A note on the complexity of graph parameters and the uniqueness of their realizations

Miranca Fischermann, Dieter Rautenbach, 1 and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH-Aachen, 52056 Aachen, Germany, { fischerm, rauten, volkm}@math2.rwth-aachen.de

Abstract: Let ν be some graph parameter and let \mathcal{G} be a class of graphs for which ν can be computed in polynomial time. In this situation it is often possible to devise a strategy to decide in polynomial time whether ν has a unique realization for some graph in \mathcal{G} . We first give an informal description of the conditions that allow one to devise such a strategy, and then we demonstrate our approach for three well-known graph parameters: the domination number, the independence number, and the chromatic number.

Keywords: complexity; unique realization; domination number; independence number; chromatic number

1 Introduction

Let ν be some graph parameter. As typical choices for ν we will consider well-known graph parameters such as the domination number γ , the independence number α , or the chromatic number χ (for notation and definitions see e.g. [14]). In these examples, ν corresponds to the minimum or maximum cardinality of special subsets of the vertex set or to a certain partition of the vertex set, i.e. ν measures some property either of a set of vertices or of a partition of the vertices of a graph.

We say that ν has a unique realization in G=(V,E) if G has only one set, or partition, which satisfies the property measured by ν . In such a case, we say that this unique set is a unique ν -set of G. For example, γ has a unique realization in some graph G if G has a unique minimum dominating set, that is, a unique γ -set. Similarly, α has a unique realization in G if G has a unique maximum independent set (α -set), and χ has a unique realization in G if G has a unique partition into χ independent sets.

Usually, the problem of characterizing graphs for which some parameter ν has a unique realization is considered separately from the algorithmic

¹This author was supported by the *Deutsche Forschungsgemeinschaft* under grant *Postdoktorandenstipendium RA 873/1-1*. Corresponding author.

problem of determining the value of ν . There are several characterizations in the literature of classes of graphs for which some parameter ν has a unique realization (e.g. [1, 6, 7, 8, 9, 10, 12, 13, 16, 21, 22] and [23]). Sometimes these characterizations lead to polynomial time algorithms for deciding if a graph in this class has a unique ν -realization. For example, in [10], Gunther, Hartnell, Markus and Rall characterize trees having a unique γ -set. A corollary of this characterization is that there is a linear time algorithm for deciding if an arbitrary tree has a unique γ -realization. All one needs to do is to use any existing O(n)-time algorithm for finding a γ -set (cf. [3]) D in a tree T, and then, check to see if every vertex in D has at least two private neighbours. If the answer is 'yes', then the tree T has a unique γ -set; otherwise the tree T has at least one other γ -set.

Often, these characterizations do not immediately lead to polynomial time algorithms for deciding if an arbitrary graph in one of these classes has a unique ν -realization. In many of these cases, however, it is possible to determine the value of ν in polynomial time, and, as we shall show, it is also possible to decide whether a graph has a unique ν -realization.

Let us assume now that there is an (easy-to-prove) characterization of the graphs for which ν has a unique realization that uses a property which can be checked by evaluating ν for different graphs that arise from a given graph by some local changes. Let $\mathcal G$ be a class of graphs. If it is possible to determine ν in polynomial time for all graphs that arise from a graph in $\mathcal G$ by the above-mentioned local changes and if we can check the above-mentioned property by looking only at a polynomial number of graphs, then we can decide - again in polynomial time - using the characterization whether ν has a unique realization for some graph in $\mathcal G$. We will now demonstrate this informally described strategy in the next section for γ , α and χ . It is clear that our approach works for several other graph parameters.

2 Examples of the strategy

We begin with characterizations of graphs with unique minimum dominating sets, unique maximum independent sets, and unique χ -colorings that are as described in the introduction.

- **Lemma 2.1** (i) A graph G has a unique minimum dominating set if and only if the set of vertices that belong to every minimum dominating set of G is a dominating set of G.
 - (ii) A graph G has a unique maximum independent set if and only if the set of vertices that belong to every maximum independent set is maximal independent.

(iii) Let G be a graph and let $E' = \{uv \notin E(G)|u,v \in V(G), \chi(G) = \chi(G+uv)\}$, i.e. E' is the set of non-edges of G whose addition to G does not increase the chromatic number.

The graph G is uniquely colorable if and only if the graph $G' = (V(G), E(G) \cup E')$ is a complete $\chi(G)$ -partite graph.

