 holds.

To prove the sufficiency, supposc the two conditions of Theorem 8 hold.
We use the notation of Theorem 7. Clearly, Condition (1) of Theorem 7
holds. If £ =0, then |V — N[z]| > A, so that n > 2A + 1, a contradiction.
Thus, £ > 1 and Condition (2) of Theorem 7 holds. Suppose there exists a
set § C N(x)—L with [N(S)| > |S|+£€+1. Note that [IN(S)N(V —N|z])| >
S|+ € and |V — N[z] - N(S)| > [N(z) = S - L| = A —|S| — €. Thus,
[V-Niz]| = (IS|+€)+(A=|S|-£) = A, and so n > 2A+1, a contradiction.
Hence Condition (3) of Theorem 7 holds. By Theorem 7, H(T) = A+1.0

174




3 ' Graphs G satisfying H'(G) = A(G)

In any line-distinguishing coloring of a graph, no vertex is adjacent to two
vertices in the same color class, and so the ncighbors of each vertex in
a graph require distinct colors. Hence for any graph G, H'(G) > A(G).
Our aim in this section is twofold: IFirst to characterize triangle-frec con-
nected graphs G for which H'(G) = A(G) and, sccondly, to show that a
characterization of connected graphs G for which IH’'(G) = A(G) appcars
difficult to obtain. Using an identical argument to that used in the proof
of Lemma 3 (but with “harmonious” replaced by “linc-distinguishing” and
with “Lemma 1” replaced by “Lemma 2”), we have the following lemma.

Lemma 9 If IF is an induced subgraph of a graph G, then II'(G) > H'(F).

We begin with the following lermma.

Lemma 10 Let G be a connecled graph with mazimum degree A and let =
be a vertex of degree A. If H'(G) = A, then

(1) (N(z)) contains at least one isolated vertex;
(2) each isolated vertex in (N(x)) is an end-verter of G;
(8) every vertex of G is within dislance 2 from x.

Proof. We may assume that the A vertices in N(z) are colored with the
colors 1,2,...,A. Since H'(G) = A, we may assume z is colored with
color 1. But then the vertex in N(x) that is colored 1 must be isolated in
(N(z)). This proves (1).

Let y be a vertex in N(z) that is isolated in (N(z)). Supposc degy > 2.
Then, y is adjacent to a vertex w € V(G)— N|z]. Let I be the subgraph of
G induced by N[z]U {w}. We now construct a minimal linc-distinguishing
coloring of F that uses at least A 4+ 1 colors. Let z and y be colored
with color 1, the A — 1 vertices in N(z) — {y} with colors 2,..., A, and w
with color A + 1. Let Vi, Vo, ..., Va4 denote the color classes containing
the vertices of colors 1,2,...,A + 1, respectively. Then, no two of the
color classes Vi, Vs, ..., Va1 can be combined since the vertex in cach of
Va,..., Va4 is adjacent to a vertex in V; and since q({(V})) = 1. lHence, by
Lemma 2, there exists a minimal line-distinguishing coloring of I that uscs
A 41 colors, and so [I'(FF) > A + 1. Hence, by Lemma 9, 11'(G) > A +1,
a contradiction. Ilence, degy = 1. This proves (2).
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Suppose there exists a vertex z at distance 3 from z. Let z,u,v,2z be a
z-z path. Let L be the subgraph of G induced by N[z]U {v,2}. We now
construct a minimal line-distinguishing coloring of . that uscs at lcast A+1
colors. Let z be colored with color 1, the A vertices in N(z) with the colors
1,2,...,A where u is colored with color A, the vertex v with color A + 1
and z with color 1. Let V}, Vo, ..., Va4 denote the color classes containing
the vertices of colors 1,2,..., A+1, respectively. Then, no two of the color
classes V1, V5, ..., Va4 can be combined. Ience, by Lemma 2, there exists
a minimal line-distinguishing coloring of L that uses at least A + 1 colors,
andso H'(L) > A+1. Hence, by Lemma 9, H’(G) > A+1, a contradiction.
Hence, every vertex of G is within distance 2 from xz. This proves (3). O

As an immediate consequence of Lemma 10 (cf. Propertics (1) and (2)),
we have the following results.

Corollary 11 et G be o connecled graph thal conlains a verlex of rnai-
mum degree A thal belongs Lo no lriangle. Then, I'(C) = A if and only if
G is a star Ky a.

The following result provides a characterization of triangle-free connected
graphs G for which H'(G) = A(G).

Corollary 12 Let G be a triangle-free connected graph with mazimum de-
gree A. Then, H'(G) = A if and only if G is a star K) a.

If v is a vertex of a graph G and W C V(G), then we let degyy, v denote the
number of vertices in W that are adjacent to ». In particular, if W = V(G),
then degy, v = degw.

