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Abstract

Heinrich et al. [4] characterized those simple eulerian graphs with
no Petersen-minor which admit a triangle-free cycle decomposition,
a TFCD. If one permits Petersen minors then no such characteriza-
tion is known even for E(4,2), the set of all the eulerian graphs of
maximum degree 4. Let EM(4,2) C [£(4,2) be the set of all graphs
H such that all triangles of H are vertex disjoint, and each triangle
contains a degree 2 vertex in H. In the paper it is shown that to
each G € E(4,2) there exists a finite subset S C EM(4,2) so that G
admits a TFCD if and only if some H € S admits a TFCD. Further,
some sufficient conditions for a graph G € (4, 2) to possess a TFCD
are given.

1 Introduction.

It is very well known that a graph is eulerian iff there exists a decomposition
of its edge set into cycles. There are several results along this line where one
is looking for a cycle decomposition obeying some additional conditions. For
example, Zhang [6] proved that edges of every 2-connected eulerian graph
G with no subgraph contractible to K5 can be decomposed into cycles of
even length, for |E(G)| even, and for |E(G)| odd there is a decomposition
with exactly one cycle of odd length. Koudier and Sabidussi showed [5] that
any 2-connected 4-regular graph can be decomposed into two triangle-free
2 factors. In [1] it is proved that the decision problem: ”Given an eulerian
graph G of maximum degree 4. Decide whether G can be decomposed into
two triangle-free 2-factors” can be solved in a polynomial time with respect
to the order of G.

In this area, there are also plenty of interesting conjectures, some of them
being around for a long time. Probably the best known of them is a con-
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jecture of Sabidussi, see e.g. [3], saying that to any eulerian trail T of an
eulerian graph G without vertices of degree 2 there is a cycle decomposition
C of G so that two consecutive edges of T belong to different cycles of C.

In [4] the question when an eulerian graph admits triangle-free cycle de-
composition, i.e. a decomposition of its edge set into cycles so that none
of them is of length 3, a TFCD, is studied. The authors point out that
the question, which is interesting by itself, is motivated also by the famous
Double Cycle Cover conjecture. Given a simple graph G. Let Hg be an eu-
lerian graph obtained from G by doubling each edge of G (thus obtaining a
multigraph with each edge having the multiplicity 2) and then subdividing
all new edges by one vertex. It is not difficult to show that G has a dou-
ble cycle cover iff Hg possesses a TFCD. Hence, to get a characterization
of those eulerian graphs admitting a TFCD is of great interest. The first
step has been done in [4], where eulerian graphs with a TFCD and having
no Petersen-minor were characterized. Of course, the desire is to find a
characterization without the condition no Petersen-minors.

The first non-trivial case are eulerian graphs of maximum degree A < 4.
In fact, this has been asked by Heinrich and Liu (c.f. [7], Problem 10.7.5.),
sce also [4]. For the sake of simplicity this class of graphs will be denoted
by £(4,2) and the members of the class will also be called (4, 2)—graphs.

As the main result of the paper, we show in two steps that the problem of
characterizing those (4, 2) —graphs possessing a TFCD can be reduced to a
relatively small subclass EM(4,2) of E(4,2). A (4,2)—graph G belongs to
EM(4,2) if all triangles of G are pairwise vertex-disjoint and each triangle
of G has a vertex of degree 2 in G.

Reduction A. To each graph G € E(4,2) there exists a graph H € £(4,2)
so that the triangles of H are pairwise vertex-disjoint and H possesses a
TFCD if and only if G does.

The above reduction is linear with the number of vertices of G of degree
4. Unfortunately, the reduction presented in the next theorem is not poly-
nomial as in general the number of graphs in the set S is exponential with
the number of triangles of G.

Reduction B. To each graph H € [5(4,2) so that the triangles of H are
pairwise vertex-disjoint there exists a finite set S of graphs from EM (4, 2)
so that H has a TFCD if and only if at least one graph of S has the property.

Although the class M (4, 2) comprises graphs with more transparent struc-
ture than a general (4, 2)-graph we are not able to characterize those graph
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of EM(4,2) having a TFCD. Therefore, in Section 3, some sufficient con-
ditions for a graph from E(4,2) to have a TFCD will be presented.