- *Proof:* (i): ' \Rightarrow ' (trivial). ' \Leftarrow ' Let D_1 and D_2 be two different minimum dominating sets of G, then the set $D_1 \cap D_2$ dominates G and $|D_1 \cap D_2| < \gamma(G)$ which is a contradiction.
- (ii) ' \Rightarrow ' (trivial). ' \Leftarrow ' Let I_1 and I_2 be two different maximum independent sets of G, then the set $I_1 \cap I_2 \neq I_1$ is maximal independent which is a contradiction.
- (iii) Let $V_1 \cup V_2 \cup ... \cup V_{\chi(G)} = V(G)$ be a $\chi(G)$ -coloring of G. Clearly, all non-edges of G with endpoints in different sets V_i belong to E'. If G is uniquely colorable, then clearly $(V(G), E(G) \cup E')$ is a complete $\chi(G)$ -partite graph. If G is not uniquely colorable, then there is a pair of vertices x, y and a second $\chi(G)$ -coloring $V_1' \cup V_2' \cup ... \cup V_{\chi(G)}' = V(G)$ of G such that without loss of generality $x, y \in V_1, x \in V_1'$, and $y \in V_2'$. This implies that $xy \in E'$ and $(V(G), E(G) \cup E')$ is no complete $\chi(G)$ -partite graph. \square

Now, we describe the local changes that allow to check the properties used in the above characterizations. For χ the local change consists just of adding a specific edge to the graph.

Let G be a graph, let $v \in V(G)$, and let $u \in N(v, G)$. The graph $G_{v,u}$ has vertex set $V(G_{v,u}) = (V(G) \setminus \{v\}) \cup \{u'\}$ and edge set $E(G_{v,u}) = (E(G) \setminus \{vw|w \in N(v,G)\}) \cup \{uu'\}$.

Lemma 2.2 Let G be a graph and let $v \in V(G)$.

- (i) The vertex v belongs to every minimum dominating set of G if and only if $\gamma(G) < \gamma(G_{v,u})$ for every $u \in N(v,G)$.
- (ii) The vertex v belongs to every maximum independent set of G if and only if $\alpha(G) > \alpha(G[V(G) \setminus N[u,G]]) + 1$ for every $u \in N(v,G)$.
- **Proof:** (i) Let D be a minimum dominating set of $G_{v,u}$. Since in $G_{v,u}$ the vertex u has a neighbour of degree one, we can assume without loss of generality that $u \in D \subseteq V(G)$. Hence D is also a dominating set of G and we obtain that $|D| = \gamma(G_{v,u})$ is the minimum cardinality of a dominating set of G that contains u. Therefore, $\min\{\gamma(G_{v,u})|u\in N(v,G)\}$ is the minimum cardinality of a dominating set of G that does not contain v and the result follows.
- (ii) As above, $\alpha(G[V(G) \setminus N[u,G]]) + 1$ is the maximum cardinality of an independent set of G that contains u. Therefore $\max\{\alpha(G[V(G) \setminus N[u,G]]) + 1\}$

 $1|u \in N(v,G)$ is the maximum cardinality of an independent set of G that does not contain v and the result follows. \square

We will now complete our exposition by considering the properties of graph classes that allow to decide efficiently if γ , α , or χ have unique realizations.

Let \mathcal{G}_{γ} be a class of graphs such that for every $G \in \mathcal{G}_{\gamma}$ and every $v \in V(G)$ and $u \in N(v, G)$, it is possible to determine γ for the graphs G and $G_{v,u}$ in polynomial time.

Proposition 2.3 For a graph $G \in \mathcal{G}_{\gamma}$ it can be decided in polynomial time whether G has a unique minimum dominating set.

Proof: We may assume that we can determine γ for G and $G_{v,u}$ in time $p_{\gamma}(|V(G)|, |E(G)|)$ for every $G \in \mathcal{G}$, $v \in V(G)$ and $u \in N(v, G)$ where p_{γ} is some polynomial. By Lemma 2.2, we can decide in time $|V(G)| \cdot p_{\gamma}(|V(G)|, |E(G)|)$ for a specific vertex $v \in V(G)$, whether v is contained in every minimum dominating set of G. We can therefore find the set of all vertices of G that are in every minimum dominating set of G in time $|V(G)|^2 \cdot p_{\gamma}(|V(G)|, |E(G)|)$. By Lemma 2.1(i), it is now trivial to decide whether G has a unique minimum dominating set. \square

The property of \mathcal{G}_{γ} is not very restrictive and many of the classes of graphs for which γ can be computed efficiently have this property. As an example we cite the *strongly chordal graphs* [5], [4] which contain several other well-known classes of graphs (see [17]) and for which γ can be computed in polynomial time. If G is a strongly chordal graph, then $G_{v,u}$ is also a strongly chordal graph for every $v \in V(G)$ and $u \in N(v,G)$ (note that if $v_1v_2...v_n$ is a strong elimination ordering of the vertices of G and $v = v_i$ and $u = v_j$, then $v_1v_2...v_{i-1}v_{i+1}...v_{j-1}u'v_j...v_n$ is a strong elimination ordering of $G_{v,u}$). Exactly as Proposition 2.3 we can now prove the following two results for α and χ .

