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Abstract: Let v be some graph parameter and let G be a class of graphs
for which v can be computed in polynomial time. In this situation it is often
possible to devise a strategy to decide in polynomial time whether » has a
unique realization for some graph in G. We first give an informal descrip-
‘tion of the conditions that allow one to devise such a strategy, and then
we demonstrate our approach for three well-known graph parameters: the
domination number, the independence number, and the chromatic number.
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1 Introduction

Let v be some graph parameter. As typical choices for v we will consider
well-known graph parameters such as the domination number -y, the inde-
pendence number a, or the chromatic number x (for notation and definitions
see e.g. [14]). In these examples, v corresponds to the minimum or maxi-
mum cardinality of special subsets of the vertex set or to a certain partition
of the vertex set, i.e. ¥ measures some property either of a set of vertices
or of a partition of the vertices of a graph.

We say that v has a unique realization in G = (V, E) if G has only one
set, or partition, which satisfies the property measured by ». In such a case,
we say that this unique set is a unique v-set of G. For example, v has a
unique realization in some graph G if G has a unique minimum dominating
set, that is, a unique ~-set. Similarly, @ has a unique realization in G if
G has a unique maximum independent set (a-set), and x has a unique
realization in G if G has a unique partition into x independent sets.

Usually, the problem of characterizing graphs for which some parameter
v has a unique realization is considered separately from the algorithmic
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problem of determining the value of v. There are several characterizations
in the literature of classes of graphs for which some parameter v has a
unique realization (e.g. [1, 6, 7, 8, 9, 10, 12, 13, 16, 21, 22] and [23]).
Sometimes these characterizations lead to polynomial time algorithms for
deciding if a graph in this class has a unique v-realization. For example,
in [10), Gunther, Hartnell, Markus and Rall characterize trees having a
unique -set. A corollary of this characterization is that there is a linear
time algorithm for deciding if an arbitrary tree has a unique y-realization.
All one needs to do is to use any existing O(n)-time algorithm for finding
a 7-set (cf. [3]) D in a tree T, and then, check to see if every vertex in D
has at least two private neighbours. If the answer is ‘yes’, then the tree T’
has a unique y-set; otherwise the tree T has at least one other y-set.

Often, these characterizations do not immediately lead to polynomial
time algorithms for deciding if an arbitrary graph in one of these classes
has a unique v-realization. In many of these cases, however, it is possible
to determine the value of v in polynomial time, and, as we shall show, it is
also possible to decide whether a graph has a unique v-realization.

Let us assume now that there is an (easy-to-prove) characterization of the
graphs for which v has a unique realization that uses a property which
can be checked by evaluating v for different graphs that arise from a given
graph by some local changes. Let G be a class of graphs. If it is possible to
determine v in polynomial time for all graphs that arise from a graph in G by
the above-mentioned local changes and if we can check the above-mentioned
property by looking only at a polynomial number of graphs, then we can
decide - again in polynomial time - using the characterization whether v
has a unique realization for some graph in G. We will now demonstrate this
informally described strategy in the next section for v, o and x. It is clear
that our approach works for several other graph parameters.

2 Examples of the strategy

We begin with characterizations of graphs with unique minimum dominat-
ing sets, unique maximum independent sets, and unique x-colorings that
are as described in the introduction.

Lemma 2.1 (i) A graph G has a unigue minimum dominating set if and
only if the set of vertices that belong to every minimum dominating
set of G is a dominating set of G.

(i) A graph G has a unique mozimum independent set if and only if
the set of vertices that belong to every mazimum independent set is
mazimal independent.
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(#ii) Let G be a graph and let E' = {uv € E(G)|u,v € V(G), x(G) =
X(G + uv)}, i.e. E' is the set of non-edges of G whose addition to G
does not increase the chromatic number.

The graph G is uniquely colorable if and only if the graph G' =
(V(G), E(G) U E') is a complete x(G)-partite graph.

Proof: (i): ‘=’ (trivial). ‘<=’ Let D; and D, be two different minimum
dominating sets of G, then the set D, N Dy dominates G and |D; N Dq| <
7(G) which is a contradiction.

(ii) ‘=’ (trivial). ‘<=’ Let I; and I, be two different maximum independent
sets of G, then the set ) NI, # I; is maximal independent which is a
contradiction.