We believe that the simplest unsolved case when characterizing graphs
with a TFCD is the class EC(4,2), where a (4,2)-graph G € EC(4,2) C
EM(4,2) if G consists of two vertex disjoint cycles C, C’ of the same length
n and n vertex-disjoint triangles so that each triangle has one vertex on C,
one vertex on C’ and the third vertex of the triangle is of degree 2 in G,
where n > 4. We conjecture that the following is true. Given a graph
G € EC(4,2). Then the decision problem whether G admits a TFCD can
be solved in a polynomial time with respect to the order of G. The conjec-
ture is discussed in Section 4.

In the last section we point out relation between the TIFCD problem and
the problem of Compatible Cycle Decompositions. This relation indicates
why the TFCD problem is "difficult” even for the class EM(4,2).

2 Proof of Reductions

We start with some more definitions and notation. Let G be a graph. If A is
a set of vertices of G then by [A] we will denote a subgraph of G induced by
A. Let v be a vertex of G. Then N(v),andN(v) stand for the neighborhood
and the closed neighborhood of v, respectively. Further, K,,C,, and P,
stand for complete graph, cycle, and path on n vertices, respectively.

Proo!' of Reduccion A. To construct H we will create a sequence of (4, 2)—graphs
=G HR,. . Fao_,F, = H, so that Iy, has a TFCD ifl F; does,
1=01,..,n- 1. Suppose that [; has already been constructed. To get
Iy we choose in F; a vertex v of degree 4 which is incident with at least
two triangles. The vertex v will be replaced in F;;; by two vertices of de-
gree 4, v’ and v", so that either of them is incident in F;; with at most one
triangle, and some new vertices of degree 2 will be created. If [N(v)] has at
most one edge, the vertex v is incident with at most one triangle and we do
not need to transform the neighborhood of v. There are 9 non-isomorphic
subgraphs of K, having at least two edges so we will distinguish among 9
cases depending on the structure of [N(v)]. In order to avoid indices, in
what follows we set F; = F and F;; = F’. The vertices from N(z) will
always be denoted by z, y, 2, and w. Further, the vertices of N(v) which are
in [N(v)] of degree at most 2 arc in F of degree 2 or 4 . In the figures they
are always depicted as vertices of degree 4 with the understanding that two
of the edges incident with these vertices and not in [N(v)] do not have to
belong to F. If these edges are not in [ it is for our purpose equivalent to
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the case when they are in F and in the considered TFCD they form two
consecutive edges in some of its cycles.

a) [N(w)] ~ K4. Then F = Ks and clearly F has a TFCD. Hence we
can choose as F’ any (4,2)— graph having all its triangles pairwise vertex-
disjoint and possessing a TFCD.

[ig.1

Seven of the remaining eight cases are going to be treated using the same
transformation of the neighborhood of v. First the vertex v is removed.
Then four new vertices v’,v", a, b, are added together with the edges v'z,
v'w, v'a, v'b, v"y, vz, v"a, v"”b,. We describe the following case (which we
believe is a most illustrative for the method) in greater detail.

b) [N(v)] = P4, see Fig.1. Let D be a TFCD of I. The four edges incident
to v belong to two different cycles of D. Suppose first that the path zvw is
a part of a cycle C of D, and the path yvz is on a cycle K of D. To obtain
a TFCD of F', we form a cycle C’' by substituting in C the path zvw by
the path zv'w, and a cycle K’ by substituting in K the path yvz by the
path yv”z. Then D' = (D—-{C,K})U{C',K',L = v'av"bv'} isa TFCD of
F’ because the cycles C’ and K’ have the same length as the cycles C and
K, respectively, and the cycle L is of length 4. Assume now that the path
zvy(zvz) is on a cycle C of D, and the path zvw(yvw) is on a cycle K of D.
We form a cycle C’ by substituting in C the path zvy(zvz) by the path
zv'av”’y(zv’av”z), and a cycle K’ by substituting in K the path zvw(yvw)
by the path zv"bv'w(yv”bv'w). Then D' = (D - {C,K})U {C', K’} is a
TFCD of F' as cycles C’ and K’ are even longer then the cycles C and K,
respectively.