Theorem 13 Let G = (V, E) be a connected graph of order n with maxi-
mum degree A and lel z be a vertez of degree A. Let W =V — N{z] # 0 and
let S = {v € N(z) | there ezists a path of length 2 from v to a vertez of W}.
Let A={ve N(z) - S|degyv=1}, B={ve N()—S|degy v > 2},
C={veS|dgyv>1}, E={veS-C|degp,cv = 1}, and
D=N(z)-(AVBUCULE). Let |Aj =a, |Bi=b, |C| =c and |D| = d.
Suppose degw =1 for every w € W. Then, 11'(C) = A if and only if the
Sollowing three conditions hold:

(1) (N(z)) conlains al least one isolated verler;
(2) cach isolated vertex in (N(x)) is an end-verlez of G;
B)b+c=0orn<A-14a+[3/2] +c+d.
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Proof. We first note that the set AU B is an independent set and there is
no edge between AU B and C.

Suppose first that /{’(G) = A. Then, by Lemma 10, conditions (1) and
(2) are both satisfied. In particular, Condition (2) implics that cach vertex
of AU B is adjacent to some vertex of S. It remains only to verily that
condition (3) is satisfied. Suppose, to the contrary, that b+ ¢ > 1 and
n > A+4a+ [3b/2] + ¢+ d. By Condition (1), z is adjacent to at least
one end-vertex y, say, and so d > 1. Consider now a line-distinguishing
coloring of G in which z and y are both colored with color 1 and the A —1
vertices in N(z) — {y} with colors 2,...,A. We may assume the vertices
in D — {y}, if any, are colored with colors 2,...,d.

Suppose b > 1. Let B = {vy,...,v}. Foreach i = 1,...,b, suppose v;
is colored with color 4’. For each vertex v; of B, let w; € N(v;) N W and
color w; with the color A + 1. For each i = 1,...,|b/2], color one vertex
of (W — {wa:}) N N(vy;) with the color (2 — 1)’. If b is odd, then color
one vertex of (W — {w}) N N(vp) with the color ¥'. If ¢ > 1, then for each
v € C, color exactly one vertex of N(v)NW with the color A+1. Ifa > 1,
then let k be any color used to color a vertex in 3U C and color each of
the a vertices in W N N(A) with the color k.

Let Wy = N(A)NW, Wi = N(B)NW and W = N(C)NW. Then,
Wi, Wg and W, are disjoint sets and W = W, U Wj; U Wg. Note that
|Wa| = a. We have now colored all a vertices of Wy, [3b/2] vertices of
Wp and c vertices of We. By assumption, at least d — 1 vertices of W
have yet to be colored and these vertices are contained in Wy UWe. Color
d — 1 of these vertices of W (that have not yet been colored) with the
colors 2,...,d. Let V1, V,,..., Va1 denote the color classes containing the
vertices of colors 1,2,..., A + 1, respectively.

We claim that no two of the color classes Vi, Va,...,Vas can be com-
bined. No two of the color classes Vi, Va,..., Va can be combined since
there is at least one vertex in cach of Va,..., VA which is adjacent to a
vertex in V) and since ¢({V1)) = 1. Ilence we need only show that Va
cannot be combined with any of the color classes Vi, V5, ..., Va.

Since each vertex in BU C is adjacent to a vertex in V; and a vertex in
Va1, the classes V) and Va1 cannot be combined.

If d > 2, then for cach j with 2 < 7 < d, there is a vertex in W thal is
colored with color 3. But such a vertex is adjacent to a vertex of B U C.
Since each vertex of B U C is adjacent to a vertex colored A + 1, there is
therefore a vertex of B U C which is adjacent to a vertex colored j and a
vertex colored A + 1. Thus, Va4 cannot be combined with any color class
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containing a vertex of D.

Suppose ¢ > 1. Since each vertex of C is adjacent to at least one other
vertex of C, and since each vertex of C is adjacent to a vertex colored A+1,
it follows that Va4 cannot be combined with any color class containing a
vertex of C.

Suppose |E| > 1. Since each vertex of [£ is adjacent Lo at least one vertex
of BUC, and since each vertex of BUC is adjacent Lo a vertex colored A+1,
it follows that Va,; cannot be combined with any color class conLaining a
vertex of E.

Since there is an edge betwecen the color class Vi (where recall that k is
the color used to color the vertices of W) and each color class containing a
vertex of A, and between the color class Vi and Va1, the color class Va4
cannot be combined with any color class containing a vertex of A.

Suppose i € {1,...,[b/2]}. Since vy is adjacent Lo a vertex in Vigi_yy
and a vertex in Va1, we cannot combine the classes Va,y and Vigi_yy.
Moreover, since there is an edge between the color classes Vig;_ 1y and Vig;y
and an edge between the color classes Vig;_ 1y and Va1, we cannot. combine
the classes Va1 and Vig;).. Finally, if b is odd, then since q((Vipy)) = 1
and since therc is an edge between the color classes Vi) and Vaya, we
cannot combine the classes Vip)r and Va41. It follows that Va, cannot be
combined with any color class containing a vertex of B.

Hence, no two of the color classes Vi, V5,...,Va4+1 can be combined.
Thus, by Lemma 2, there exists a minimal line-distinguishing coloring of G
that uses at least A 4 1 colors, a contradiction. Hence condition (3) must
be satisfied. This proves the necessity.