(iii) Let V1 U V2 U ... U Vy(g) = V(G) be a x(G)-coloring of G. Clearly,
all non-edges of G with endpoints in different sets V; belong to E'. If G
is uniquely colorable, then clearly (V(G), E(G) U E') is a complete x(G)-
partite graph. If G is not uniquely colorable, then there is a pair of vertices
z, y and a second x(G)-coloring VyUV5U... UVé(G) = V(G) of G such that
without loss of generality z,y € Vi, z € V/, and y € V4. This implies that
zy € E' and (V(G), E(G) U E') is no complete x(G)-partite graph. O

Now, we describe the local changes that allow to check the properties used
in the above characterizations. For x the local change consists just of adding
a specific edge to the graph.

Let G be a graph, let v € V(G), and let u € N(v,G). The graph G, ,,
has vertex set V(Gy,u) = (V(G) \ {v}) U {v'} and edge set E(G,y) =
(B(G) \ {vwlw € N(v,G)}) U {w'}.

Lemma 2.2 Let G be a graph and let v € V(G).

(i) The vertez v belongs to every minimum dominating set of G if and
only if v(G) < y(Gy,u) for every u € N(v,G).

(i) The vertez v belongs to every mazimum independent set of G if and
only if a(G) > a(G[V(G) \ N[, G]]) + 1 for every u € N(v,G).

Proof: (i) Let D be a minimum dominating set of G,,. Since in Gy,
the vertex u has a neighbour of degree one, we can assume without loss of
generality that v € D C V(G). Hence D is also a dominating set of G and
we obtain that |D| = v(G,,.) is the minimum cardinality of a dominating
set of G that contains u. Therefore, min{y(G,,)|u € N(v,G)} is the
minimum cardinality of a dominating set of G that does not contain v and
the result follows.

(ii) As above, a(G[V(G)\ N[u,G]]) +1 is the maximum cardinality of an in-
dependent set of G that contains u. Therefore max{a(G[V (G)\ N[u,G]]) +
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1|u € N(v,G)} is the maximum cardinality of an independent set of G that
does not contain v and the result follows. O

We will now complete our exposition by considering the properties of graph
classes that allow to decide efficiently if v, @, or x have unique realizations.

Let G, be a class of graphs such that for every G € G, and every v € V(G)
and u € N(v,G), it is possible to determine +y for the graphs G and Gy,
in polynomial time.

Proposition 2.3 For a graph G € G, it can be decided in polynomial time
whether G has a unique minimum dominating set.

Proof: We may assume that we can determine v for G and G, in time
p4([V(G)|,|E(G)|) for every G € G, v € V(G) and u € N(v,G) where
py is some polynomial. By Lemma 2.2, we can decide in time |V(G)] -
p4([V(G)),|E(G)|) for a specific vertex v € V(G), whether v is contained
in every minimum dominating set of G. We can therefore find the set of
all vertices of G that are in every minimum dominating set of G in time
IV(G)]? - py(IV(G)], |E(G)|). By Lemma 2.1(i), it is now trivial to decide
whether G has a unique minimum dominating set. O

The property of G, is not very restrictive and many of the classes of graphs
for which - can be computed efficiently have this property. As an example
we cite the strongly chordal graphs [5], [4] which contain several other well-
known classes of graphs (see [17]) and for which 7y can be computed in
polynomial time. If G is a strongly chordal graph, then Gy . is also a
strongly chordal graph for every v € V(G) and u € N(v,G) (note that if
V1v3...Un is a strong elimination ordering of the vertices of G and v = v; and
u = vj, then v1ve...v; Vi41...Uj—1U'Vj..., is a strong elimination ordering
of G,,). Exactly as Proposition 2.3 we can now prove the following two
results for « and x.

Let G, be a class of graphs such that for every G € G, and every v € V(G),
it is possible to determine o for the graphs G and G[V(G) \ N[v,G]] in
polynomial time.

Proposition 2.4 For a graph G € G, it can be decided in polynomial time
whether G has e unique maezimum independent set.

Again, the property of G, is not very restrictive and there are several classes
of graphs for which a can be computed in polynomial time that have this
property because they are closed under taking induced subgraphs (see e.g.
[2, 15, 18, 19] and [20}).
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Let Gy be a class of graphs such that for every G € G, and every uwv € E(G),
it is possible to determine x for the graphs G and (V(G), E(G) U {uv}) in
polynomial time.

Proposition 2.5 For a graph G € Gy it can be decided in polynomial time
whether G is uniquely colorable.
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