Now let D’ be a TI"C D of F’. We will show how to construct a TFFCD, D,
of F.
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If the cycle L = v'av”bv’ belongs to D’ , to obtain D, we first remove L
from D' and in the cycles of D’ containing v’ and v” we write v instead of
»' and v”. The only problem can arise if the vertices v’ and v are on the
same cycle C’ # L. Then we first modify D’ in such a way that the path
yv'z is in C’ replaced by the edge yz, and the edge yz which belonged in D’
to a cycle C” is replaced in C” by the path yv”z. Clearly, the modified D’
retains the property to be a TFCD. To be able to perform the modification,
in all following seven cases we choose notation so that the edge yz belongs
to G.

Suppose now that the edges of the cycle L belong to two cycles of D'. Let
the path ov”av’S be a part of a cycle C’, the path y»”bv’s be a part of
a cycle K’ of D', where {e,B3,7,6} = {z,y,2 w}. Further, let cycles C
and K be obtained from C’ and K’ by substituting the paths av”av’$ and
~v"bv'8 by the path avf and v, respectively. If both cycles C and K are
of length at least 4, then D = (D' = {C",K'})U{C,K} isa TFFCD of I
The only non-trivial case arises when C’ and/or K’ is of length 5, i.e., when
at least one of the four cycles zyv"bv'z, Tyv” av'z, zv'av”wz and zv'bv"wz
are in D’.

The edges of the subgraph of I’ induced by the set {z,y,2,w,v',v",q, b}
form up in D’ a set S’ of cycles and/or paths. To construct D one can
proceed as follows. Decompose the edges of the subgraph [N(v)] of F into
a set S of cycles and/or paths so that

(i) each cycle of S is of length at least 4;

(ii) there is a bijection of paths in S’ and S where the two corresponding
paths P’ and P have the same pair of endvertices (from N(v)) so that
substituting of P’ in a cycle C’ of D’ by a path P results in a cycle C of
length at least 4.

This is guarantied, if the length of P is at least 2 or if both P and P’ are of
length 1. Note that if a path P contains o € {z,y, z, w} as an inner vertex,
where degmv—)l(a) = 2 and degp(a) = 4, then substituting P for P’ into
C’ might lead to a trail passing through a twice. This would occur in the
case a € C’. We will alsways choose paths P to avoid this possibility.

To obtain D we remove from D’ the cycles of S’ and the cycles C’ containing
paths from S’ and add the cycles of S and cycles C formed in the above
mentioned manner. We need to distinguish among the following cases.

(i) 8§’ = {zv'av"yz, wv'bv"zw,yz}. Then S = {zvwzyz,yvz} has the
required property. Note that if we set S = {zvzyz,yvwz} then, in the
case that the vertex w would be of degree 4 in I and the cycle C’ of D'
containing the path yz would pass through the vertex w, replacing the path
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yz by the path yvwz would not result in a cycle of F but in a trail consisting
of two cycles.

(i) 8’ = {zv'av"yz, wv'bv” z,wzy} or §’' = {zv'av"yz, wv'bv" zy, wz}.
Set S = {zvzyz, w2, wvy}. A problem can occur only in the case when the
cycle C' = wv'bv"ztw € D', ¢t ¢ N(v), as we would have a triangle wztw in
D. We set S = {wvzyz,wzy} as we know that in this case the cycle of C’
does not pass through the vertex z. Thus replacing the w ~ z path in C’
does not result in a trail consisting of two cycles.

(iii) The other cases are symmetric to the previous ones.

The first part of the proof in the following six cases is identical to the first
part of the proof of b) (since the structure of [N(v)] does not play any
role there), and therefore will be omitted. As to the non-trivial part of the
proof (i.e., if at least one of the cycles zyv"bv'z, zyv”av'z, 2v’'av"wz and
zv'bv"'wz is in §’), we only list sets S’ and the corresponding set S.

¢) [N(v)] = K4 — P2 , yw being the removed edge.
S’ comprises two cycles and a y — w path, S = {wrzyvw, wzvzy}.

d) [N(v)] = C4, zyzwz € [N(v)].
S’ always contains exactly two paths, an a — 8 path and a y — § path,
{a, B,7,8} = {z,y, 2, w}. We can take S = {zyzwz, avp, yvé}.

e) [N(v)] =~ K4 — P3,zwz being the removed path.

S = {zv'av"yz, wv'bv" zyw, 2}, S = {wvzzyw, Zvyz}.