To prove the the sufficicney, suppose that the three conditions (1), (2)
and (3) are all satisfied but H’(G) > A + 1. Then there is a minimal line-
distinguishing coloring of G using the colors 1,2,...,r, where r 2 A 4 1.
Let V3, Vs, ..., V.. denote the color classes containing Lthe vertices of colors
1,2,...,r, respectively. We may assume that the A vertices in N(z) arc
colored with the colors 1,2,...,A. By Condition (1), = is adjacent to at
least one end-vertex y, say. We may assume that y is colored with color 1.

Suppose z is colored with color d where d ¢ {1,2,...,A}. Since no
vertex at distance 2 from z can be colored with the same color :s z, = is
therefore the only vertex colored d. But then we can recolor 3, with the
color d. Ience, we may assume that z and y arc colored with vhe same
color, namely color 1.
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Consider now the color class V,. By assumption, » > A + 1, and so
V., C W. Since W is an independent set, it follows that V; is a packing in
G. Suppose b+ ¢ = 0. Then, |W| = a and at Icast one of the colors, say
color t, used to color the vertices of A is not used to color any vertex of
W. But then we can combine the color classes V; and Vi, a contradiction.
Hence, b+ ¢ > 1. Thus, by condition (3),n <A —-1+4+a+ [3b/2] +c+d.

We proceed further by introducing some additional notation. Let Ly =
{v € B | v has a neighbor colored 7} and let M = B — Ly. Hence for
each vertex v € Lp, V,. contains a vertex in N(v) N W. Let |Lg| = ¢ and
let |Mpg| = mp. Then, b = €, + ms. Define Le, Me, €. and m. in a similar
way. Then, c= €. +m,. Let L=LpU Lc and M = MU Mc.

Let B denote the number of vertices in N(L) N W that belong to a color
class that contains a vertex of D — {y}.

Claim4 8> d-1.

Proof. Let ¢t be a color used Lo color a vertex of D — {y}. Since we cannot
combine the color classes V. and V, it lollows that there must exist a vertex
v € BUC that has a neighbor in W colored r and a ncighbor in W colored
t. In particular, v € L. Hence each of the d — 1 colors used to color the
vertices in D — {y} is used to color a vertex in N(L.) N W. The result
follows. O

Let Ly = {v € Lp | no vertex in N(v) N W belongs to a color class that
contains a vertex of Ly}, and let Lo = L — L. Let |I] = ¢, and so
|Lo| = &+ €. — &1.

Claim 5 There are al least €) verlices in N(L2)NW that are colored with
the same color as a vertez in L.

Proof. Let v € L, and supposc v is colored with color k. Since we cannot
combine the color classes Vi and V,, it follows that there must exist a
vertex u € B U C that has a neighbor in W colored 7 and a necighbor »’ in
W colored k. Then, u € Lo and so »' € N(L2) N W. ITlence for cach vertex
v € Ly, there exists a vertex in N(Lg) N W that belongs to Lhe color class
that contains v. The result follows. O

Let v denote the number of vertices in N{L) N W that belong to Vi or
to a color class that contains a vertex of Lg.
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Claim 6 v > [-:%Q-I + £..

Proof. By definition, each vertex v € L has a ncighbor (in W) colored r,
and so there are exactly €,-+¢; vertices in N(LYNW that belong to Vi, Tlence
if £, > [€,/2], then by Claim 5, v > (€p+€;) + € > [3€,/2] + €;. Thercfore
we may assume that ¢, < [¢,/2] -1, for otherwisc the desired result follows.
By definition, each vertex u € Lg — L; has a ncighbor (in W) colored r
and a neighbor (in W) colored with a color used to color a vertex of Lg.
Hence there are at least £, — ¢; vertices in N(Lg — L;) N W that belong to
a color class that contains a vertex of Lp. Thus, v > (& +€.)+ (€, — &) >
20, + €, — [35/2] + 1=+ + [e,,/2j +12> [3&,/2] +¢.0

By Claims 4 and 6, we have IN(L)NW| > B+v>d—-1+[36/2] +¢..
Since each vertex of My has at least two neighbors in W, IN(Mp)NnW| >
2my, > [3my,/2]. Since each vertex of M¢ has at least one neighbor in W,
IN(Mc) N W] > m.. Hence, IN(M)NW| = |N(Mp)nW|+ |N(Mc)N
W| > [3ms/2] + mc. Thus, |W| = |[Wa|+ IN(L)nW|+ |IN(M)n W] >
a+(d—1+ [36/2] + &) + ([3mp/2] + mc) > a+ [3b/2] +c+d — 1.
Hence, n > A +a+ [3b/2] + ¢+ d, contradicting condition (3). We deduce,
therefore, that H'(G) = A. O

We have yet to characterize all connected graphs G for which H'(G) =
A(G). Theorem 13 illustrates that such a characterization appears difficult
to obtain.
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