Let \mathcal{G}_{α} be a class of graphs such that for every $G \in \mathcal{G}_{\alpha}$ and every $v \in V(G)$, it is possible to determine α for the graphs G and $G[V(G) \setminus N[v,G]]$ in polynomial time.

Proposition 2.4 For a graph $G \in \mathcal{G}_{\alpha}$ it can be decided in polynomial time whether G has a unique maximum independent set.

Again, the property of \mathcal{G}_{α} is not very restrictive and there are several classes of graphs for which α can be computed in polynomial time that have this property because they are closed under taking induced subgraphs (see e.g. [2, 15, 18, 19] and [20]).

Let \mathcal{G}_{χ} be a class of graphs such that for every $G \in \mathcal{G}_{\chi}$ and every $uv \notin E(G)$, it is possible to determine χ for the graphs G and $(V(G), E(G) \cup \{uv\})$ in polynomial time.

Proposition 2.5 For a graph $G \in \mathcal{G}_{\chi}$ it can be decided in polynomial time whether G is uniquely colorable.

Acknowledgement: We would like to thank the referee for his useful comments on the exposition of this paper.

References

- G. Chartrand and D. Geller, Uniquely colorable planar graphs, J. Combin. Theory 6 (1969), 271-278.
- [2] V. Chvátal, C.T. Hoàng, N.V.R. Mahadev, and D. de Werra, Four classes of perfectly orderable graphs, J Graph Theory 11 (1987), 481 -495.
- [3] E.J. Cockayne, S.E. Goodman, and S.T. Hedetniemi, A linear algorithm for the domination number of a tree, *Inform. Process. Lett.* 4 (1975), 41-44.
- [4] M. Farber, Characterizations of strongly chordal graphs, *Discrete Math.*43 (1983), 173-189.
- [5] M. Farber, Domination, independent domination, and duality in strongly chordal graphs, *Discrete Appl. Math.* 7 (1984), 115-130.
- [6] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001), 247-251.
- [7] M. Fischermann and L. Volkmann, Unique minimum domination in trees, Australas. J. Combin. 25 (2002), 117-124.
- [8] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, to appear in *Utilitas Math*.
- [9] M. Fischermann and L. Volkmann, Unique independence, upper domination, and upper irredundance in graphs, to appear in J. Combin. Math. Comb. Comput.
- [10] G. Gunther, B. Hartnell, L.R. Markus, and D. Rall, Graphs with unique minimum dominating sets, Congr. Numerantium 101 (1994), 55-63.

- [11] G. Gunther, B. Hartnell, and D.F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, *Discrete Appl. Math.* 46 (1993), 167-172.
- [12] H. Hajiabolhassan, M.L. Mehrabadi, R. Tusserkani, and M. Zaker, A characterization of uniquely vertex colorable graphs using minimal defining sets, *Discrete Math.* 199 (1999), 233-236.
- [13] F. Harary, S. Hedetniemi, and R. Robinson, Uniquely colorable graphs, J. Combin. Theory 6 (1969), 264-270.
- [14] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [15] A. Hertz, Polynomially solvable cases for the maximum stable set problem, Discrete Appl. Math 60 (1995), 195 - 210.
- [16] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, *Discrete Math.* 57 (1985), 245-251.
- [17] D. Kratsch, Algorithms, in T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors, Domination in graphs: advanced topics, chapter 8, Marcel Dekker, Inc., New York, 1998.
- [18] N.V.R. Mahadev, Vertex deletion and stability number, Technical Report ORWP 90/2, Swiss Federal Institute of Technology, Department of Mathematics, 1990.
- [19] N.V.R. Mahadev and B.A. Reed, A note on vertex orders for stability number, J. Graph Theory 30 (1999), 113 120.
- [20] D. Rautenbach, On vertex orderings and the stability number, Discrete Math. 231 (2001), 411-420.
- [21] W. Siemes, J. Topp, and L. Volkmann, On unique independent sets in graphs, *Discrete Math.* 131 (1994), 279-285.
- [22] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, *Discrete Math.* 121 (1993), 199-210.
- [23] A. Tucker, Uniquely colorable perfect graphs, Discrete Math. 44 (1983), 187-194.