S’ = {zv'av"yz, a y — z path, a y — z path }, S = {wvyzw, yzvz,y2z}.
S’ = {zv'av"yz, a w — z path, a w — z path}, S = {wyzvz, wvyzz}.

f) [N(v)] ~ C3, zyzz being the cycle.

S = {zv'av"yz, wv'bv" z, zzy}, S = {zv2Y, WVYTZ}.
S’ = {zv'av"yz, wv'bv" 2y, 2}, S = {wvzzy, zyvz}.
S = {zv'av"yz, wv'bv" 2z, y2}, S = {wvzyz, yvzz}.

g) [N(v)] =~ Ps,zyz being the path.

S’ = {zv'av"yz, wv'bv" 2y}, S = {zvzyz, wuy}.

If §' = {zv'av"yz, wv'bv"z,yz}, then S = {wvyz, yzvz} for the case when
z is not on the cycle of D’ containing yz, otherwise S = {wvzyz,yvz}.

h) [N(v)] =~ 2K>2, zw and yz being the two edges.

There is not any non-trivial case as the edges zy and 2w arc not in [N(v)],
i.e., none of the cycles zyv"bv’z, zyv” av'z, 20’ av”’wz and 2v'bv"wz isin D'.
Note that the transformation was made with the assumption that the edge
yz € G.
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F F’
\éx igy >/z ?f:c ?fy ??z
w v ‘U, ,UII
i) [N(v)] = Ki,3. In this case we use a transformation depicted in Fig.2.
The vertices of F’ of degree 2 are new vertices, the vertex w has been
removed. Let D(D’) be a TFCD of F(F'). Then S(S’) (S and S’ have the
same meaning as before) contain either two paths both having the same pair
of endvertices from {z,y,z} or an z — y,y — 2, and an z — z paths, or S’
contains a cycle and two paths both having the same pair of endvertices. On
the other hand, both [N(v)] and the subgraph of F” induced by z,y, 2, ', v"”
and the new vertices of degree 2 can be decomposed into two (three) paths
with above described endvertices such that each path has length at least

two, and possibly a cycle. Substituting corresponding paths in the cycles
of D(D’) provides a TFFCD,D’'(D), of F'(F). The proof is complete.

Fig.2

Proof of Reduction B.

Let T = zyzz be a triangle of H, z being a vertex of degreec 4. Denote by
H(T, z) the graph obtained from H by first removing the vertex z, then
adding two new vertices z’ and z” of degree 2, where z’ is adjacent to y and
z, '’ to the other two neighbors of z. Let T = zyzz be a triangle of H so
that all vertices of T are in H of degree 4. We assign to H a set Hyp of four
(4, 2)-graphs whose triangles arc vertex disjoint. Three of them are graphs
H(T,z), H(T,y), H(T, z), the fourth one, H(T, 3) is depicted in Fig.3. The
vertices n’,n”, n"”’, m,z’,y’, 2’ are new vertices. If the triangles of H were
vertex disjoint then clearly also the graphs of Hr have the property.
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Fig.3

Claim 1. H has a TFCD ifl at least one of the graphs in Hy does.

Suppose first that H has a TFCD, D. Then the edges of T belong to
either two or three cycles of D. In the former case, for exactly one vertex
of T, say z, the two edges incident with £ and not in T are on the same
cycle C of D (and are consecutive edges of the cycle). The edges incident
with y(z) and not from T are on distinct cycles of C. Clearly, then H(T, z)
has a TFCD. So suppose that the edges of T belong to three distinct
cycles of D. Denote by M the subgraph of H(T,3) induced by the set
{z,2',y,¥,2,2',7n/,n",n" ,m}. The edges of M can be decomposed into
T —y,y—z and z — z paths. Let e € T. To construct a TFCD of H(T, 3)
all one needs to do is to replace in the cycle C, of D, e € C,, the cdge e by
a path of M having the same endvertices as e does.

Assume now that one of the graphs in Hy has a TFCD, D'. If it is the
graph H(T,z) then to obtain a TFCD of H we formally write = instead
z’ and z” in the cycles of D’ containing the vertices z’ and z”. In the case
z’,z" belong to the same cycle of D’ what we get is a trail consisting of two
cycles sharing the vertex z. However, both cycles of the trail are of length
at least 4 as all triangles of H are vertex-disjoint. Supposc that H(T, 3)
possesses a TFCD D’'. Then the edges of the induced subgraph M form
in D’ three paths with endvertices from {z,y, 2}. To obtain a TFCD of H
we replace the paths by the edges of T with the same pair of endvertices.
The resulting cycles of H are shorter than the cycles of H(T, 3) but are of
length at least 4 as the triangles of H are vertex-disjoint. The proof of the
claim follows.

Now we are ready to construct the set Si. We do it in an iterative way.
At the beginning we set Sy = {H}. If H € EM(4,2) we are done. If not
suppose that a graph K € Sy has a triangle T whose all vertices are of
degree 4 in H. Then the graph K will be replaced by the four graphs from
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Hyp. After a final number of steps all graphs in Sy are from EM(4,2). The
claim stated above finishes the proof of Reduction B.

3 Sufficient conditions.

In this section we state some sufficient conditions for a (4, 2)—graph to have
a TFCD. We start with one which is a reduction of the main result in 4]
to graphs of maximum degree 4. Let T3 be a graph on 5 vertices with 7
edges consisting of three triangles sharing an edge. Then:

Theorem 1 If G is a (4,2)—graph with no Petersen-minor and is not iso-
morphic to either a triangle Cs or a graph T3 then G has a TFCD.

Corollary 1 Every planar (4,2)—graph not isomorphic to C3 or T3 has a
TFCD.

Thus, our interest is concentrated on graphs with Petersen-minors. As
already pointed in [4], graphs with Petersen-minor might but do not have
to have a TFCD and there are infinitely many examples of either sort. The
same is valid if we restrict ourselves to the class £(4,2), and even the class
EM(4,2). The graph P obtained from Petersen graph by first doubling the
5 spokes and then subdividing each new edge by one vertex does not have
a TFCD, see [4]. On the other hand, take two copies of the graph P and
remove an edge from both outer and inner 5 cycle of each copy. Then add
2 edges joining vertices of degree 3 on outer cycles and two edges joining
vertices of degree 3 on inner cycles. The obtained graph possesses a TFCD.

As we mentioned before we are not able to characterize those graphs of
EM(4,2) which contain a Petersen-minor and admit a TFCD. Instead, we
present here some sufficient conditions. Let G € EM(4,2) be a 2-connected
graph. Then by G_y we denote a (multi)graph obtained from G by first
removing all edges of G belonging to any triangle of G, then removing
isolated vertices, and finally by suppressing vertices of degree 2 in G (an
operation "inverse” Lo subdividing an edge). Note, that G_; may contain
parallel edges and/or triangles. However, G is 2-connected, hence there are
no loops in G_p.

Theorem 2 Let G be a 2-connected graph from EM(4,2). If each compo-
nent of G_1 has an even number of edges then G has a TFCD.

Proof. Each component of G_r is an eulerian graph. For any component S
of G_7 take an eulerian trail of S and color the edges of the trail alternately
by two colors, red and blue. Then we subdivide edges by vertices of degree
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2 which were removed in the process of constructing G_r. Both edges
obtained by a subdivision will retain the color of the original edge. Further,
we color edges of triangles of G so that the edges incident with the vertex
of degree 2 get the same color, the third edge will get the other color. Then
the monochromatic cycles of G are of length at least 4 and thus make up a
TFCD of G.

Corollary 2 If G_r is connected, then G has a TFCD.

Proof. The number of edges of G_r is even as G_r € E(4,2) and its
number of vertices of degree 2 equals twice the number of triangles of G.

We note that Theorem 2 is a slight generalization of Lemma 10.2.6 {7} which
is formulated in terms of Compatible Cycle Decompositions.

4 Conjecture

As graphs G with G_r being connected have a TFCD, the next step are
graphs G € EM(4,2) so that G_r has two components. However, this
case is already a complicated one and it is believed that understanding this
case would be a crucial step toward solving Sabidussi’s conjecture, see |3,
Conjecture 12 and below]. To simplify the problem even further we consider
the case where G € EC(4,2) (for the definition of EC(4, 2) see the end of
the introduction). We believe that:

Conjecture 1 Let G € EC(4,2). Then the decision problem whether G
has a TFCD can be solved in a polynomial time with respect to the order of
G.

As an immediate consequence of Theorem 2 it follows that Conjecture is
true in the case G_r is formed by two cycles of an even length. We point
out that the validity of Fleischner-Jackson conjecture [3, page 21] about
4-regular graphs would imply our conjecture.

5 Concluding Remark.

In this section we point out the relation between a TFCD problem and the
Compatible Cycle Decompositions. First we recall some definitions.

Let G be an eulerian graph. For a vertex v in G a forbidden set of v, £, is
a partition of the set of edges incident with v. A forbidden system P of G
is the union of F, taken over all vertices v of G. We say that (G,P) has a
CCD if G has a cycle decomposition F so that any cycle of F' has at most
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one edge in common with any element of P. A trivial necessary condition
for the existence of CCD is that |pNT| < 1 |T| for any element p of P and
any edge cut T of G. The pair (G,P) satisfying the necessary condition is
called admissible. The problem of the existence of CCD generalizes several
problems in the area, among others also the above mentioned Sabidussi’s
conjecture. To study the problem Fan and Zhang [2] introduced the notion
of a minimal contra-pair. Define a partial order < on the set B of all
admissible pairs (G, P) as follows: (G, P1) = (G2, P2) if G| is a subgraph
of G4 and each member of P; is a subset of some member of P,. A pair
(G, P) € B is called a contra-pair if it has no CCD. A minimal contra-pair
is a contra-pair which is minimal with respect to the partial order < . In
[2] it is proved:

Theorem 3 ([2], Theorem 10.5.1) If (G, P) is a minimal contra-pair then
every member of P has cardinality at most 2 and A(G) < 4.

Thus, the graphs from £(4,2) play a crucial role in the CCD problem. At
the end of the paper we will prove the following theorem which states the
relation between the CCD and the TFCD problems.

Theorem 4 Let (G, P) be an admissible pair, G € E(4,2). Then there
exists a graph H € EM(4,2) so that (G, P) has a CCD iff H has a TFCD.
Purthermore, to each graph H € EM(4,2) there is an admissible pair (G, P)
so that H has a TFCD iff (G, P) has a CCD.

The [ollowing prool uses well-known ideas in the theory of eulerian graphs
and we present it here for the readers convenience.

Proof. First of all we note that if S is the forbidden set of a vertex v
of degree 4 then without loss of generality we may assume that S consists
either of two parts of cardinality 2 or four parts of cardinality 1. Let us start
with a (4,2)—graph G endowed with a forbidden system P. By subdividing
each edge of G by one vertex we form up a new triangle-free graph G’.
Forbidden set of each new vertex (of degree 2) of G’ consists of two parts
of cardinality 1, a forbidden system P’ of G’ is the union of the forbidden
system P with the forbidden sets of all new vertices. It is obvious, that
the graph G has a CCD iff and only iff G’ does. To obtain a desired graph
H € EM(4,2) we split some vertices of G’ of degree 4. A vertex v will
be split if v is of degree 4 and the forbidden set of v comprises two parts
of cardinality 2. We split v into two new vertices v’ and v” so that the
edges belonging to the same part of the forbidden system of v are incident
after the splitting with the same new vertex. Further, we add the edges of
a triangle v'v""nv’, where n is another new vertex of degree 2. Now it is a
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matter of routine to check that G’ has a CCD (note that G’ is triangle-free)
iff H admits a TFCD.

Assume now that H € EM(4,2). We construct an admissible pair (G, P)
as follows. Let T = zyzz be a triangle of H. Suppose that d(z) = 2,d(z) =
d(y) = 4. By shrinking the triangle 7" into a vertex we understand removing
the edges of T and the vertex z, and then identifying the vertices z and
y into a new vertex. To obtain the graph G we shrink simultaneously all
triangles of H. Note that after carrying out the operation the resulting
graph G might have a triangle but we will not apply the operation to the
triangles of G. Further, G might have multiple edges. In such a case, only
for the formal reason in order to confine ourselves to graphs, we subdivide
each parallel edge by one vertex. Now we define a forbidden system of G.
Two edges incident with a vertex of G of degree 4 made up by shrinking
a triangle T will form up a forbidden part ifl they were incident with the
same vertex ol T. For the other vertices of G we define all the forbidden
parts to be of cardinality 1. Clearly, H has a TFCD ifl G has a cycle
decomposition compatible with P. The proof follows.
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